Some Statistics on Permutations avoiding Generalized Patterns

Antonio Bernini Mathilde Bouvel Luca Ferrari

September 14th 2006

Outline

- Introduction
- 2 S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$
- 3 The two other symmetry classes
- Permutations avoiding a pair of generalized patterns
- 5 Conclusion and perspectives

Outline

- Introduction
 - Some definitions and previous results

Conclusion and perspectives

- Graphical representation of permutations and ECO construction
- \bigcirc S(1-23) and the symmetry class $\{1-23,32-1,3-21,12-3\}$
- 3 The two other symmetry classes
- 4 Permutations avoiding a pair of generalized patterns
- **(5)** Conclusion and perspectives

Classical Pattern Avoidance

$$\pi \in S_n, \ \tau \in S_k \text{ with } k \leq n$$

- The permutation π contains the pattern τ iff \exists $1 \leq i_1 < i_2 < \ldots < i_k \leq n$ such that $\pi_{i_1} \pi_{i_2} \ldots \pi_{i_k}$ is order-isomorphic to τ : $\pi_{i_p} < \pi_{i_q}$ iff $\tau_p < \tau_q$
- Otherwise, π avoids τ
- For example, 135624 contains 132 and avoids 321

Notation:

 $S_n(\tau)$ = the set of τ -avoiding permutations of length n $S(\tau)$ = the set of τ -avoiding permutations

Generalized Pattern Avoidance

 ${\sf Generalized\ pattern} = {\sf classical\ pattern} + {\sf dashes}$

Conclusion and perspectives

• Example : $\tau = 13 - 26 - 574$ is a generalized pattern

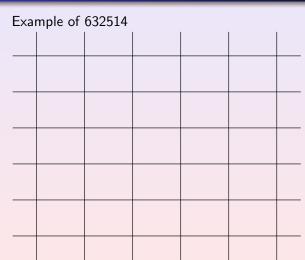
Generalized pattern avoidance : classical pattern avoidance + the elements that are adjacent in the pattern must correspond to adjacent elements in the permutation.

• Example : 7256134 contains 13 - 2 (7256134) but avoids 1 - 32

Conclusion and perspectives

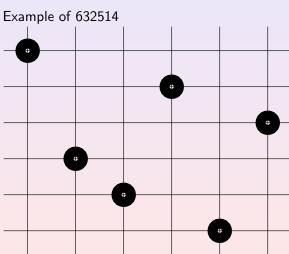
Three Symmetry Classes

- Reverse of a pattern $p: p^r = p$ read from right to left Complement of $p: p^c_i = n + 1 p_i$ (dashes unchanged)
- Generalized patterns of length 3 are organised in 3 symmetry classes $\{p, p^r, p^c, p^{rc}\}$:
 - $\{1-23, 32-1, 3-21, 12-3\}, |S_n(p)| = B_n$ (Bell)
 - $\{3-12,21-3,1-32,23-1\}, |S_n(p)| = B_n \text{ (Bell)}$
 - $\{2-13, 31-2, 2-31, 13-2\}, |S_n(p)| = C_n \text{ (Catalan)}$



Staff = portéepentagramma

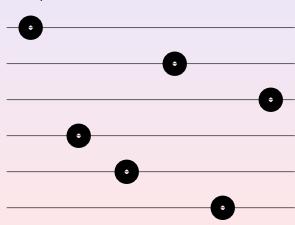
Conclusion and perspectives



Staff = portéepentagramma

Conclusion and perspectives

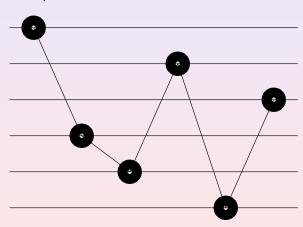
Example of 632514



Staff = portée pentagramma

Conclusion and perspectives

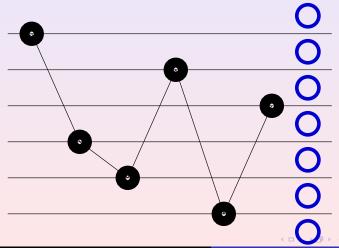
Example of 632514



Staff = portée pentagramma

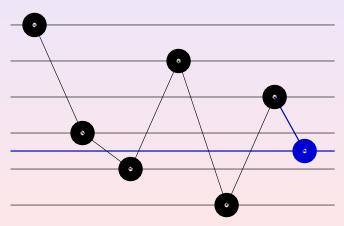
ECO construction on staff representation

Active sites = n + 1 regions on the right



ECO construction on staff representation

7426153 is obtained from 632514



Conclusion and perspectives

A simple but crucial remark

- In this ECO construction, starting from a τ -avoiding permutation, the pattern τ can appear only if it uses the new element inserted.
- It allows us to determine which of the n+1 regions are active sites.

Conclusion and perspectives

Our results

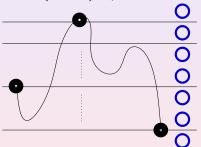
- Enumeration of $S(\tau)$ according to the length and the value of the last (or the first) element for every generalized pattern τ of length 3
- Two examples of extension to permutations avoiding 2 or 3 generalized patterns

Outline

- Introduction
- ② S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$
 - ECO construction and generating tree for S(1-23)
 - Distribution according to the length and the last value
 - The remaining patterns in the symmetry class of 1-23
- 3 The two other symmetry classes
- 4 Permutations avoiding a pair of generalized patterns
- 5 Conclusion and perspectives

Active sites: first case

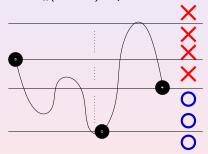
 $\pi \in S_n(1-23)$ a permutation that ends with 1



 π generates n+1 permutations of $S_{n+1}(1-23)$

Active sites: second case

 $\pi \in S_n(1-23)$ a permutation that ends with $k \neq 1$



 π generates k permutations of $S_{n+1}(1-23)$

Conclusion and perspectives

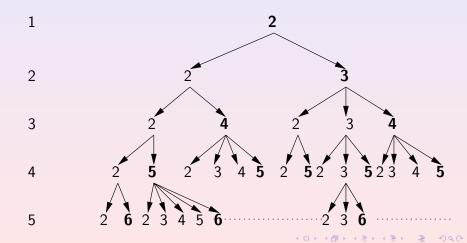
Succession rule

- Each permutation of $S_n(1-23)$ with k active sites is labelled (k, n).
- Succession rule :

$$\begin{cases} (2,1) \\ (k,n) \leadsto (2,n+1)(3,n+1)\cdots(k,n+1)(n+2,n+1) \end{cases} .$$

ECO construction and generating tree for S(1-23)Distribution according to the length and the last value The remaining patterns in the symmetry class of 1-23

Generating tree



Matrix M

$$M = (m_{i,j})_{i,j>1}$$

- $m_{i,j}$ is the number of labels j+1 at level i in the generating tree.
- i.e. $m_{i,j}$ is the number of permutations of $S_i(1-23)$ with j+1 active sites.

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \vdots \\ 1 & 1 & 0 & 0 & 0 & 0 & \vdots \\ 2 & 1 & 2 & 0 & 0 & 0 & \vdots \\ 5 & 3 & 2 & 5 & 0 & 0 & \vdots \\ 15 & 10 & 7 & 5 & 15 & 0 & \vdots \\ 52 & 37 & 27 & 20 & 15 & 52 & \vdots \end{pmatrix}$$

Matrix A, known as the Bell triangle

$$A = (a_{i,j})_{i,j \ge 1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \vdots \\ 1 & 1 & 0 & 0 & 0 & 0 & \vdots \\ 2 & 2 & 1 & 0 & 0 & 0 & \vdots \\ 5 & 5 & 3 & 2 & 0 & 0 & \vdots \\ 15 & 15 & 10 & 7 & 5 & 0 & \vdots \\ 52 & 52 & 37 & 27 & 20 & 15 & \vdots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

 $a_{i,j}$ is the number of 1-23-avoiding permutations of length i ending with j.

Introducing the backward difference operator : ∇

for
$$k \ge 3$$
, $a_{n,k} = a_{n,k-1} - a_{n-1,k-1} = \nabla a_{n,k-1}$

So recursively:

for
$$k \ge 3$$
, $a_{n,k} = \nabla a_{n,k-1}$

$$= \nabla^2 a_{n,k-2}$$

$$= \cdots$$

$$= \nabla^{k-2} a_{n,2} = \nabla^{k-2} B_{n-1} \quad \text{(which holds also for } k = 2$$

Stating our first result

The distribution of 1-23-avoiding permutations according to their length and to the value of their last entry is given by :

$$|\{\pi \in S_n(1-23) : \pi_n = 1\}| = B_{n-1}, \ n \ge 1;$$
$$|\{\pi \in S_n(1-23) : \pi_n = k\}| = \nabla^{k-2}(B_{n-1}), \ 2 \le k \le n.$$

S(32-1): the reverse

If $\pi \in S_n(1-23)$ ends with k, then $\pi^r \in S_n(32-1)$, and $\pi_1^r = k$. Consequently :

$$|\{\pi \in S_n(32-1) : \pi_1 = 1\}| = B_{n-1}, \ n \ge 2$$
$$|\{\pi \in S_n(32-1) : \pi_1 = k\}| = \nabla^{k-2}(B_{n-1}), \ 2 \le k \le n$$

S(3-21) and S(12-3)

Complement :

$$|\{\pi \in S_n(3-21) : \pi_n = n\}| = B_{n-1}, n \ge 1$$
$$|\{\pi \in S_n(3-21) : \pi_n = k\}| = \nabla^{n-k-1}(B_{n-1}), \ 1 \le k \le n-1$$

Reverse-complement :

$$|\{\pi \in S(12-3) : \pi_1 = n\}| = B_{n-1}, \ n \ge 1$$

 $|\{\pi \in S(12-3) : \pi_1 = k\}| = \nabla^{n-k-1}(B_{n-1}), \ 1 \le k \le n-1$

Outline

- Introduction
- 2 S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$
- 3 The two other symmetry classes
 - The symmetry class $\{3-12,21-3,1-32,23-1\}$
 - The symmetry class $\{2-13, 31-2, 2-31, 13-2\}$
- 4 Permutations avoiding a pair of generalized patterns
- Conclusion and perspectives

Same ideas

- One pattern in the class
- Succession rule
- Matrix of the distribution
- Recursive relation defining the entries of the matrix
- Extension to the remaining patterns in the symmetry class

M strikes again

The distribution of permutations avoiding 3-12 according to their length (row index) and their last value (column index) is given by :

$$M = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \vdots \\ 1 & 1 & 0 & 0 & 0 & 0 & \vdots \\ 2 & 1 & 2 & 0 & 0 & 0 & \vdots \\ 5 & 3 & 2 & 5 & 0 & 0 & \vdots \\ 15 & 10 & 7 & 5 & 15 & 0 & \vdots \\ 52 & 37 & 27 & 20 & 15 & 52 & \vdots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

Catalan triangle

The distribution of permutations avoiding 2-13 according to their length (row index) and their last value (column index) is given by :

$$M' = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & \vdots \\ 1 & 1 & 0 & 0 & 0 & 0 & \vdots \\ 2 & 2 & 1 & 0 & 0 & 0 & \vdots \\ 5 & 5 & 3 & 1 & 0 & 0 & \vdots \\ 14 & 14 & 9 & 4 & 1 & 0 & \vdots \\ 42 & 42 & 28 & 14 & 5 & 1 & \vdots \\ \dots & \dots & \dots & \dots & \dots \end{pmatrix}$$

Outline

- Introduction
- 2 S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$
- 3 The two other symmetry classes
- 4 Permutations avoiding a pair of generalized patterns
 - S(1-23,1-32) : an easy case
 - S(1-23,21-3) = S(1-23,21-3,12-3): a not so easy case
- Conclusion and perspectives

Avoiding more than one pattern

- Claesson and Mansour [2003]: enumeration of permutations avoiding any pair of generalized patterns of length 3, according to their length
- Bernini, Ferrari and Pinzani [2005]: enumeration of permutations avoiding any triple of generalized patterns of length 3, according to their length

Refine those enumerations according to the first or last entry ? Two examples.

Labelling and succession rule

• $|S_n(1-23,1-32)| = I_n$ *n*-th involution number

 $\pi \in S(1-23,1-32)$ is labelled (k,n) where k is the number of active sites of π .

- k=1 when $\pi_n \neq 1$
- k = n + 1 when $\pi_n = 1$

Succession rule:

$$\begin{cases}
(2,1) \\
(1,n) \leadsto (n+2,n+1) \\
(n+1,n) \leadsto (1,n+1)^n (n+2,n+1)
\end{cases}$$

Subsequent matrix

Main steps

$$|S_n(1-23,21-3)| = |S_n(1-23,21-3,12-3)| = M_n$$
 n-th Motzkin number

- Succession rule with coloured labels.
- Generating tree.
- Matrix recording the number of labels at each level in the tree.
- Interpretation of this matrix as the distribution of S(1-23,21-3) according to the length and the last value
- Recursive description of the entries of the matrix.
- Generating function of each column of the matrix.

Distribution of S(1-23,21-3) according to the length and the last value

Outline

- Introduction
- ② S(1-23) and the symmetry class $\{1-23, 32-1, 3-21, 12-3\}$
- 3 The two other symmetry classes
- 4 Permutations avoiding a pair of generalized patterns
- 5 Conclusion and perspectives

The end

- For any generalized pattern p of length 3, distribution of the p-avoiding permutations according to the length and the value of the first or last element
- Similar distributions for two sets of patterns

Can we get such a distribution for other sets of up to 3 patterns? for all of them?