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Abstract 

Catalan numbers C, are widely known and studied and more recently the Motzkin numbers M~ 
have been celebrated. Closely joined to the Motzkin sequence is a sequence of unnamed numbers 
7,, also growing in importance. Here they are denoted by R,, where R stands for Riordan. In 
1977, using the planar coloring schemes defined by W. T. Tutte, I discovered that these numbers 
answer an old problem about linearly independent chromatic polynomials. 

Planar coloring schemes for an n-ring can be viewed as the subset of cyclically spaced non- 
crossing partitions of an n-cycle, and they define a natural geometric basis for chromatic poly- 
nomials on the n-ring. 

This article presents a unified overview of Catalan, Motzldn, and R-numbers, intended as a 
primer of sequences and techniques, combinatorial structure and recursion, generating function 
equations, difference triangles, and Lagrange inversion. Direct combinatorial correspondences are 
highlighted. (~) 1999 Published by Elsevier Science B.V. All rights reserved. 

1. Introduct ion and overview 

Catalan numbers C, have been widely encountered and widely investigated. The 
research bibliography of Gould [22] contains a wealth of  references. The Motzkin 

numbers M, have more recently been emphasized by Donaghey and Shapiro [20]. 
Their work shows the useful close connection between C, and M,, as well as exhibiting 
fourteen varied counting problems which lead to the Motzkin numbers. 

Closely joined to the Motzkin sequence is a sequence of unnamed numbers 7,. Ap- 
parently Riordan was the first to emphasize the relationship and derive crucial formulas 
[31]. There is no hint in either of  the papers [20,31] that the companion numbers ?, 

were fated to appear in quantum chemistry [2], Hilbert spaces [1], and other areas [25]. 
In this paper these numbers are denoted by R, and called Riordan numbers (alter- 

nately ring numbers). The connection with rings is as follows. In 1977 I rediscovered 
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these numbers in the context of the chromatic theory of planar maps and graphs. Pla- 
nar coloring schemes had recently been defined by W. T. Tutte (see [45]) as a result 
of his reflections on the seminal paper of Birkhoff and Lewis [10]. In particular, he was 
seeking a better foundation for the mysterious identities holding among what Birkhoff 
and Lewis called 'constrained chromatic polynomials'. For an introduction to the theory 
of chromatic polynomials, see [8,29,30,43,44]. 

Planar coloring schemes for an n-ring can be reinterpreted as cyclically spaced non- 
crossing partitions of an n-cycle. This subset of the noncrossing partitions is presented 
below as the combinatorial family [R2] of Section 3.2. 

The n-cycle corresponds to the older concept of a 'ring' of regions in a planar map. 
The ring of order n has been fundamental to the study of the Four Color Conjecture 
ever since Birkhoff's pioneering paper in 1913 [9]. The family [R2] turns out to be 
a natural geometric basis for chromatic polynomials on the n-ring. Consequently, the 
number Rn is the number of linearly independent chromatic polynomials when the 
n-ring contains an arbitrary configuration. 

At the time I was not yet aware of the close kinship between Rn and Mn or the 
equation M~ =Rn +R,+I. In Sloane's remarkable Handbook of Integer Sequences [41], 
the Motzkin number sequence is listed as #456, the Catalan sequence is listed as #577, 
and the R-sequence is not listed (it should follow #1023). I am indebted to personal 
correspondence with D.G. Rogers for putting me on the right track not long after. 

The purpose of this article is to present a unified overview of the Catalan, Motzkin, 
and R-number sequences and to show that R-numbers are equally as fundamental as 
the Motzkin numbers. Certain other sequences also make an appearance. The following 
table displays the beginnings of these sequences and certain related sequences that will 

also be considered. The identification number Mnnnn comes from the Encyclopedia of 
Integer Sequences [42], the worthy successor of Sloane's Handbook. 

Table of sequences 

n 0 1 2 3 4 5 6 7 8 9 10 

M1459 Cn 1 1 2 5 14 42 132 429 1 4 3 0  4862 16 796 
M2587 Rn I 0 1 1 3 6 15 36 9l 232 603 
Ml184 Mn 1 1 2 4 9 21 51 127 323 835 2188 
M1484 B. 1 1 2 5 15 52 203 877 4140 21 147 115975 
M3423 V~ 1 0 1 1 4 11 41 162 715 3425 17 722 
M3400 An 1 0 1 1 4 10 34 112 398 1443 5387 

In Section 3 below, three sample counting problems are given for each of the se- 
quences Cn,Rn, and Mn. The problems are related to points on a circle or to sets of 
plane trees. The description of  these classes is deliberately kept somewhat informal, 
but not, we hope, at the cost of clarity. 

The discussion centers first on combinatorial structure and recursion. Wherever 
feasible, direct combinatorial correspondences are used. With the exception of  a few 
of the more striking correspondences, I have not tried to locate in the literature the 
very first use of  each. Some of them have been discovered and rediscovered many 
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times. Here the intention has been to present each correspondence in visually convinc- 
ing form, suppressing tedious details. A number of  correspondences in one form or 
another are found in the papers of Rogers [32-35]. 

A sample of lattice path families and families of increasing bipartite graphs (as in 

[20]) are grouped in one section. The methods and transformations suggested there can 
be used to produce an almost unending spate of such families. 

The next section uses difference triangles and related patterns as an easy bridge 
to certain connection formulas - -  proofs in the literature tend to be longer and less 
appealing. This is followed by a brief introduction to solution of functional equations 
by Lagrange inversion. 

In the last section, the tie between R, and chromatic polynomials is described in 
greater detail. It is hoped that this presentation can be useful as a primer of  sequences 
and techniques. 

2. Useful definitions 

A partition of an n-set is a division of a set of  n elements into classes (called 
also blocks), where each element is assigned to exactly one class. Here the elements 
will be vertices on a circle. It is convenient to assume that the vertices are evenly 
spaced and numbered 1, 2 . . . .  , n in counterclockwise order, starting with 1 at the bot- 
tom of the circumference. When the labeling is implicitly understood, rotating the 
diagram counterclockwise by 360/n degrees in effect advances the number labels k to 
k +  1 (mod n). Similarly, the diagram may be reflected in a vertical line. In constructing 
long tables of  diagrams it is efficient to list only diagrams that are not equivalent by 
rotation or reflection. 

The graph of the partition is formed by joining cyclically the vertices of each 
class with edges, namely chords of the circle. (In some of the diagrams, we will take 
the liberty of curving edges between nonconsecutive vertices, simply as a visual aid.) 
This is usually called the circular representation of  the partition. Singleton classes are 
isolated vertices. Doubleton classes are a pair of  vertices joined by one edge. If the 
maximum vertex degree in the graph is one, then every class is a singleton or doubleton. 

The partition is noncrossing (planar) in case the edges do not cross. It is cyclically 
spaced (or feasible) in case adjacent vertices are never joined by an edge, and infeasible 
otherwise. See Fig. 1 (note curving in the middle diagram). The circles here are not 
officially part of the graph. 

A useful notation for partitions is to employ the same letter (or number) symbol 
for all vertices in the same class. The partition is displayed as a letter sequence. This 
representation is the scheme of the partition. The scheme is orthodox if it lexicograph- 
ically first among all schemes for a given partition, i.e. babc is not orthodox, but is 
equivalent to a unique orthodox scheme, namely abac. When the partition happens to 
be feasible, the associated schemes are just colorings in the usual sense of a (cyclically) 
labeled circuit. 
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PARTITION WITH 
CROSSINGS NONCROSSING PARtIlION NONCROSSING PARTITION 

(INFEASIBLE) (FEASIBLE) 

Fig. 1. 

6 oo 
a a a a a  a a a a b  a a a b b  a a a b c  a a b a c  

o% o o%ooo o' oo ooooo 
a a b b c  a a b c b  a a b c d  a b a c d  a b c d e  

BASIC NONCROSSING 5-POINT PARTITIONS: 
Row Diagrams & Equivalent  Codes 

(Rotate to get ALL 42 NC Partitions) (A) 

a a b a b  

a b a b c  

(13) 

BASIC PARTITIONS WITH CROSSINGS 

(Rotate to get  All  Ten) 

Fig. 2. 

Adopting this convention, we find all partitions for n = 5, There are 42 noncross- 
ing partitions, found by rotating the ten examples of Fig. 2A (thus aaabc rotates to 
aabca, etc). The rotational classes have size 1,5,5 . . . . .  5, 1. There are ten partitions 
with crossings, found as rotations of the two shown in Fig. 2B. There are exactly 
eleven of the 42 partitions which are feasible, and five of them are noncrossing. From 
here on the abbreviation NC will be used for 'noncrossing'. 

A row diagram is constructed on top of each sequence using arcs which are tops of  
circles. A row diagram is usually called the linear representation of the NC partition. 

The graph of  a NC partition may be generalized in a useful way. Suppose that 
vertices placed on a circle are joined two at a time in any fashion by NC chord-edges 
(Fig. 3, first diagram). The result happens to be a (vertex) labeled outerplane graph, 
but several warnings are needed. An abstract graph can be labeled in various ways. 
For any given labeling, the vertices may be arranged on a circle in the indicated order, 
and the edges represented by chords. If  at least once the chords do not cross, the graph 
is outerplanar. However, not all labelings give an outerplane form. Considering only 
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SMALL NUMBERS: [ n ) CO U N T S THE VARIANTS OBTAINED BY ROTATION 

(n + n) C O U N T S  VARIANTS FOR D I A G R A M  & MIRROR IMAGE 

77 

8-POINT TABLOID 7-pOINT FOLYOID 8-POINT DELTOID 9-POINT DENDROID 

(POLYGON 4k N C DIAGONALS)  CI'RIANGULATED (TREE IN A TABLOID ) 
POLYGON ) 

Fig. 3. 

those which do, different labelings sometimes give the same outerplane embedding, and 
sometimes not. 

Our kind of labeled embedding is related to the concept of a book embedding, as 
given by Bernhart and Kainen [6]. Book embeddings have proved helpful in computer 
applications [13]. A graph which is embedded in a 1-page book is essentially the type 
of labeled graph considered above, with vertices on a circle (or line) and edges as 
straight segments (or arcs in a half-plane). It will be called a tabloid in this article as 
well as others in preparation [7] (the name suggests both a table and lack of depth). 
An alternate name is 'ladder graph' [17], but that term is less appropriate, and indeed 
was already in use (see [30] for instance). 

Several tabloid subclasses are noteworthy. The polyoid (called also dissection) is a 
regular (or just convex) polygon, with optional NC diagonals. Edges of the polygon 
are outer edges; diagonals are inner edges. By deleting selected outer edges, arbitrary 
tabloids are obtained from polyoids. Counting polyoids is an old problem going back 
to Kirkman and Cayley in the nineteenth century (see Brown [11] for a discussion of 
the history). A further subclass is the polyoids to which no inner edges can be added, 
which is just the dissection of polygons into triangles. These will be known as deltoids. 
Trees in tabloid form will be called dendroids. Examples of these classes are in Fig. 3. 

3. Numbers that often recur 

3.1. Recurring numbers." Catalan 

The Catalan numbers C , -  ~ come up in a large number of counting problems. 

Table 1 shows three families of Catalan type: a family of deltoids, and two families 
of NC partitions. They are described as follows. 

[C1] Triangulations of  a polygon, or deltoids 
The family of complete dissections of a convex (n + 2)-gon. 
Probably the most widely familiar example, deltoids (our term) can be defined by 

putting n+2 points on a circle and joining as many pairs as possible with NC diagonals. 
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Table 1 
Catalan families (Summary of rotation/reflection variations) 

1 1 

[ell .  POLYGON DISSECTIONS (Deltoids) 

2 S 2 6 3-I-3 

7÷7 7 

42 

7 7+7 

EMPTY 

1 

[C2]. NONCROSSING PAIRS 

e oeO@@ 
1 2 2 3 

2 4 8 

1 
1 

IC3]. NONCROSSlNG PARTITIONS 

a 4 2 2 d I 

There will always be n + 2 polygonal or outer edges and n -  1 inner diagonals making 
2n + 1 edges and n triangles. By  convention, the smallest case is n = 0 or a digon. 
Deltoids are a subclass o f  polyoids. 

[C2] Planar pairs (noticed by Errera [21]) 
Place 2n points on a circle, then join them pairwise with n NC chords. 
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m 

:'q -'. "4/': Jk • 

PLANTED CUBIC TREES - O R -  P O T I ~ D  TREES 

Fig. 4. 

This family, delightfully elementary, is essentially the family of NC partitions of an 
even number of points, consisting entirely of doubletons (the graph has valency exactly 
one). We include the case n = 0 with count equal to one. 

[C3] Noncrossin# partitions 

Place n points on a circle and partition them into disjoint classes that do not cross. 
The noncrossing requirement was defined in the last section. 

The family C1 can be dualized. Put n + 2 new points on the circle, as midpoints 
of the arcs defined by the original set. The new points can be moved away from the 
center of the circle for greater clarity. Also put one point inside each of the n triangles, 
To obtain the dual figure, join with an edge (called dual edge) the two points on either 
side of each original edge. The result is a 'cubic' or trivalent planar tree planted in 
the plane. All of the endpoints of the tree lie on the circle; the root is the endpoint in 
the first arc, marked with a triangle (Fig. 4). 

The stalk is the edge attached to the root vertex. Suppose the stalk of any planted 
plane tree (not necessarily cubic) is shrunk to a point. The result of shrinking the stalk 
is a potted plane tree. A small box marks the root. The root vertex of a potted tree 
will often have degree greater than one, but not always. 

The right half of Fig. 4 show how a potted tree can be excavated from a deltoid: the 
'right' side of every triangle is shaded. If the reader does not see how to distinguish 
'base' edge, 'left' edge, and 'right' edge for each triangle, then look at the left two 
diagrams of Fig. 4. Moving away from the root of the planted cubic tree, at each fork 
(i.e. cubic vertex) the rightmost option continues with an edge which exits the triangle 
via its 'right' side. 

We illustrate in Fig. 5 the dual tree of a planar pairing [C2]. There is one vertex 
for each region and one dual edge for each inner edge. Equivalent row diagrams 
and schemes are shown. Moreover, each letter pair can be changed to a parenthesis 
pair: '(,)'. 

The cubic trees dual to the family [C1] and the plane trees dual to the family [C2] 
are related by a simple correspondence that has one arbitrary choice between right 
and left. We have already seen this implicitly in Fig. 4. An explicit version is now 
described (see Fig. 6). 

Start with a planted cubic tree. The terms 'fork', 'right' edge, and 'left' edge are 
the same as above. Identify or mark the rightmost edge at each fork and include the 
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NC PAIRS & POTTED TREES AS "DUALS" 

d d 

EASILY OBTAINED EQUIVALENT REPRESENTATIONS 

a b c d d c b a  

( ( ( ( ) ) ) )  

a a b c c b d d  

() ( ( ) )  () 

a b b c c d d a  

( ( )  () ( ) )  

Fig. 5. 

Arbitrary Plane Tree (z 
Has Left Cubic Associate X and Right Cubic Associate P 

__C_ 

DRAW LEFT 
EDGES HORIZONTAL 

y 

t 

ly 

CONTRACT THE 
HORIZONTAL EDGES 

P O~ 

Y 

root X ~ . ~  

~ 
** .* DRAW RIGHT "l~m.m.m.J ° 

EDGES HORIZONTAL 

Fig. 6. 

single edge at the root. Then shrink or contract these edges to get a new tree. The 

transformation is written 2 ~ ~ if  leftrnost edges are contracted and p --~ ~ if  rightmost 
edges are contracted. This is visually more striking if  the marked edges are first drawn 

horizontally and thickened, as in the figure. The unmarked edges are almost vertical, 

so that the tree ~ is plainly seen to be constituted from the upward paths marked 

x , y , z , w  . . . .  in the figure. The schema here is a modification o f  the one found in [15] 

(Fig. 6). 
Since the tree ~ does not have mirror symmetry (vertical axis) the associated trees 

2 and p are not a mirror pair. 
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NONCROSSING 
PAIRS 

_ _ _ ~ d  

N. C. ARC PARTITION 
c 

a 
D~dK &RCS : a b c... 
LIGHT ARCS : a' b'... 

DUAL NONCROSSlNG 
PARTITIONS c 

SPLITS ~ a  c" d b ~ ~ a ,  

b - - - ~l~ d 
b 

a c d / b  a" d'/b'/c' 

Fig. 7. 

If  we reverse the 2 transformation and combine it with the p transformation, we get 
p ~ ~ ~ 2 which is an automorphism on the class of planted cubic trees. Donaghey 
[19] and Kettle [26] have considered in detail the structure of this automorphism. 

Alternately, we can combine in the other order. Let tree 2 be redrawn in the p form 
to get 2 = p'. Then an autornorphism ~ ~ 2 = p' ~ ~' on the set of all plane trees is 

created. 
Consider now how to find a correspondence between [C2] and [C3]. Take a member 

of [C2] and place 2n new points in the 2n arcs. Inside the circle, the n chords divide 
the circle into n + 1 regions. The boundaries induce in a natural way an NC partition of 
the new points. By shading the regions dark/light as shown in Fig. 7 (in checkerboard 
fashion), we see that each (bent) chord separates dark from light, and hence the new 
points fall alternately into one of two classes; also the NC partition divides naturally 
into subpartitions. Moreover, the 'dark' partition and the 'light' partition determine 
each other, and determine the NC pairing (leftmost diagram). Thus, we have obtained 
two correspondences between [C2] and [C3], and a 'duality' within [C3] to boot. 

More precisely, we follow the lead of Simion and Ullrnan [39] by using the labels 
abe.., counterclockwise, alternating with d u e ' . . ,  going clockwise. The first vertex 1 
from the 2n vertices of the NC pairing must fall between a and d ,  with order a, 1, a' 
(counterclockwise). The details of the construction of a partition of  a'b'c'.., from a 
partition of  abc.., will be omitted. 

This plan ensures that the dual of the dual is the original (we have an involution). 
Moreover, it is not hard to show that for n = 2m there are no self-dual partitions, and 
for n = 2m + 1 there are Cm self-dual partitions. A beautiful corollary follows: the only 
odd Catalan numbers are the C, with n - - 2  k - 1. 

The standard recursion for Catalan numbers is 

Cn+ 1 = C o C  n --~ C l C n _  1 -~ - . . .  --~ CnCo.  

This recursion is easy to establish in terms of recursive structure in the families [C1], 
[C2], [C3]. The idea is to decompose a member of the order n+  1 family by a reversible 
method into two smaller examples, with orders i,j and i + j  = n. 

In [C1] removing the 'base' edge 12 decomposes the figure. In [C2] consider the 
division of the circle produced by the edge from vertex vl (see Fig. 8). 



82 F.R. Bernhart/Discrete Mathematics 204 (1999) 73-112 

• LEFT COMPONBNT RIGHT COMPONENT 

a b 
REMOVE BASE EDGE & TRIANGI~ (a) 

a 

NONCROSSlNG pAIRS 
(B) 

Fig. 8. 

A similar decomposition for family [C3] is an elementary simplification of  a Motzkin 
decomposition given later. It is discerned by focusing on the right-hand side of  
Fig. 13B. The details are left to the reader. 

Whenever a decomposition is given for one family, it can be transferred to any 
other family that has an explicit correspondence to the given one. The more natural 
the correspondence, the easier it is to make the transfer. 

The standard recursion for Cn is concisely captured by the equation 

y = 1 + x y  2, 

where y = Y]n~o Cnxn" This 'characteristic' equation determines y uniquely as a power 
series in x with constant term 1. The recursive procedure for calculating the coefficients 
is exactly the standard Catalan recurrence, and so the power series is the 'enumerator' 
or generating function (g.f.) for the Catalan sequence. 

There are many ways to derive simpler recursions and exact formulas for Catalan 
numbers. See for example [40]. 

Now return to the three examples of Fig. 5, where scheme abcddcba  may be reinter- 
preted as matched pairs of  parentheses (((()))) .  The scheme also may be diagrammed 
as the outline of a mountain range (or Dyck path). Scan the scheme from left to right. 
The first letter of a pair dictates a step up (a move from (x, y)  to (x+  1, y +  1 )), and the 
second member of the pair dictates a step down (a move from (x, y)  to (x + 1, y - 1 )). 
The mountain range sits on the X-axis, starts at the origin, and ends at (2n, 0) without 
dropping below the axis. It can be recoordinatized to be a lattice path of 2n steps 
joining the origin to (n ,n )  which does not go below the diagonal x = y. 

Put a chess king in the upper left corner of  a chessboard, and let the board have 
infinitely many rows numbered 0, 1,2, 3 . . . . .  and the same with columns. The squares 
below the downward diagonal are forbidden, and the king moves only to the right or 
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/_-k. A 
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MOUNTAINS (DYCK PATHS) 

HORIZONTALLY COMPRESSED 

BECOME 
PLANE TREES 

(()()()) 
a b b c c d d a 

C 

TREE EDGE (a, b, c, d) 

ARISES FROM UP-DOWN PAIR 

OR: MATCHED ( ) 

Fig. 9. 

down, one square at a time. Each reachable square is to contain the number of  different 
routes the king can take to get there. 

The table is easily constructed. Put ones in the first row and zeroes immediately 
under the diagonal (obvious). Each square between will be seen to contain the sum of 

the numbers immediately left and immediately above. The main diagonal contains the 
Catalan sequence because the king may follow any Dyck path to reach it. A simple 

way to create this table, with readymade formulas will be given in Section 5. We may 
call this table the Catalan triangle (note [36]). 

In Appendix C of [16] the Fine numbers are discussed; C.4 indicates how to find 

them in the Catalan triangle (the powers of function c(z) in [16] are in a sense the 
diagonals of  the triangle). Finding C5 = 42 on the diagonal edge, and reading up gives 

the (column) 42,42,28, 14,5,1. A Fine number may be found (a) by an alternating 
sum, or (b) a sum of alternates: 18 = 4 2 - 4 2 + 2 8 -  1 4 + 5 -  1 , 5 7 = 4 2 +  14+  1. 

In Fig. 9 we imagine the mountainous outline to be physically realized as a strip 
of  postage stamps with a wet and sticky under surface. I f  we compress the model 
horizontally, then each stamp pair representing matched parentheses is glued back to 
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1 3 1  
2 
1 

M A T R I X  F O R  
1 3 2 2 1 ( 4 2 )  

... 1 1 1 1 1 1 1 1 ... 
. . . . . .  . . . . . . .  

...... 2¢5 3 1/3 
" 3 7 1  . / 2 5  . . . .  

' " ' 4 2 . " ' 1 3 . . .  

. . . 1 1 1 1 1 1 1 1 . . .  

FRIEZE F O R  1 3 2 2 1  ( 4 2 )  

M A R K E D  L O Z E N G E S  : 
2 . 5 = 3 . 3 + 1 -  2 . 2 = 1 . 3 + 1  

Fig. 10. 

back. A planted plane tree results. Papers by Deutsch [16] and Chapman [12] provide 
many results on Dyck paths. 

Our tour of  Catalan families ends with a spectacular example. Take the deltoid in 
Fig. 3 with n =- 6 triangles (the octagon case). For vertices 1,2 . . . . .  8 write down the 
number of triangles concurring at these vertices, obtaining the sequence 33213321. This 
will be called the margin sequence of  the deltoid. 

If  p is any subsequence formed by consecutive members of a margin sequence we 
define a matrix M(#)  as a tridiagonal matrix, with determinant m(#). This matrix has 
precisely # as its main diagonal, and ones above and below the main diagonal, and 
elsewhere zeros. The determinant has the following recursive rule. 

m(#xy)  = y . m(px)  - m(#). 

Fig. 10 shows M(13221) taken from a margin sequence 13221,42. It is an example 
of a class of positive definite matrices (see [38] for a fascinating account). 

Ifu#v, xy is a margin sequence of length at least four, we have m(u#v)=l,  m(u#)=x, 

and m(#v)=y .  From Fig. 10, m(13221)--1, and two principle minors are m(1322)=4 
and m(3221)--2  (here delete either last row and column, or first row and column). 
The minor determinants compute the deleted numbers 4,2! 

Seeking a careful explanation, it is more fruitful to focus on a much richer pattern, 
a frieze [14]. A frieze is a pattern of positive whole numbers grouped into a finite 
stack of  two-way infinite rows. The first and last rows are all ones, and the second 
and penultimate rows are endlessly repeating margin sequence #. In Fig. 10 a frieze 
F(1322142) is shown. The dashed lines outline a trapezoid which repeats; every other 
trapezoid has the order of the rows reversed. That is, the frieze has glide reflection 

symmetry. 
The basic numerical rule is that any local 'lozenge' arrangement of four numbers in 

the frieze satisfies an equation: the horizontal product is one greater than the vertical 
product. In the diagram, two of these lozenges are marked, and the equations are 
displayed at the bottom. 

It will be discovered that from this rule, the entire frieze may reconstructed from the 
second row, and again from any diagonal. A typical diagonal may be described as a 
sequence 1, a . . . . .  0, 1 that contains positive whole numbers, begins and ends with one, 
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and has the further property that given any three consecutive elements x, y,z, the sum 
x + z is divisible by y. The reader may enjoy finding the quotient, which also appears 
in the 'marginal' second row. 

The matrix connection is sealed by generalizing the following example. We take 
# = 3221 from the 2nd row. This is upper side of a triangle whose other two sides 
are partial diagonals 3572 and 1112 meeting at bottom vertex 2. The bottom number 
(more generally any entry on or below row two of the frieze) is computed by m(3221) 
(more generally, # is the horizontal of a triangle, and m(#) is the bottom vertex). 

The frieze, with its rich patterns is easier to handle with an inductive proof. A 
margin sequence 111 goes with a trivial frieze having only two rows: all ones. Given 
a frieze for margin sequence # . . . . .  x, y . . . .  just do the tedious check of what happens 
to all the properties in passing to /~  . . . . .  x + 1, 1, y + 1 . . . . .  

3.2. Recurrin9 numbers: Riordan 

Next we list three counting problems similar to the above, but which lead to 
numbers R,. Table 2 shows the three families. 

[R1] Tall (or short) bushes 
A tall (short) bush is a plane tree in which the root has degree one (more than 

one) and no vertex (no non-root vertex) has degree two. Shrinking the 'stalk' converts 
a tall bush into a short bush. More generally, this transformation turns planted trees 
into potted trees. The number Rn counts the tall bushes with n + 1 edges, or the short 
bushes with n edges. Since all bushes with n + 1 edges are counted by Mn (see the 
next section) we anticipate the result M, = R, + Rn+l. 

[R2] Cyclically spaced (or feasible) noncrossin9 partitions 
In the following, the simpler terms feasible and infeasible will replace the cumber- 

some terms cyclically spaced and noncyclically spaced. These terms are suggested by 
the idea of a partition which generates a feasible coloring of a circuit graph. A feasible 
partition which is also noncrossing then corresponds to the planar colorings of Tutte. 
('Cyclically spaced' and 'noncrossing' were defined in Section 2.) 

[R3] Noncrossin9 partitions with no singletons 
This is the class of NC partitions such that every class has at least two members. 
It was pointed out in Section 2.3 that every NC partition has a dual NC partition. It is 

readily seen that a vertex is a singleton in the former just in case the corresponding pair 
of adjacent vertices of the dual are joined. Hence there is an elegant correspondence 
between the families [R2] and [R3]. 

We still need a correspondence between [R1] and either [R2] or [R3]. This is 
so closely linked with the Motzkin numbers that we postpone dealing with it until 
Section 2.4. 

Consider for a moment the class of all partitions of  n points on a circle (all partitions 
of an n-set). The number of these is the Bell number Bn [M1484]. Let V~ be the number 
of cyclically spaced (feasible) partitions and let W, be the number of partitions without 
singletons. Surprisingly, V~ = W, [M3423] and even more remarkably, B, ----- V~ + V,+l! 
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Table 2 
Riordan (RING) families 

[RI]. SHORT BUSHES 

,Z 
I 

0 1 1 3 6 

[R2]. I~ASIgLE NONCROSSING PARTITIONS 

Q@Q@ 
IR31. NONCROSSlNG PARTITIONS, NO SINCLETONS 

1 tl 1 . 3 ~  

0@@@ @ @ 
The analogy with C , , M , , R ,  seems to be that removal  o f  the NC restriction substitutes 

B= for both C , , M ,  and substitutes V, for R, .  We note that the exponential generating 

functions [47] for B, ,  1I= are 

B(x )  = exp(exp(x)  - 1), Y(x )  = exp(x)(exp(x)  - x - 1). 
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Inspection of these functions easily shows that (for derivative W ( x ) )  

B(x )  = V(x)  + V ' (x )  from whence B, = V~ + V~+I. 

A table for these sequences was given in the introduction. 
The most tempting approach to the generalization is to broaden the concept of duality 

to cover the nonplanar cases. Unfortunately, this does not seem to work; there is 

apparently no simple way to bring the sets counted by Vn and Wn into one-to-one 
correspondence! 

Amazingly, the equations B, = V~ + V~+l and B, = W~ + W,+l can be justified with a 
combinatorial correspondence! (These correspondences are given in Section 3.5. Since 
V0 = W0 = 1, it follows that the cyclically spaced n-point partitions are equinumerous 
with the n-point partitions without singletons! Indeed, the combined set of feasible 
partitions for n and n + 1 can be transformed into the combined set of partitions 
without singletons for n and n + 1, This is very peculiar since the correspondence does 
not observe the distinction between n and n + 1. Attempts to repair the correspondence 
do not appear to bear fruit. 

There is a standard recursion for R, analogous to the standard recursion for the C, 
(last section) and the standard recursion of the M, (next section). It is 

R~+l + (--1) n = RoRn + RIR~_I + . . .  + R~Ro. 

A simple decomposition which explains it is given in the section Appendix 3.4. The 
equation that defines power series coefficients for y = ~ 0  R~ xn = 1 + Ox + x 2 + . . .  

by this reeursion is 

1 y -- + x y  2. 
l + x  

3.3. Recurrin9 numbers: Mo t zk in  

Motzkin numbers are one of  several number sequences introduced in 1948 [27] by 
Motzkin and are aptly named because they count almost as many things as Catalan 
numbers [20]. Here are three situations in which Motzkin numbers arise (Table 3). 

[M1] Noncrossin9 ( N C )  part ial  pairs 

Out of n points on a circle, an even subset, possibly empty, is paired as in [C2]. 
This is basically the Motzkin definition. Table 3 shows this family in row diagram 

form. Note the fifteen point example of  Fig. 11. Scan the row from left to right and 
assign each point the label + (for +1)  if it is the left end of an arc, - (for - 1 )  if it 
is the right end, and 0 if it is isolated. This produces a ( + 0 - )  pattern. 

[M2] Plane bushes 

The plane bushes with n + 1 edges are counted by Mn. 

It is clear that bushes with n + 1 edges may be divided into two subclasses: the 
short and the tall (these subclasses will soon be called upper and lower, respectively). 
Hence M .  = Rn + Rn+l, due to class [R1]. 
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Table 3 
Motzkin families 
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[MI]. NONCROSSING PARTIAL PAIRS 

oo oo ~ oo oo"".o oo'o'-~ o ' ~ o  

1 I 

[M2I. BUSHI~S 

j J  

[Id3l. SPACED NONCROSSING PARTITIONS 

• O 0  0 0 0  
0 0 0 0  ~ 0  

" " ' "  

[/143] Strict feasible noncrossin9 (NC) partitions 
A feasible (i.e. cyclically spaced) NC partition is a strict partition if the first point 

(Vl say) is a singleton: in a class by itself. Then M. counts the strict partitions of n + 2 
points on a circle. 
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N.C. PAIRING 

a b 

ROW FORM FOR pAIRS 

+ O+ O+ + + + - O-- 

SHAPE SEOUENCE 

Fig. 11. 

Take a strict partition on n vertices, and delete the leftmost point. This results in 

the variation found in Table 3. Following D. G. Rogers, these are called the spaced 

NC partitions. Each spaced NC partition is one of (a), (b): 

(a) a feasible NC partition [R2] on n - 1 points, or 

(b) an almost feasible NC partition (the endpoints are joined). 

In (b) we just delete an endpoint to get a feasible NC partition on n - 2 points. 

Referring to JR2] we conclude that Mn = Rn + R,+l. 

Now we begin to compare families. Already the equation M,  -- Rn ÷ Rn+l has been 
manifested by a decomposition of families [M2] and [M3] into 'upper' and ' lower'  

Riordan classes. What about [M1]? The required decomposition is easiest using the 
( + 0 - )  pattern. Classify the pattern as 'upper'  if  the first label different than PLUS is 
ZERO, 'lower' if it is MINUS. We show how to collapse the lower class of  level n 

onto the upper class of  level (n - 1): replace the leftmost ( + , - )  pair by a zero. The 
zero will also be the first zero. 

Now we describe how to convert [M1] to [M3]. Add a new point at the right end of 

the row diagram. Take each arc that connects a pair and move the right hand end one 
point further to the right. This converts a partial pairing of n points to a spaced NC 

partition of n + 1 points. Curiously, this does not put the upper and lower subclasses 

into agreement. 
We may also convert [M2] to [M3] by a method which simplifies Prodinger [28]. 

Take a potted tree and put a letter on each edge, with the proviso that the rightmost 

upward edge, for any nonroot vertex x with more than two edges, has the same label 
as the edge at x proceding backward towards the root. This is the only time that labels 

are repeated. 
From the root describe a clockwise tour around the bush and collect all the la- 

bels (the label is collected at first opportunity). This process is easy to do visually 

(Fig. 12) when the label is written on the left side of  the edge. The sequence is the 
scheme for an NC partition. In fact, we have a bijective mapping from Catalan class 
[C3] and potted trees. 

Inspection easily shows that requiring the tree to be a bush is exactly what is nec- 
essary and sufficient to avoid repeats . . . xx . . .  in the scheme. Thus bushes correspond 
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FROM PLANE TREES TO NC PARTITIONS 

EDGE LABELS ON LEFT SIDE, LABELS OF RIGHTMOST EDGES REPEAT 

COLLECT LABELS IN SEQUENCE BY CLOCKWISE (PREORDER) TOUR 

~' PLANE TREE 

~ " b[ b, . " ~ a /  

d ;" 7 

SEQUENCE: a ~ a  

b ~ / )  / SHORT BUSH 

~ ° /"-gN 
SEQUENCE: a b c a d a e f g f 

REQUIREMENT EFFECT 

Bush No repeat of form .. x x. .  

Short First / Last do not repeat x..  x 

Both Partition is feasible 

Fig. 12. 

to spaced partitions. Moreover, limiting to short bushes avoids a repeat x . . . x ,  and so 

makes a matching between short bushes and feasible partitions. 
At this point all three M-families are seen to be equinumerous. Since each family 

has a suitable upper/lower R-decomposition and since M0 = R0 = 1 may be verified in 
all three cases, it follows that the equation Mn = Rn + Rn+l harmonizes with all cases 

(no different definition of  Rn is needed). 
A different approach involves the standard Motzkin number recursion 

M,+2 - M,+l = MoM, + MIM,,-1 + ' "  + M,  Mo. 

The decomposition needed to show that an M-family [Mi] agrees with this recurrence 

is as follows: first, an 'inner' subclass of  level n + 2 which collapses onto level n + 1, 
and a decomposition paralleling the Catalan decomposition for the remaining 'outer' 

subclass. 

Take [M1]. I f  the first point vz is isolated, remove it. This exhibits the collapsing 
inner subset. On the other hand, suppose that vl is joined to vk. Then the possibly empty 
ranges v 2 . . . . .  /)k-1 and Vk+l . . . . .  V,+2 define numbers of  smaller families on levels k - 2  
and n - k + 2 (Fig. 13A). 

Take family [M3] next. Start with a spaced NC partition of n+3  points. The collapse 
of  the inner class is defined by deleting the first point vl when it is isolated. Otherwise 
suppose that vk is the first point in v3, v4 . . . .  joined with Vl. The non-empty ranges 
v2 . . . . .  vk-1 and vk . . . . .  v,+3 define the decomposition, as shown in Fig. 13B. 
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Fig. 13. 

~ rt+l 

Isolated Left Edge 

MOTZKIN DECOMPOSITION FOR BUSHES: 

Member of M(n+2) with n+3 Twigs 

Fig. 14. 

Finally, take family [M2] and refer to Fig. 14. Remove the leftmost edge at the 
root if it ends in a tip only, leaving a member of level n - 1. Otherwise, let the bush 
indicated by the dark shading (a member of level i) be plucked off. The attachment 
point disappears and another bush is left from level j .  

Since all three families [M1-M3] have such a standard decomposition, and agree 
with M0 = l, we have another combinatorial demonstration that all families generate 
the same numbers. Moreover, there is an implicit promise in the combinatorial method 
that one-one correspondences are possible - -  in fact we have already showed [M1 ] ¢~, 
[M3], [M3] ¢~, [M2] in this way. The implicit promise can be made explicit as follows. 
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Fig. 15. 

Once a standard M-decomposition has been established for a family, a history tree 
can be developed for any member (X say). Either X is in the inner class and collapses 
to X t (say), or it decomposes in Catalan fashion into a pair (X,.,Xj), or it is the trivial 

member of level zero. Let the trivial tree of no edges do for the last. In the first case 
let a stalk from the root be given and attach the history tree for X I at the top. In the 
second case, let there be two edges at the root and put the trees for X/,Xj on the left 
and right edges (see Fig. 15). 

Carrying out this process leads to an interesting variation on the planted trees. 
A semi-cubic tree or SCT is a plane tree in which each vertex has degree at most 
three and the root at most two. Let the rightmost upwards edge at any vertex, if any, 
slant to the right. Let the second edge, if any, slant to the left. The class of SCTs most 
visibly embodies the standard decomposition. 

But what about the upper/lower? An SCT belongs in the collapsing R-set if the 
leftmost path from root to tip includes only left slanting edges. It is collapsed by 
removing the last one of these (middle of Fig. 15). 

A standard decomposition for an M-family is in effect a mapping of the family 
onto the semicubic trees. Thus any two families with M-decompositions are at least in 
indirect correspondence. Conversely, if two families are in direct correspondence, an 
R-decomposition or an M-decomposition for one can usually be transferred to the other. 

These families and many more counted by M, are listed by Donaghey and Shapiro 
[20]. They include bushes as #8 and semicubic trees as #13. Their family #3, planted 
trees with loops, can be put into simple correspondence with M1 (see Fig. 16). They 
do not use one-to-one correspondences throughout, but the interested reader should try 
out the methods above on their families. 

A very recent paper [3] must be mentioned. In it there are a large number of 
beautiful relationships presented between Riordan numbers, Motzkin numbers, and other 
sequences encountered below in Section 4. 

Consider again the transformation [M1] to [M3], by stretching the arcs. The reverse 
transformation applies to spaced NC partitions; what if we apply it to an arbitrary NC 
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Fig. 16. 

partition? In that case an arc joining points i, i + 1 flattens to a loop on point i. Hence 
another Catalan family is given by allowing singleton vertices of the partial pairs [M1] 
to have loops. Put differently, select out of n points 2i to be paired, and color the rest 
red (no loop) or green (loop). This yields a beautiful formula of Touchard [37]: 

z ( n ) 2n-2i ci. 
Cn+l = 2i 

i 

3.4. Appendix on R -reeursion 

Recall the standard R-recursion Rn+ l + ( -  1 )" = RoRn + R t Rn- 1 +" "" + R~Ro. What sort 
of R-class decomposition is needed to justify it? Evidently a Catalan-like decomposition 
is desired, but with irregularities. We handle these by defining certain singular bushes 
in the family of short bushes. 

Let b0 be the trivial tree/bush with no edges. Let b2 be the tree/bush with two edges 
at the root (the letter 'V'!). Let b2k+2 be the bush obtained by attaching b2k to the 
top of the left edge of b2. In other words, b2, is a stack of n V's, leading to the left. 
These bushes will be called exceptional (Fig. 17A). 

Consider the short bushes with n + 1 > 0 edges. Member X is to be decomposed 
into X/and Xj with i and j edges, respectively, where i + j = n .  But i f X  is exceptional, 
then no decomposition is given and all pairs (X/,Xj) occur, except for (b2k,b0), which 
cannot occur. The former applies when n is even; the latter when n is odd. This will 
fill the bill, if  we succeed. 

Fig. 17B shows the decomposition schematically. Bush B (dark shading) is possibly 
trivial, but bush C cannot be. A pair of arrows point downward to X/ and horizontally 
to Xj. The horizontal action as long as Xi is trivial may be described as a piston-like 
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EXCEPTIONAL BUSHES 

motion of C: an inward thrust eliminates one edge and an outward thrust removes 
one V-edge-pair from the lower body. The last step pictured is the standard Catalan 

decomposition for potted trees; here it applies when X is a bush with more than two 
edges at the root, the only case which guarantees C to be a short bush. 

Verification that all non-exceptional bushes X have a unique decomposition, and that 
each pair (X/,Xj) different from (b2k, b0) occurs once is left to the reader. 

3.5. Append ix  on Bel l  decomposi t ion 

We promised to show that B, = V, + V~+I in two ways. Let bn, v,, stand for the set 

of  all partitions of  (1,2 . . . . .  n), and the subset without singletons. Since vn is a subset 
of  b~, we look for a correspondence of v~+l with b~ - v~. Take a partition n in v~+l 
and break the class containing n + 1 into singletons (more than one) and delete n + 1. 

For example, using schemes, abcccbac  --~ abxxxba ~ abcdeba.  

The other correspondence is similar, but for a big pothole. Let W~ count the feasible 
partitions, forming set w, already a subset of  bn. But we do not map this subset 
to itself ! (This avoids the pothole.) Rather, annex new member n + 1 to the class 
containing 1, arriving at w~+l . The union of win+ 1 and w~+l is disjoint, and yields the 
spaced partitions of  (1, 2 . . . . .  n). Given a spaced partition in this union, break the class 
containing n + 1 into elements, delete n + 1, but annex each other element i to the 
class containing i + 1. For example, abacbc ---+ abaxb --~ ababb, and abcbad  --+ abcba. 
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4. CMR tossed salad 

Recall that each member of Motzkin family [M1] defines a ( + 0 - )  sequence. Each 

arc joins a left point marked + to a right point marked - .  Isolated points are marked 

0. It will always be the case that if the sequence is added from left to right (where 

+ , - , 0  are taken as + 1 , - 1 , 0 )  no sum will be negative and the final total will be 

zero. Any ( + 0 - )  sequence which obeys these rules is a M o t z k i n  shape. Conversely, 

every Motzkin shape defines a member of  [M1]. Details of  those proof make an easy 

exercise. 
Consider a pair of  row vectors A, B, containing ones and zeros only. We will assume 

that A, B have the same length, and the difference A - B  is a Motzkin shape (implying 
that both rows have the same number of ones). The shape does not determine the pair 

A,B unless we distinguish between 'thick' zeroes 1 - 1 and 'thin' zeroes 0 - 0. For 

definiteness, modify a Motzkin shape to a *-shape by changing some, all, or none of 
the zeroes t o . ,  where • means a thick zero, and 0 is a thin zero. From this shape 

the pair A, B may be recovered. By interpretation, we have two-colored the zeroes, and 

therefore the number of  *-shapes is a Catalan number (see the end of Section 3.3). 

Assign the components of  B to the top row and the components of  A to the bottom 
row of a 2-by-n arrangement of  dots. Construct a graph by joining the first plus of  

the bottom row to the first in the top row, then the second to the second, and so on. 

No edge will cross or meet another edge, and no edge will have negative slope. This 

graph is called an increasing bipartite graph, or IBG [20]. 
A Motzkin shape then determines a thin IBG, which has only thin zeroes, and also 

a thick IBG, which has only thick zeroes (interpret each 0 as *). Moreover, the row 

diagrams of  family [M1] can be considered as thin interpretations of  Motzkin shapes. 

And so there will be a matching thick interpretation, where each 0 is the right-hand 
end of one arc and the left-hand end of another. Strictly understood, some zeroes will 
then have loops; however, it is possible to remove or ignore them. 

The thin row graphs are just the row forms of the family [M1]. The thin IBG is 

a graph with at most one endpoint (+1 in the matrix interpretation) per column. The 

thick IBG, on the other hand, is characterized as an IBG in which every column meets 

an edge. 
That leaves the thick row diagram to explain. It is a NC partition in which no 

singleton is 'covered'. More simply, append one more point to the beginning of  the 
row, and then chain together the singletons. The result is a NC partition with no 

singletons, except possibly the first point. This Motzkin family was encountered in 
Section 2.3. 

There are a large number of  IBG Motzkin families. Indeed, the following transfor- 

mations can be used to generate one from another: 
(T1) Turn the matrix (or the IBG) upside down; that is, exchange the rows A, B 

and reverse the order within each row. 
(T2) Exchange the rows and exchange (0, 1) elementwise. 
(T3) Append zeroes to the beginning of row B and the end of row A. 
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(T4) Append ones to the beginning of row A and the end of row B. 

(T5) Delete or add a constant column to the left or the right side of  the matrix. 
The thick and thin IBG families illustrated above are left fixed by (T1), and ex- 

changed by (Y2). (T2) and (Y4) combined are a case of  (T5): adding a column of 

ones at the end and adding a column of zeroes at the beginning. 
Table 4 shows a number of  IBG families illustrated for the case M4 = 9. The third 

group is the same as family #7 from [20] is the IBG in which the isolated points 

(non-endpoints) in row A are nonadjacent, or spaced out. The Motzkin shape sequence 
may be recovered as follows. First add a column of ones (a final vertical edge). Label 

each isolated point in the top row with +. Label each endpoint in the top row with - 

if the other end immediately follows an isolated point: otherwise label it 0. 

Consider the row diagrams of Fig. 18B. Isolated vertices have loops (optionally 
visible). A pair x, y of  adjacent vertices satisfy the following rule: x has a loop only 

or is the right end of an arc, y has a loop only or is the left end of an arc, or both 
the above. The three cases are marked - ,  +, 0 to get a Motzkin shape. 

An interesting interpretation is as follows. The vertices represent an increasing set 

of  weights. A certain weak balance is used to test pairs of  weights with the possible 
outcome that one weight is heavier, or the two are too close to call. The graph arcs 
connect the ends of the maximal intervals of  similarity. Row diagrams according to the 

above rules are Total Information graphs, permitting the correct order of  the weights 
to be determined. Natural consistency rules apply to the balance [38]. 

Each IBG can also be rendered as a lattice path. Suppose that (ai) and (hi) record 
the positions of  the pluses in the lower and upper rows, respectively, for i = 1,2 . . . . .  k. 
Then there is a lattice path made of  straight segments joining the successive points 

(0, 0), (bl, 0), (bl, al ), (b2, al ), (be, a2 ) . . . . .  

(bk,ak-1),(bk, ak),(n+ 1,ak),(n + 1 , n +  1). 
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Table  4 

I B G  fami l i es  (M4 = 9)  
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X °° °X° °°X o~o o o~ 
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o>~ o/x oy~ oooo 
0"000 O0 0 0 0 0  
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fill fIX IXL X/L IXI 

XLI XII XX Y~ 
AT LEAST ONE PLUS PER COLUMN 

Each family of IBGs can thus be transformed into a family of  lattice paths. In Fig. 19 
the upward diagonal is the X-axis, and the downward diagonal is the Y-axis, in order 
that we can recognize a lattice path as another form of mountain range. 
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Each lattice path can in turn be rendered as a ballot sequence. A vote for candidate 
A means an edge in the lattice graph directed from (i,j) to (i + 1,j), and a vote for 
candidate B means an edge directed from (i,j) to (i,j + I). Here candidate A never 
falls behind B as the sequence is counted, but the end result is a tie. 

The systematic application of  these transformations will bring the ballot sequences, 
lattice paths, and increasing bipartite graphs into close relationship. The reader may 
wish to examine the Motzkin families found in [20] passed over here, in order to make 
explicit R-decompositions and M-decompositions for them. When this is completed, 
all the Motzkin families described there and here will be brought into combinatorial 
correspondence. 

If the zeroes are deleted from a Motzkin shape sequence, a possibly empty sequence 
of plus and minus remain. As seen by comparing families [C2] and [M1], such a 
sequence describes a Catalan pairing. Hence the formula 

n 

k 

5. The difference it makes 

Consider the NC partitions counted by Cn. A particular vertex is a witness (to 
feasibility) if it is not joined to the immediately following vertex by the partition 
(point 1 follows point n). Call a NC partition k-feasible, for k = 0, 1,2 . . . . .  n if the first 
k points are witnesses. Thus, every NC partition is 0-feasible and only the feasible NC 
partitions are n-feasible. 
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C n 
0. - . . . .  1 1 2 5 14 42 132 429 " a ' ' ' ~ "  1 1 2 4 9 21 51 4 ' ' ' ' ~ M n  

1 . . . . . .  0 1 3 9 28 90 297 . . .  0 1 2 5 12 3 0 . . .  

2. . . . . . .  1 2 6 19 62 207  . . .  1 1 3 7 1 8 . . .  

3. - . . . . . . .  1 4 13 43  145 . . .  0 2 4 11 . . .  

4.  - . . . . . . . .  3 9 3 0  1 0 2 . . .  2 2 7 . . .  
. . . . . . . . . .  6 21 72 . . .  D I F F E R E N C E  0 5 . . .  

5. 
6. - . . . . . . . . . .  15 5 1 . . .  T R I A N G L E S  5 

, . . . . . . . . . . .  \ 
a - - b  C +  \ /  ,, 

c = b - a  
M 

(A) ~ n (B) 

Fig.  20. 

If a, b, c, d . . . .  is the sequence which counts k-feasible NC partitions for n=k, k+ 1 . . . . .  
then the sequence which counts (k + 1)-feasible NC partitions for n = k + 1, k + 2 . . . .  
is easily found to be b - a, c - b, d - c . . . . .  For, an n-noncrossing partition which is 
k- but not (k + 1)-feasible is converted to a k-feasible NC partition of n - 1 points by 
merging point k + 1 with the following point. It follows that a difference triangle may 
be constructed starting with the Cn as shown in Fig. 20A. 

Each row gives the differences of the row above and is indented further. Clearly, the 
k-row gives the k-feasible partitions for n = k, k + 1 . . . .  points and, therefore, the first 
diagonal (1,0, 1, 1,3,6 . . . .  ) gives the number of feasible partitions, which we know to 
be Rn. The second diagonal (1, 1,2, 4 . . . .  ) is the Motzkin sequence, since Mn =Rn +Rn+t 
and also because the spaced partitions of n points are just the ( n -  1)-feasible partitions. 

If a difference triangle begins with row ao, al,a2 ..... then formulas for other rows 
and diagonals are most convenient with the shift operator E(ag) = ai+l. The kth row 
after the first is 

( E - - 1 ) k ( a i ) = Z ( - - 1 ) k - J ( ~ ) ( a i + j ) .  
i 

Thus, we have 

R n = Z ( - 1 ) n - i ( 7 ) C i ,  Mn= y ~ ( - 1 ) n - i ( 7 ) C i + l .  
i i 

The roles are reversed by using E + 1 instead of E - 1. 
n 

C n = ~ ( i ) R i ,  Cn+l = ~ ( 7 )  M~' 
i i 

One other difference triangle is noteworthy. (See Fig. 20B.) It puts Motzkin instead of 
Catalan numbers on the initial row. The first diagonal is the 'aerated' Catalan sequence: 

C+: 1, 0, 1,0, 2, 0, 5, 0, 14, 0,42, 0 . . . .  

There are two connection formulas it represents: 

( 2 n )  ( n ) c i .  
C , = y ~ ( - 1 )  2"-i Mi, M , =  Z 2i 

i i 
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The second formula is certainly correct because we know that one way to construct 
members of  family [M1] for n points is to select 2i points to be paired in Ci possible 
ways, It follows that the diagonal really is C + and the other formula is correct also. 
We also see that the second diagonal repeats every Catalan number twice after the first 
(the 'stuttering' Catalan sequence??). 

Discarding the first diagonal and reapplying the connections yields still other formu- 
las. A number of such CM connections are studied by Donaghey [18]. 

Combining the C-M and the M-C connections from both difference tables gives a 

(/)  u sti tions Catalan recursion formula of interest: Cn+l = ~ i j  (~) 2j 

i n ( n - 2 j ~  
(r)  (2 j )  = (2j )  ( r - -2 j )  ' ~ \ i - 2 j  J = 2n-2j 

transform it quickly to a beautiful formula we have seen already (Touchard) 

~i (n)2n-zJCi. Co+l = 2 j  

6. Count on it 

6.1. Catalan-Motzkin-Riordan enumerators 

We have seen the following characteristic equations in previous sections: 

y = C: Catalan (1, 1,2,5, 14,42 . . . .  ) y = 1 +xy 2, 
y=M: Motzkin (1,1, 2, 4, 9, 21, 51 . . . .  ) y = l + x y + x 2 y  2, 

1 + xy2. y=R: Riordan (1, 0,1,1, 3, 6,15, 36 . . . .  ) Y -  l + x  

In the first of these one may put x 2 for x to get 

y = C+: aerated Catalan (1,0, 1,0,2,0,5,0 . . . .  ) y = 1 + x 2 y  2. 

Given only one of the enumerators, the others can be recovered using the difference 
triangles. Suppose a difference triangle has for top row the coefficients of A(x), for the 
first diagonal the coefficients of B(x), and for the second diagonal the coefficients of 
D(x). Then A,B,D are related by the following Euler transformations: 

( l+x )B(x )=A(1Tx ) ,  (l+x)B(x)=xD(x)+bo. 

For instance, let y = A(x) = C(x); then 

C(x) = 1 + xC2(x), 

(1 +x)R(x)-- 1 + x ( l  +x)R2(x), 
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and similarly for the other cases. The characteristic equation y = 1 + x y  2 for C(x )  

yields by implicit differentiation y '  = y2 + 2xyy ' .  Algebraic manipulation o f  the two 

equations yields the linear differential equation 1 + (2x - 1 )y + (4x - 1 ) ( xy ' )  = 0. This 

gives the 'quick'  recursion 

2 n -  1 
C, = 2 ~-~--T On_ 1. 

A similar straightforward but arduous manipulation o f  the R-equation leads to the 

linear equation 1 - x ( 1  + x)(1 - 3x)y '  = (1 - 3xZ)y. From the M-equation we obtain 

(2 - 3x - 3x 2 )y ÷ x(1 - 2x - 3x 2 )yt _= 2. The resulting quick recursions are 

n - 1  n - 1  
R. - n 7  i -(2R"-1 + 3Rn--2), m n -  Mn- I  = ~ - ~ ( M n - I  ÷ 3n--2)- 

Fans o f  the quadratic formula may prefer to apply it to the characteristic equations to 

obtain 

C: 2xy = 1 - v/1 - 4x 

() (hence, by binomial expansion, Cn = ~ 1 • 3 - . -  (2n - 1) = ~ 1  2n,, ), and 

M: 2 x 2 y =  l - x -  v / 1 -  2 x -  3x 2, 

R: 2x(1 + x ) y =  1 ÷ x -  V/1 - 2 x - 3 x  2. 

Some interesting related facts are 

x/~ - 4x = 1 - 2x( Co + Clx  + C2x 2 + . . . ) ,  

VII - 4x , 

V/1 - 2x - 3x 2 = 1 - x - 2x2(M0 ÷ M l x  + M2x 2 + • • -), 

l/V/1 - 2 x -  3x 2 = Z ( 1  + 2M0 + 4Ml + . . .  + 2 ( n -  1)Mn_2)x n 
71 

= 1 ÷ x +  3x 2 ÷ 7x 3 + 19x 4 ÷ 51x s + . . . .  

Here the sequence 1, 1,3,7, 19,51,. . .  or the constant terms of  (~ + 1 + x) n, is seen 

again below. 

6.2. Inversion to the rescue 

The difficulties which beset the attempt to find closed form solutions for Mn,Rn can 
be overcome using Lagrange inversion. This is a very powerful tool which is naturally 

suited to many enumeration problems. There are several forms of  the inversion theorem, 

including some generalizations which will not be needed here. Two closely related 
versions will be stated. Proofs using several methods can be found in [23]. 
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TANNENBAUM (TRINOMIAL TABLE) 

1 

1 1 1 

1 2 3 2  1 

1 3 6 7 6 3 1  

1 4 10 16 19 16 10 4 1 

5 15 30 45 51 45 30 15 5 1 

iii <(.+I)M. 
Fig. 21. 

a b c 

d = a+b+c 

(I) With an equation o f  the form y : 1 + x f ( y ) ,  for y = ~ anx n and a0 = 1, let 

D = d/dt. Then 

an = l [Dn-l fn( t)] t: l .  

(II) With an equation of  the form z = x f ( z ) ,  for z = ~-]~n~>l an xn, 

nan is the coefficient o f  tn-i in ( f ( t ) )  n. 

Passage from (I) to (II) is usually by z : xy  or a similar transformation. The Catalan 

equation y = 1 + xy  2 is in the form demanded by (I), and thus 

n!Cn =Dn-l[tZ"]t: 1 = (2n)(2n - 1 ) . . . ( n  + 2 ) - -  - -  

Alternately, with z = xy  we have 

y =  l + xy  z, x y =  x + (xy) 2, z = x + z  2, 

(2n)! 

(n + 1)!" 

x 
Z -- Z 2 : X, Z -- 

l--Z" 

(n + 1 )C, is the coefficient o f  ," in (1 - , ) - ( ' +  O, namely ( 2 ; ) .  Consequently, 

The Motzkin equation y = 1 + xy  + (xy) 2 is the same as ~ = I + z + z 2 and so 

(n + 1)Mn is the coefficient o f  t" in (1 + t + t2) n+l. The powers o f  1 + t + t 2 are 

easily computed in a Pascal-like triangle (see Fig. 21). Each number is the sum o f  

three above it. For example, 7 + 6 + 3 = 16. The central numbers were mentioned in 
the last section. 

I f  the power is written ((1 + t ) +  t2 )  n+l , t w o  applications o f  the binomial expansion 

lead to 

( n W 1 ) M n : i E o  ( n ÷ l )  ( n ÷ l - i ) = ~  ( n W l ) [  
• = i \ i + 1 ir(i + l)!(n - 20[" 
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SUPERIMPOSE PASCAL RECTANGLES TO GET CATALAN TABLE 

i 
0 , 1 1 1 1 . . .  ! 

i 
0 , 1 2 3 4 . . .  

i 

011 3 6 1 0 . . .  
I 

o11 4 1 0 2 o . . .  

. . .  

0 0 0 0 0 . . .  

1 1 1 1 1 . . .  
1 

1 2 3 4 5 . . .  

1 3 6 ~ 1 5 . . .  

. . .  

m 
1 

0 1 1 1 1 . . .  

O l  

0 2  . . .  

o !i" 
C n 

(A) 

SUPERIMPOSE TRINOMIAL TABLES TO GET A RIORDAN TRIANGLE //1. 
. . .  . . .  / 1 1 1 "  
. . . - -  1 . . .  = / 1 2 3 1 .  

/ 1  3 6 7 6 3 . . .  / 0 1  3 6 7 6 3 . . .  / 1 3 6 6 3 * 

/ 1 4 1 0 1 6 1 9 1 6 1 0  . / 0 1 4 1 0 1 6 1 9 1 6 1 0  . . .  
" ' ~ R n  

(B) R n+2 

A DIFFERENT COMBINATION GETS A MOTZKIN TRIANGLE 

/ 0 0 1 A 1  0 * 
0 0 1 1 1 . . .  1 1 0 * 

2 0 * 
- - /  0 0 1 2 3 2 1 . . .  Z 1 3 5 4 0 , 

0 0 1 3 6 7 6  3 . . .  4 9 1 2 9 0 *  

l 1 4 1 0 1 6 1 9 1 6 1 0  . . .  / 0 0 1 4 1 0 1 6 1 9 1 6 1 0 . . .  

M 
(C) n 

Fig. 22. 

l x ") The equation for the Riordan enumerator, y = T~ + xY 2 becomes z = ~ + z% or 
z = x(1 l_--~. - z ) .  Here the factor ~ = 1 +xM(x) gives z=xR(x). Thence, (n + 1)Rn 
is the coefficient of t n in (~-t - 0 n+l, which, by two applications of the binomial 

expansion, gives 

(n+l)Rn=~(-1)i(n+l) (2~-~i) 
i=0 

Earlier we observed a Catalan family determined by the restricted motion of a chess 
king on an infinite triangular chessboard. The simple recursion that counts how many 
ways it can get to a given square is reproduced by shifting the Pascal triangle (in 
rectangle presentation) and subtracting it from itself (see Fig. 22A and [36]). Here the 
negative numbers are not shown. The diagonal above the zeroes is 
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The same trick applied to the trinomial coefficients gives Motzkin and Riordan number 
triangles (Fig. 22B and Fig. 22C). 

7. Extras and leftovers 

We finish off our survey by briefly describing connections with the theory of chro- 
matic polynomials (the common abbreviation 'chromials' will be used). A fuller treat- 
ment is planned. Basic information on chromials can be found in Biggs [8], Read [29], 
Read and Tutte [30]. 

Briefly, if G is a finite graph without loops, and the set of colors is { 1, 2 . . . . .  2}, 
then there is a polynomial P - - P ( G , 2 )  which counts the number of colorings of the 
graph with 2 colors: a coloring being a mapping of vertices to colors which never uses 

the same color on the ends of an edge. 
Two modifications will be needed: (a) some vertices can have fixed colors pre- 

assigned, and (b) some edges may be designated as 'contractive'. Contractive edges 
require the same color at both ends; thus coloring such a graph is essentially the 
same as contracting the contractive edges first, and then coloring the graph. In making 
some edges contractive, we must be careful that no loops arise when the contraction is 
performed. Note that multiple edges are a harmless nuisance, and can be suppressed. 

The original motivation for studying chromials of planar graphs was the hope of 
approaching the Four Color Problem by quantization, analysis, and then specialization 
(put 2 = 4). 

For many years the bible for the theory of chromials of maps and graphs was 
the 1946 monograph 'Chromatic Polynomials' of  Birkhoff and Lewis [10], hereafter 
denoted CP. These authors paid much attention to maps M defined by a trivalent (or 
cubic)  plane graph, and a ring of n regions in such a graph. Once a ring is selected, 
the map may be 'reduced' by 'deleting' one side of the ring. Topologically, a 'proper' 
ring is an annulus, separating two topological disks. To reduce the map, you contract 
one of the disks to a point. 

It is often convenient to dualize (see Fig. 23). The trivalent map M is replaced with 
a plane graph G whose regions are triangles. Two vertices of G joined by an edge 
replace two regions sharing a common boundary. A 'ring' is then a simple circuit R in 
G, called proper if it has at least one vertex on each side, and no chord edges (edges 
connecting nonconsecutive vertices of  R). The chromial of M is then identical to the 
chromial of G. 

Reduction is simple: just delete all vertices and edges on one side of  R. The reduced 
graph H can now be represented as a plane near-triangulation, or PNT, with perimeter 
R. That is, R is a convex plane polygon, with only one exterior face, and all interior 
faces are triangles. A 'degenerate' reduction may further modify the exterior face: ring 
vertices which are nonadjacent can be joined by an edge or even coelesced. This may 
be done by putting regular and/or contractive edges in the exterior face in a noncrossing 
way. Note: the ring ceases to be a proper ring. 
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PLANE TRIANGULATION 

B 

TWO PLANE NEAR TRIANGULATIONS 

DECOMPOSES INTERIOR/F.XTF~IOR IS INTERCHANGABLE 

A B 

TWO DELTOIDS 

( IMPROPER 

8-RING ) 

PROPER 6-RING 

IN DUAL GRAPH OF 

DODECAHEDRON 

Fig. 23. 

One may use these 'degenerate' reductions to create smaller cubic maps (dually, 
smaller planar triangulations) from a given one. A chief goal in the paper CP is to 
reconstruct the 'chromial' of  the entire map by combining in some fashion chromials 
associated with the reduced maps for a fixed ring R. (The reduced maps were called 
'free', so the chromials were called 'free' chromials. Here the term F - c h r o m i a l  will be 
used.) Success in the reconstruction was achieved only after a new kind of chromial 
was introduced. 

Consider PNT graph H with a labeled boundary circuit R. We assume the labeling 
procedes counterclockwise from the bottommost edge in the diagram. This labeling is 
implicit, so that 1,2, 3 . . . .  may be used for colors. 

A coloring of  ring R alone is a pre-coloring of H.  We recall the definition of the 
scheme of a partition. Each feasible partition of  the ring vertices may be represented 
by an orthodox color scheme. The eleven orthodox schemes for a 5-ring are 

With crossings : 12123, 12132, 12134, 12312, 12313, 

Noncrossing : 12314, 12323, 12324, 12342, 12343, 12345. 

Arbitrary schemes can be 'converted' by permutation of  colors to orthodox equivalents, 
for example, 232141 converts to 121343. 

We know that the orthodox schemes of  length n form a set with V, members. 
Following CP, we precolor the ring using a selected scheme a, and then find a chro- 
mial P~ = P(H~,2)  for the precolored graph H ~. Equivalent schemes lead to the 
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same chromial, which is the reason that only orthodox schemes are needed. Thus a 
set of chromials, the so-called 'constrained chromials' is obtained, and there are V~ 
members. 

By means of C-chromials, CP found a simple way to reconstruct the desired chromial. 
But they were not satisfied, because they wanted F-chromials. 

In brief, an F-chromial for graph G is found by replacing one of the two NPT 
graphs with common boundary R by an elementary degenerate sort of NPT (specified 
and enumerated below), and evaluating the chromial. We introduce A, as the number 
of such chromials using just one NPT H.  

From our point of view, both C-chromials and F-chromials are constrained, only 
in different ways. Now it happens (for fixed H )  that each F-chromial is a sum of 
certain slightly modified C-chromials. Assuming an inverse solution (each C-chromial 

is a linear combination of F-chromials), then the goal of  CP has been achieved - -  
the chromial for G is initially given as a combination of C-chromials, but may be 
reexpressed in terms of F-chromials. Thus the chromial for G is reconstructed from 
chromials of smaller triangulation graphs. 

For fixed PNT graph H,  we may stipulate that the V, distinct C-chromials are enu- 

merated Pl,P2,P3 . . . .  and that the A~ distinct F-chromials are enumerated ql, q2, q3 . . . . .  
Certain curious facts are now noted. Each group of chromials (C- or F-) is subject 
to a variety of linear identities that are independent of the choice of H.  In CP the 
C-chromials identities are much studied, but the F-identities are given little attention. 
However, the latter may be recovered using their 'twisting the boundary' formula (we 
will return to this shortly). 

The C-identities, on the other hand, were more elusive. They were obtained in CP 
apparently by trial and error, and only for the lowest orders n = 4, 5. An extension 
to n = 6 was done later by Hall and Lewis [24]. Even with all their computation, 
the general form and provenance of these identities remained somewhat mysterious, 
but once obtained, CP was able to employ them to invert the F-to-C connection, and 
thence to complete the reduction program. 

The mystery remained for some 30 years. In the meanwhile, my father, Arthur 
Bernhart, made adaptions in case 2 - - 4 ,  obtaining numerous equations involving 
'frequencies'. These frequencies were essentially C-chromial values at 2 = 4, but only 
using schemes with four colors or less. The equations were obtained by direct appeal 
to Kempe chains [5]. 

In the mid-1970s, while I was a visitor at the University of Waterloo, W. T. Tutte 
introduced a useful distinction: ring color schemes were called planar if the associ- 
ated (feasible) partition was noncrossing, and similarly, C-chromials obtained from a 
planar coloring scheme were planar [46]. He then recast the known C-identities, and 
demonstrated that they were just sufficient to express nonplanar C-chromials in terms of  
planar ones. In this form, the identities are now known as flattening equations. For my 
part, I found a method of  generating the identity which 'flattens' any given non-planar 
C-chromial, and was able to count these identities by finding the key recurrence for 
the feasible NC partitions. A joint paper is planned. 
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We now return to the F-chromial set. In hindsight, a careful study of the F-identities 

would have been very useful, because it is not difficult to construct a basis of  in- 

dependent F-chromials. This basis sheds light on the corresponding 'planar' basis for 

C-chromials. It is logical to consider the common basis size Rn to be the 'linear 
dimension' of  the ring of length n. 

We now digress to consider the nature of the degenerate PNT in the definition of an 

F-chromial. Start with a convex n-gon, representing the ring R. The imprecise notion 

of filling the interior with contractive and regular diagonals can be made clearer by 

using a deltoid as a seed, and a color scheme as a catalyst. In diagrams, the contractive 

diagonals will be distinguished by doubling, so that they resemble the double bonds 

of chemistry. 

More precisely, we let T ~ be a deltoid (member of  [C1]) precolored with scheme tr. 

There are Cn. V, of these. Then we examine the n - 3 inner edges, changing the edges 

to double bonds just in case the ends are the same color. This makes the precoloring a 

valid coloring. An elementary configuration results when we discard the coloring, and 
(optionally) contract all double bonds (see Fig. 24A). 

Varying the initial deltoid, or the precoloring, does not necessarily change the out- 

come. Without going into the details, it is convenient for diagrams to leave the double 
bonds uncontracted, but to remove certain 'redundant' diagonals. For example, if the 

graph contains a circuit with edges x, y of like type, and all circuit edges other than 
these two are double bonds, then one of x, y may be omitted without loss. It is also no 

loss to require that the double bonds follow the rules laid down above for the graph 

of a partition. Each class of  the partition is, of  course, a group of vertices which are 
merged if the contraction is performed. 

No matter which deltoid D is used as 'seed',  some color schemes will produce no 

double bonds. Thus, all the deltoids (for an n-gon) qualify as elementary configurations. 
For n = 4 we have a square a b c d  with one diagonal (either ac or b d  which may be 
either contractive or not. Hence A4 = 4. For n = 5, in addition to C3 = 5 deltoids, a 

sole contractive diagonal may be inserted in five ways; thus A5 = 10 (see Fig. 24B). 
These graphs were called 'options' or 'constraints' for many years by Arthur Bemhart 

[4], who was able to compute the sequence An by a complex recursion (private notes 
and conversation). We will think of them as Arthur's constraints, or briefly: arkons .  

The sequence An is M3400 in [42]. For n = 2 . . . . .  13 we have 

1 1 4 10 34 112 398 1443 5387 20482 79177 310102. 

The 'outline' of an arkon is formed by omitting the noncontractive diagonals. An 
outline may be considered a feasible partition. Take the graph of the partition, double 

all the edges, and add the surrounding polygon R made of regular edges. This is a 
simple variation of the class [R2]. When the double bonds are contracted, a tree-like 
cac tus  is obtained. A standard tree is made of edges; a cactus is made of circuits (or 
'cells').  

Conversely, one obtains an arkon from a cactus by putting a deltoid in each cell. If  
a b r a m b l e  is a cactus in which each cell has at most three sides, there is nothing to be 
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Making an ARKON from a Deltoid, Using a Ring Scheme as Catalyst 

DELTOID ON 7-RING 

• b 
ADD COLOR SCHEME 1 2 CONT~Cr]F D ~ I ~ D  

DISCARD COLORING MATCHES WITH COLOR SCHEMES: 
1 2 1 3 4 2 4 IDENTIFY THE CONTRACTIVE AND UNNECESSARY 1 2 1 3  x y x (x= 2, y= 1,3,4; 

(cOMPATIBLE WITH R I N G )  DIAGONALS ( DOUBLED ) DIAGONALS OR x=4, y= 1,2,3) 

1 2 1 2 3 x 3  (x~ 1,2,4) 
(a) 

~mm t 
FIVE ARKONS, RANK 0 

{VARIANTS BY CLOCKWISE ROTATION) 

FIVE ARKONS, lU~NK 1 

(VARIANTS BY CLOCKWISE RCCTATION) 

TEN 5-RING 

ARKONS 

2 6 

FOURTEEN RANK 0 ARKONS 

(B) elvrm~ RANRI ARXONS 

34 6-RING 

ARKONS 

Fig.  24.  

done - -  we can regard the brambles as the intersection of the cactii and the arkons. 
We will call two arkons related if  they have the same outline (can be built out of  the 

same cactus). 
Let the rank of  an arkon be the number of  cells in the outline. Hence an arkon of 

lowest rank is just a deltoid, and vice versa. An arkon of highest rank is a bramble 

with at most one 3-sided cell. 
Let qi, qj be two F-chromials, obtained from related arkons (having the same outline). 

Our immediate goal is to show as a corollary to the 'twisting the boundary' equations 
of CP, that there is a linear identity of  the form qi -~- . . . .  qj +.  •., where all chromials 
other than qi, qj have higher rank. 

First we restate the CP equations in our format. Let H be a PNT of  order four, 
and consider the arkons E~,E2, E3,E4 of order four. I f  each one is combined by ring 
identification with H ,  four reduced 'free'  graphs are obtained (see Fig. 25 (top)). 
In this equation, following a common convention, each graph diagram stands for its 
chromial. 



F.R. Bernhart / Discrete Mathematics 204 (1999) 73-112 109 

BIRKItOFF-LEWIS TWISTING THE BOUNDARY EQUATION 

EACH DIAGRAM STANDS FOR A WHOLE MAP CHROMIAL 

TWO TRIANGLES 
OF PLANE CONTRACTIVE DIAGONAL IS 

TRIANGULATION DIAGONAL ROTATED 

CONTRACTIVE 

DIAGONAL 

4-RING INTERPRETATION: THE 4 ARKONS (INSIDE THE SQUARE) 

ARE COMBINED WITH ARBITRARY FIXED EXTERIOR (NPT) 

N-RING INTERPRETATION, N>4: THE SQUARE REPRESENTS TWO 

ADJOINING TRIANGLES OF SOME ARKON (JOINED TO NPT) 

IF 1ST, 3RD ARKONS HAVE RANK k, THEN 2ND, 4TH HAVE RANK k+ l  

_ I,,,/ 
7-RING INTERPRETATION OF EQUATION 

CHANGES OCCUR IN 4-GON WITH DIAGONAL x 

DOTTED DIAGONALS MAY BE o M r r T E D  AS WELL 

Fig. 25. 

The equation is nearly trivial, for either sum is just the chromial of H:  the first 
graph captures the colorings with the ends of the diagonal colored distinctly, and 
the second graph captures the colorings with the ends of the diagonal colored the 

same. 
We now reinterpret the squares of the first diagram as a pair of adjoining triangles 

in some arkon of order n > 4. An appropriate H is joined with it. The remaining three 
terms of the equation are similarly reinterpreted. In Fig. 25 (bottom) we choose for 
illustration a deltoid arkon with a seven-sided boundary. The square is composed of the 
triangles which share the diagonal edge marked x. The reinterpreted equation involves 

four arkons that have ranks 1,2, 1,2. 
More generally, we can find a similar four term identity ('quartet') in which the 

four arkons, say Ei, Ej,Em,En, are such that Ei,Em differ by twisting the edge x, and so 
have the same rank. The other two have the next highest rank. But, if two arkons have 
the same outline, it is easy to see that twisting edges can change one to the other in a 
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finite number of steps. Each step yields a quartet equation, and chaining the equation 
proves the corollary. 

It now follows that for an F-chromial basis, we need only take one arkon with any 
given cactus as outline, and R~ is the dimension. In CP this number is called v(n), and 
calculated only for the smallest cases. 

The authors of  CP shy away from working with maps that are not defined by cubic 
graphs. Put dually, they restrict their elementary configurations to arkons. But think of 
how much better it is to use cacti (outlines) to define the F-chromials. Thus a reduced 
graph is obtained by erasing one side of the ring circuit, and then picking any feasible 
NC partition of vertices, and tinily merging the vertices of  each class. A planar graph 
results, but each large cell is a large non-triangular face. 

Counting arkons, brambles, and similar classes by means of Lagrange inversion is 
eminently feasible, but too much for inclusion in this article. Details will be given 
elsewhere. The number An,k of arkons of order n and rank k is 

1 (n~ ( 2 n - 3 k - 4 ~  
n J 

and, of  course, An = An,0 + An, l + . - .  + A.,[~j_ 1. The presence of the simple factor (~) 

is intriguing; is there a direct combinatorial justification for this formula? 
In my dissertation (1974) I used K. in place of A., and exhibited a certain recursion. 

Rediscovery of the ring numbers R. led to a Catalan-like recursion a few years later. 
I had not encountered M. or the companion sequence. Checking [41] did not help, 
and [42] did not exist. I am indebted to correspondence with D. G. Rogers for the 
R-M connection and pointing me toward the effective enumeration of Rn and A. by 
Lagrange Inversion. 

Over the course of two decades, my view of the sequences Cn,M. and Rn as a 
close-knit family took shape. The most concrete visualization of this is perhaps the pair 
of difference triangles of Section 4. It is now well known that the Catalan numbers 
enumerate an amazing variety of interesting classes. I hope that it has been shown 
in this paper that Motzkin and Ring numbers are not far behind. In any case, I have 
sought to create a primer on the three sequences, and also many of the commoner 
tools of  combinatorics. 
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