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a b s t r a c t

In this paper, we solve a characterization problem in the context of the d-orthogonality.
That allows us, on one hand, to provide a q-analog for the d-orthogonal polynomials of
Laguerre type introduced by the first author and Douak, and on the other hand, to derive
new Lq-classical d-orthogonal polynomials generalizing the Little q-Laguerre polynomials.
Various properties of the resulting basic hypergeometric polynomials are singled out. For
d = 1, we obtain a characterization theorem involving, as far as we know, new Lq-classical
orthogonal polynomials, for which we give the recurrence relation and the difference
equation.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Over the past few years, many works appeared and dealt with the notion of multiple orthogonality [1–11] which is
connected with the study of vector Padé approximants, simultaneous Padé approximants, and other problems such as
vectorial continued fractions, polynomials solutions of the higher order differential equations (see, for instance, [4,1,12–14]).
A convenient framework to discuss examples of multiple orthogonal polynomials consists in considering a subclass
of multiple orthogonal polynomials known as d-orthogonal polynomials (see, for instance, [15–35]). To draw up our
contribution in this direction, studying further examples, we recall the following notations and definitions.

Let P be the vector space of polynomials with coefficients in C and let P ′ be its algebraic dual. We denote by ⟨u, f ⟩ the
effect of the functional u ∈ P ′ on the polynomial f ∈ P . A polynomial sequence {Pn}n≥0 is called a polynomial set (PS, for
shorter) if and only if deg Pn = n for all non-negative integers n.

Definition 1.1 (Van Iseghem [30] and Maroni [31]). Let d be a positive integer. A PS{Pn}n≥0 is called d-orthogonal (d-OPS,
for short) with respect to the d-dimensional vector of functionals Γ =

t(Γ0, Γ1, . . . , Γd−1) if it satisfies the following
orthogonality relations:

⟨Γk, PrPn⟩ = 0, r > nd + k, n ∈ N = {0, 1, 2, . . .},
⟨Γk, PnPnd+k⟩ ≠ 0, n ∈ N,

for each integer k belonging to Nd = {0, 1, . . . , d − 1}.
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In this context, we have the following result.

Theorem 1.2 (Maroni [31]). Let d be a positive integer. A PS{Pn}n≥0 is d-orthogonal if and only if it satisfies a (d + 1)-order
recurrence relation of the type:

xPn(x) =

d+1−
k=0

αk,d(n)Pn−d+k(x),

where αd+1,d(n)α0,d(n) ≠ 0, n ≥ d, and by convention, P−n = 0, n ≥ 1.

This result, for d = 1, is reduced to the so-called Favard Theorem [36].
The d-orthogonal polynomials of Laguerre type (d-Laguerre polynomials, for short) were introduced by the first author

and Douak [19,20]:

ℓ
−→α d
n (x) = ℓ(α1,...,αd)

n (x) = 1Fd


−n
α1 + 1, . . . , αd + 1; x


, (1.1)

where rFs is the hypergeometric series defined by [37]:

rFs


a1, . . . , ar
b1, . . . , bs

; z


:=

∞−
k=0

r∏
j=1

(aj)k

s∏
j=1

(bj)k

zk

k!
,

with (a)j =
Γ (a+j)
Γ (a) .

Such polynomials also appear among the solutions of a characterization problem considered by the authors [22,16]. It
was shown in [19] that these polynomials are related to Konhauser polynomials [38] Gould–Hopper polynomials [39] and
Bateman functions [40]. Recently, the first author andGaied [25] used the d-Laguerre polynomials to express the components
of the Gould–Hopper type polynomials. The first author andDouak [19] stated for d-Laguerre polynomials various properties
concerning a differential equation of order d+1, a (d+1)-order recurrence relation, a generating function defined bymeans
of the hyper-Bessel function, some differentiation formulas and a Koshlyakov formula involving the Meijer G-function.

The 2-Laguerre polynomials have been also studied by the first author and Douak [21] and by Van Assche and
Yakubovich [9] in order to solve an open problem formulated by Prudnikov in [10].

Concerning how to obtain the d-dimensional vector of functionals for which the d-orthogonality of the d-Laguerre
polynomials holds, the case d = 2 was treated by the first author and Douak [21] and the general case was solved by
the second and the third authors [34].

The aim of this work is to proved for d-Laguerre polynomials their q-analogous. To this end, we recall first that the Little
q-Laguerre polynomials are given in [41, p. 107] by:

Pn(x; a|q) = 2Φ1


q−n, 0
aq

 q; qx , a ∉ {0, q−1, . . .}, 0 < q < 1, (1.2)

where rφs is the q-hypergeometric series defined in [41] by:

rφs


a1, . . . , ar
b1, . . . , bs

 q; z :=

∞−
n=0

(a1, . . . , ar; q)n
(b1, . . . , bs; q)n

(−1)n(1+s−r)q(
n
2 )(1+s−r) zn

(q; q)n
, (1.3)

with (a1, . . . , ar; q)n :=
∏r

j=1(aj; q)n, r a positive integer or 0 (interpreting an empty product as 1), (a; q)0 := 1, (a; q)n :=∏n−1
j=0 (1 − aqj), n > 1, and (a; q)∞ := limn→+∞(a; q)n.
These polynomials are well-known in the theory of orthogonal polynomials as the q-analogs of the Laguerre ones [41].

That suggest us to consider the following characterization problem.
P: Find all d-orthogonal polynomials of type:

Pn(x; (bs), (ar)|q) = r+1φs


q−n, a1, . . . , ar

b1, . . . , bs

 q; x , (1.4)

where 0 < q < 1, r and s are positive integers or 0 (interpreting an empty product in (1.3) as 1), {ai; i = 1, . . . , r} and
{bj; j = 1, . . . , s} are r + s complex numbers independent of n and x such that ai, bj ≠ 1, q−1, q−2, . . . , and ai ≠ bj.

For r = s = 1, these polynomials are reduced to the Little q-Laguerre polynomials given by (1.2).
Such a characterization takes into account the fact that PS which are obtainable from one another by a linear change of

variable are assumed equivalent.
Notice by the way that, this problem, for the limiting case (d, q) = (1, 1) was set and treated under different aspects by

many authorswho took as starting point for their characterizations one of the properties related to the polynomials given by
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(1.4) (see [42–44]). Recently, the first author and Douak [19] treated the limiting case q = 1 for a general positive integer d
and obtained the generalized hypergeometric polynomials of Laguerre type given by (1.1) which are reduced to the classical
Laguerre polynomials for d = 1.

Our contribution in this direction is to solve the problem P for 0 < q < 1 and for general positive integer d. That allows
us to introduce, as far aswe known, new Lq-classical d-OPS of Little q-Laguerre type, which can be viewed as a q-analog of the
d-orthogonal polynomials of Laguerre type. Then we focused our analysis on some properties of the obtained polynomials.
That turn out to be: Limit relation, generating function, inversion formula, d-dimensional vector of functionals. The case
d = 1 and d = 2 are specially carried out. Incidentally, in the case d = 1,we obtain a characterization theorem (Corollary 2.4)
involving, as far aswe know, new orthogonal polynomials, forwhichwe give a recurrence relation and a difference equation.

The paper is organized as follows: In Section 2,we solve problem P . Section 3 is devoted to studymiscellaneous properties
of the obtained polynomials. In Section 4, we derive a recurrence relation and a difference equation for the new OPS given
by Corollary 2.4.

2. A characterization theorem

As a solution of problem P , we state the following characterization theorem.

Theorem 2.1. The only d-OPSs of type (1.4) are given by:

Pn(x; (bs)|q) = d+1Φs


q−n, 0, 0, . . . , 0
b1, . . . , bs

 q; x , (2.1)

where s = 0, . . . , d and {bj; j = 1, . . . , s} are s complex numbers independent of n and x such that bj ≠ 0, 1, q−1, q−2, . . . ,
(for s = 0 interpreting an empty product in (1.3) as 1).

In order to prove this theorem, we first state the following lemma.

Lemma 2.2. The PS {Pn}n≥0 given by the identity (2.1) is a d-OPS.

Proof. Let n ≥ d and D(x) =
∏s

j=1


1 −

bj
q x

. Since deg

[
(q−n

; q)d(1 − x)


−x
q

d−s
D(x)

]
= d+ 1 and the set {(q−n+d−l

; q)l

(q−n−1x, q)d+1−l}0≤l≤d+1 is a basis for Cd+1[x], the vector space of polynomials with coefficient in C and of degree less or
equal (d + 1), then there exist d + 2 complex numbers αl,d(n); l = 0, . . . , d + 1; such that:

(q−n
; q)d(1 − x)


−x
q

d−s

D(x) =

d+1−
l=0

αl,d(n)(q−n+d−l
; q)l(q−n−1x, q)d+1−l. (2.2)

Multiplying both sides of the identity (2.2) for x = qk by

ε(n, k) =


((−1)kq


k
2


)d−s

(q−n−1+k; q)d+1−k(q; q)k(b1, . . . , bs; q)k
if 1 ≤ k ≤ d + 1,

(q−n−1+k
; q)k−d−1

((−1)kq


k
2


)d−s

(q; q)k(b1, . . . , bs; q)k
if d + 1 ≤ k ≤ n + 1,

we get

(q−n
; q)k−1((−1)k−1q


k−1
2


)d−s

(q; q)k−1(b1, . . . , bs; q)k−1
=

d+1−
l=0

αl,d(n)
(q−n+d−l

; q)k((−1)kq


k
2


)d−s

(q; q)k(b1, . . . , bs; q)k
, 1 ≤ k ≤ n + 1.

On the other hand, it is easy to show, from the identity (2.2), that
∑d+1

l=0 αl,d(n) = 0. Consequently

n+1−
k=1

(q−n
; q)k−1((−1)k−1q


k−1
2


)d−s

(q; q)k−1(b1, . . . , bs; q)k−1
xk =

n+1−
k=0

d+1−
l=0

αl,d(n)
(q−n+d−l

; q)k((−1)kq


k
2


)d−s

(q; q)k(b1, . . . , bs; q)k
xk.

That, by virtue of the identity (2.1), we obtain

xPn(x, (bs), q) =

d+1−
l=0

αl,d(n)Pn−d+l(x, (bs), q), n ≥ d. (2.3)
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By replacing in the identity (2.2) x = qn+1, we get:

(q−n−1
; q)d+1αd+1,d(n) = (q−n

; q)d(1 − qn+1)(−qn)d−sD(qn+1), n ≥ d. (2.4)

It follows then αd+1,d(n) ≠ 0, n ≥ d.
Taking into account the fact that, the left-hand side of the identity (2.2) is a polynomial of degree (d + 1), we deduce

that α0,d(n) ≠ 0. We conclude that the PS {Pn}n≥0 satisfies the recurrence relation (2.3) with αd+1,d(n)α0,d(n) ≠ 0. That, by
virtue of Theorem 1.2, leads to the desired result. �

Proof of Theorem 2.1. This proof is divided in two steps. The first one is devoted to show that r ≥ s and ai = 0; i =

1, . . . , r , which will be used in the second step to prove that bj ≠ 0; j = 1, . . . , s and r = d.
By using Theorem 1.2, the sequence {Pn}n≥0 satisfies the following recurrence relation:

xPn(x, (bs), (ar), q) =

d+1−
l=0

αl,d(n)Pn−d+l(x, (bs), (ar), q), where n ≥ d and αd+1,d(n)α0,d(n) ≠ 0.

Substituting the expression of Pn−d+l(x, (bs), (ar), q) given by (1.4) in this equality, we obtain:

xPn(x, (bs), (ar), q) =

n+1−
k=0

d+1−
l=0

αl,d(n)
(q−n+d−l

; q)k
(q; q)k

(a1, . . . , ar; q)k
(b1, . . . , bs; q)k

((−1)kq


k
2


)s−rxk.

On the other hand, from the identity (1.4), we have

xPn(x, (bs), (ar), q) =

n+1−
k=1

(q−n
; q)k−1

(q; q)k−1

(a1, . . . , ar; q)k−1

(b1, . . . , bs; q)k−1


(−1)k−1q


k−1
2

s−r

xk.

Then, by identification for 1 ≤ k ≤ n + 1, we get:
d+1−
l=0

αl,d(n)(q−n+d−l
; q)k = (q−n

; q)k−1(1 − qk)
D(qk)
N(qk)

(−qk−1)r−s,

where D(x) =
∏s

j=1


1 −

bj
q x

and N(x) =

∏r
j=1


1 −

aj
q x

. Hence, for d + 1 ≤ k ≤ n + 1, we have:

Q (qk) = (−qk−1)r−sR(qk), (2.5)

where R and Q are the polynomials defined by

Q (x) =


d+1−
l=0

αl,d(n)(q−n+d−l
; q)l(q−n−1x; q)d+1−l


N(x),

R(x) = (1 − x)(q−n
; q)dD(x).

Observing that: degQ ≤ 1 + d + r and deg R ≤ s + 1. Then max(degQ , deg R + r − s) ≤ d + 1 + r for s ≤ r and
max(degQ + s − r, deg R) ≤ d + 1 + s for r ≤ s. Choosing n such that n > max(2d + r, 2d + s). According to the identity
(2.5), we deduce

∀x ∈ C; Q (x) =


−x
q

r−s

R(x). (2.6)

Taking into account the fact that R(0) ≠ 0, we obtain r ≥ s.

On the other hand, from the identity (2.6), itmay be seen that the polynomial


−x
q

r−s
R(x) is amultiple ofN(x). However,

N(0) ≠ 0,N(1) ≠ 0 and, N and D are coprime. Consequently N ≡ 1 i.e. ai = 0; i = 1, . . . , r .
Observing that ai ≠ bj; i = 1, . . . , r; j = 1, . . . , s. Then bj ≠ 0; j = 1, . . . , s. So that deg R = 1 + s and degQ = d + 1.

Then according to the identity (2.6), we obtain r = d and s ≤ d.
To prove the converse we use Lemma 2.2. �

Remark 2.3. Theorem 2.1 provides the following class of q-polynomials

Pn(x; (bs)|q) = d+1Φs


q−n, 0, . . . , 0
b1, . . . , bs

 q; qx , s = 0, . . . , d, (2.7)

which appears to be a new d-OPS for (d, s) ≠ (1, 1). In particular, we have a new orthogonal polynomial set for (d, s) =

(1, 0). The PS given by (2.7) will be called Little q-Laguerre type PS, since it is reduced to the Little q-Laguerre PS for
(d, s) = (1, 1) and according to the properties obtained in Section 3.
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For d = 1, Theorem 2.1 is reduced to the following.

Corollary 2.4. A PS{Pn}n≥0 defined by (1.4) with d = 1 is orthogonal if and only if it is the Little q-Laguerre polynomials defined
by the identity (1.2) or the polynomials given by:

Pn(x|q) = 2Φ0


q−n, 0
−

 q; qx . (2.8)

3. Miscellaneous properties of the obtained q-polynomials

Our purpose in this section is to state some properties of the obtained d-OPSs, generalizing in a natural way the Little
q-Laguerre ones.

3.1. Link between the d-OPS of Laguerre type and the d-OPS of Little q-Laguerre type

We recall that, from the explicit expression of the Little q-Laguerre polynomials pn(x; a|q) and the Laguerre polynomials
L(α)
n (x), we have [41, p. 142]:

lim
q→1

pn((1 − q)x; qα
|q) =

L(α)
n (x)

L(α)
n (0)

. (3.1)

In this subsection, we use a similar investigation to derive a limit relation between the Little q-Laguerre type polynomials
given by (2.7) and the Laguerre type polynomials defined by (1.1), which prove that the obtained Little q-Laguerre type
polynomials represent the q-analogs of the d-Laguerre polynomials.

Replacing in the identity (2.7) bj by qαj+1; j = 1, . . . , s; and x by (1 − q)sx, we obtain:

Pn((1 − q)sx; (qαs+1)|q) =

n−
k=0

(q−n
; q)k

(qα1+1, . . . , qαs+1, q; q)k
(1 − q)sk((−1)kq


k
2


)s−d(qx)k.

That, by virtue of (1.1), leads to

lim
q→1

Pn((−1)d(q − 1)sx; (qαs+1)|q) = ℓ
−→α s
n (x), s ≤ d,

which, for s = d, becomes

lim
q→1

Pn((1 − q)dx; (qαd+1)|q) = ℓ
−→α d
n (x).

In the particular case s = d = 1, this limit relation is reduced to the limit relation given by (3.1).

3.2. Difference formulas

Let q be a real number, Hahn [45] defined a linear operator Lq by

Lq(f )(x) =
f (qx) − f (x)

(q − 1)x
, |q| ≠ 1,

where f is a suitable function for which the second member of this equality exists. This operator tends to the derivative
operator D as q −→ 1

Definition 3.1. Let {Pn}n≥0 be a d-OPS. Put Qn(x) = LqPn+1(x), n ≥ 0. If the sequence {Qn}n≥0 is also d-orthogonal, the
sequence {Pn}n≥0 is called Lq-classical d-OPS.

For d = 1, we meet the notion of the Lq-classical Hahn’s property.
Using this definition we have the following.

Proposition 3.2. The Little q-Laguerre type polynomials defined by (2.7) are Lq-classical d-orthogonal polynomials. Moreover
they satisfy:

LkqPn(x; (bs)|q) = ξn,k(q)Pn−k(qk(s−d)x; (qkbs)|q), k ≥ 1, (3.2)

where ξn,k(q) =
qk((−1)kq


k
2

)s−d∏s

j=1(bj;q)k
(q−n

;q)k
(1−q)k

.

Proof. According to (2.7), we have

LqPn(x; (bs)|q) =
q(−1)s−d

s∏
j=1

(1 − bj)

(1 − q−n)

(1 − q)

n−
k=0

(q−(n−1)
; q)k−1

(qb1, . . . , qbs; q)k−1(q; q)k−1


(−1)k−1q


k−1
2

s−d

(qs−d+1x)k−1.
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Hence

LqPn(x; (bs)|q) =
q(−1)s−d

s∏
j=1

(1 − bj)

(1 − q−n)

(1 − q)
Pn−1(qs−dx; (qbs)|q). (3.3)

So, according to Definition 3.1, {Pn(x; (bs)|q)}n≥0 is Lq-classical.
Now, the iteration of (3.3) leads to (3.2). �

Remark 3.3. • For d = s = k = 1, the identity (3.2) is reduced to the well-known difference formula associated to the
Little q-Laguerre polynomials [41, p. 108]:

Lqpn(x; a|q) = −
q−n+1(1 − qn)

(1 − q)(1 − aq)
pn−1(x; aq|q).

• If we replace x by (−1)d(q − 1)s and bj by qαj+1; j = 1, . . . , s; in (3.2), and we take the limit q −→ 1, we obtain the
following differential relations established by the first author and Douak [19]:

Dkℓ
−→αs
n (x) =

(−1)kn!

(n − k)!
s∏

j=1
(αj + 1)k

ℓ
−−→
αs+k
n−k (x), k ≥ 1.

3.3. Generating functions

Proposition 3.4. The Little q-Laguerre type polynomials defined by (2.7) are generated by:

(t; q)∞d+1φs


0, . . . , 0
b1, . . . , bs

 q; xt =

∞−
n=0

(−1)nq(
n
2 )

(q; q)n
Pn(x; (bs)|q)tn. (3.4)

Proof. From the identity (2.7), we have

∞−
n=0

(−1)nq(
n
2 )

(q; q)n
Pn(x; (bs)|q)tn =

∞−
n=0

∞−
k=0

(−1)n+kq

n+k
2


(q; q)n+k

(q−(n+k)
; q)k((−1)kq


k
2


)s−d

(b1, . . . , bs, q; q)k
(xqt)ktn

=

∞−
k=0

((−1)kq


k
2


)s−d(xt)k

(b1, . . . , bs, q; q)k

∞−
n=0

q(
n
2 )(−t)n

(q; q)n
,

as we wanted to show. �

Remark 3.5. • For s = d = 1 the identity (3.4) is reduced to the well-known generating function associated to the Little
q-Laguerre polynomials [41, p. 108]:

(t; q)∞
(xt; q)∞ 0

φ1


−

b1

 q; b1xt =

∞−
n=0

(−1)nq(
n
2 )

(q; q)n
Pn(x; b1|q)tn.

• For s = d, replacing in (3.4) x by (1 − q)dx, t by (1 − q)t and bj by qαj+1
; j = 1, . . . , d; and letting q −→ 1, we get

et0Fd


−

α1 + 1, . . . , αd + 1; −xt


=

∞−
n=0

ℓ
−→αd
n (x)

tn

n!
.

This generating function was given by the first author and Douak [20, p. 353].

3.4. Inversion formulas

Proposition 3.6. The Little q-Laguerre type polynomials defined by (2.7) verify the following inversion formula:

xn = ((−1)nq(
n
2 ))s−d(b1, . . . , bs; q)n

n−
k=0

[
n
k

]
q
(−1)kq


k
2


Pk(x; (bs)|q), (3.5)

where

n
k


q
=

(q;q)n
(q;q)k(q;q)n−k

.



80 Y. Ben Cheikh et al. / Journal of Computational and Applied Mathematics 236 (2011) 74–84

Proof. According to the identity (3.4), we have

∞−
k=0

((−1)kq


k
2


)s−d(xt)k

(b1, . . . , bs, q; q)k
=

∞−
n=0

∞−
k=0

(−1)kq


k
2


(q; q)k

Pk(x; (bs)|q)
tn

(q; q)n−k
.

Equalizing the coefficients of tn, we obtain (3.5). �

Remark 3.7. • In the particular case d = s = 1, the identity (3.5) is reduced to the following inversion formula associated
to the Little q-Laguerre polynomials:

xn = (a; q)n
n−

k=0

[
n
k

]
q
(−1)kq


k
2


Pk(x; a|q).

• For s = d, replacing in (3.5) x by (1 − q)dx, t by (1 − q)t and bj by qαj+1
; j = 1, . . . , d; and letting q −→ 1, we obtain

the known inversion formula [20, p. 353]:

xn =

d∏
j=1

(αj + 1)n
n−

k=0

(−1)n
n
k


ℓ

−→αd
k (x).

3.5. d-dimensional vector of functionals

Our interest here is to determinate the d-dimensional vector of functionals for which we have the d-orthogonality of the
Little q-Laguerre type polynomials.

As proved in [32], a PS{Pn}n≥0 is d-orthogonal with respect to a d-dimensional vector of functionals Γ =
t(Γ0, Γ1, . . . ,

Γd−1) if and only if it is also d-orthogonal with respect to the vector U =
t(u0, u1, . . . , ud−1), where the functionals

u0, u1, . . . , ud−1 are the d first elements of the dual sequence {un}n≥0 associated to the PS{Pn}n≥0 and defined by ⟨ur , Pn⟩ =

δn,r; r ≥ 0, n ≥ 0. Consequently, for the considered polynomials in this subsection, we determine the d first elements of
the corresponding dual sequence to derive the d-dimensional vector of functionals ensuring the d-orthogonality of these
polynomials. That leads to the following.

Proposition 3.8. The Little q-Laguerre type polynomials defined by (2.7) are d-orthogonal with respect to the d-dimensional
vector of functionals U =

t(u0, u1, . . . , ud−1) given by

⟨ur , xn⟩ = ((−1)nq(
n
2 ))s−d(b1, . . . , bs; q)n

[
n
r

]
q
(−1)rq(

r
2 ), n ≥ r. (3.6)

Proof. For n ≥ r , according to the inversion formula given by (3.5), we have

⟨ur , xn⟩ = ((−1)nq(
n
2 ))s−d(b1, . . . , bs; q)n

n−
k=0

[
n
k

]
q
(−1)kq


k
2


⟨ur , Pk(x; (bs)|q)⟩.

That, by virtue of the definition of a dual sequence, leads to (3.6). �

Next, we consider two particular cases.

3.5.1. Little q-Laguerre PS (d = s = 1)
By letting d = s = 1 and b1 = aq in (3.6), we obtain

⟨u0, xn⟩ = (aq; q)n =
(aq; q)∞

(aqn+1; q)∞
= (aq; q)∞

∞−
k=0

(aq)k

(q; q)k
δqk [x

n
].

Thus, we rediscover the well-known linear functional ensuring the orthogonality of the Little q-Laguerre PS given by
[41, p. 107]:

∞−
k=0

(aq)k

(q; q)k
Pn(qk; aq|q)Pm(qk; aq|q) =

(aq)n

(aq; q)∞

(q; q)n
(aq; q)n

δnm.

3.5.2. Little q-Laguerre 2-OPS (d = s = 2)
For d = s = 2, Proposition 3.8 is reduced to the following.

Corollary 3.9. The Little q-Laguerre type polynomials defined by (2.7) with d = s = 2 are 2-orthogonal with respect to the 2-
dimensional vector of functionals U =

t(u0, u1) given by
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⟨ur , xn⟩ =

∞−
k=0

ϕr,2(k; b1, b2)δqk [x
n
], r = 0, 1, (3.7)

where

ϕ0,2(k; b1, b2) = (b1, b2; q)∞
bk2

(q; q)k
V


b2
b1


k (0; q),

ϕ1,2(k; b1, b2) =
(b1, b2; q)∞

(q − 1)
bk2

(q; q)k


V


b2
b1


k (0; q) −

1 − qk

b2
V


b2
b1


k−1 (0; q)


,

with V a
k (x; q) the Al-Salam-Carlitz II polynomials defined by [41, p. 114]:

V a
k (x; q) =2 φ0


q−k, x

−

 q; qk

a


. (3.8)

Proof. According to (3.6) with d = s = 2, we deduce

⟨ur , xn⟩ = (−1)rq(
r
2 )

(qr+1
; q)∞(b1, b2; q)∞

(q; q)∞

(qn−r+1
; q)∞

(qn+1; q)∞(b1qn, b2qn; q)∞
, r = 0, 1. (3.9)

On the other hand, the polynomials defined by (3.8) are generated by [41, p. 115]:

(xt; q)∞
(t, at; q)∞

=

∞−
n=0

an

(q; q)n
V (a)
n (x; q)tn.

Replacing in this identity x = 0, t = b1qn and a =
b2
b1
, we obtain

1
(b1qn, b2qn; q)∞

=

∞−
k=0

bk2
(q; q)k

V
(
b2
b1

)

k (0; q)qnk. (3.10)

We consider the following two cases.
Case 1. r = 0: For this case (3.9) is reduced to

⟨u0, xn⟩ = (b1, b2; q)∞
1

(b1qn, b2qn; q)∞
. (3.11)

Substituting (3.10) in (3.11), we get the desired result.
Case 2. r = 1: For this case (3.9) becomes

⟨u1, xn⟩ = −
1 − qn

1 − q
(b1, b2; q)∞

(b1qn, b2qn; q)∞
.

That, by virtue of (3.10), leads to (3.7). �

4. An orthogonal polynomial set

From Corollary 2.4, the resulting orthogonal polynomials are the Little q-Laguerre polynomials defined by (1.2) and the
polynomials given by (2.8), which seems to be new. Throughout the literature several properties associatedwith the Little q-
Laguerre polynomials are scattered (see, for instance, [41]). Next,we establish a recurrence relation and adifference equation
for the polynomials given by (2.8).

4.1. A recurrence relation

Proposition 4.1. The orthogonal polynomials defined by (2.8) verify the following recurrence relation:

xPn(x|q) = q2n+1Pn+1(x|q) + qn(1 − qn(1 + q))Pn(x|q) + qn(qn − 1)Pn−1(x|q). (4.1)

Proof. According to (2.3) with d = 1, we have

xPn(x|q) = α2,1(n)Pn+1(x|q) + α1,1(n)Pn(x|q) + α0,1(n)Pn−1(x|q).

From (2.4) with (d, s) = (1, 0), we get α2,1(n) = q2n+1.
Equalizing the coefficients of xn+1 in (2.2) with (d, s) = (1, 0), we obtain α0,1(n) = qn(qn − 1).
That, by virtue of (2.2) with (d, s) = (1, 0) and x = 1, leads to α1,1(n) = qn(1 − qn(1 + q)). �
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Remark 4.2. From the recurrence relation given by (4.1) and Favard Theorem [36], it is easy to prove that the obtained
orthogonal polynomials defined by (2.8) are quasi-definite orthogonal polynomials.

4.2. Difference equation

Proposition 4.3. The orthogonal polynomials defined by (2.8) are Lq-classical. Moreover they satisfy the following difference
equation:

αn(x)L2qPn(x|q) − βn(x)LqPn(x|q) − q−4n(1 − q−n)Pn(x|q) = 0, (4.2)

where

αn(x) = (1 − q−n)2
[
q−n+1(2 − q−n−1

− q−n)

1 − q−n
x + (1 − q−n−1)


q−1

q−n − 1
− 1


− q−1

]
+ q−1(2 − q−n−1

− q−n)(2 − q−n
− q−n+1), (4.3)

βn(x) = q−2n(1 − q−n)

[
−q−n+1(2 − q−n−1

− q−n)

1 − qn
x + (1 − q−n)(1 + q) − q−n−1

−
(1 − q−n−1)(1 − q−n+1

− q)
q−n − 1

]
.

Proof. According to Proposition 4.1, we have

Pn(x|q) = [q−n+1x + qn−1(1 + q) − 1]q−nPn−1(x|q) − q−1(1 − q−n+1)Pn−2(x|q). (4.4)

Substituting (3.2) with (d, s, k) = (1, 0, 1) in this identity, we obtain

LqPn(x|q) = [q−n+1x + qn−2(1 + q) − 1]
1 − q−n

1 − qn−1
LqPn−1(x|q) + q−1(1 − q−n)LqPn−2(x|q). (4.5)

Letting Lq operate on both sides of (4.4) gives

LqPn(x|q) =

q−n+2x + qn−1(1 + q) − 1


q−nLqPn−1(x|q) + q−2n+1Pn−1(x|q) − q−1(1 − q−n+1)LqPn−2(x|q). (4.6)

Multiply (4.5) and (4.6) by, respectively, (1 − q−n+1) and (1 − q−n) and add

(2 − q−n
+ q−n+1)LqPn(x|q) = (1 − q−n)2LqPn−1(x|q) + q−2n+1(1 − q−n)Pn−1(x|q). (4.7)

On the other hand, a combination of (4.5) and (4.6) leads to

0 =

[
q−n+1


2 − q−n

− q−n+1

1 − qn−1


x +


(1 − q−n)


q−1

q−n+1 − 1
− 1


− q−1

]
LqPn−1(x|q)

− q−2n+1Pn−1(x|q) + q−1(2 − q−n
− q−n+1)LqPn−2(x|q). (4.8)

Shifting n −→ n + 1 in (4.8), we get

q−2n−1Pn(x|q) =

[
q−n


2 − q−n−1

− q−n

1 − qn


x + (1 − q−n−1)


q−1

q−n − 1
− 1


− q−1

]
LqPn(x|q)

+ q−1(2 − q−n−1
− q−n)LqPn−1(x|q). (4.9)

Multiply (4.7) and (4.9) by, respectively, q−1(2 − q−n−1
− q−n) and −(1 − q−n)2 and add

− q−2n−1(1 − q−n)2Pn(x|q) = q−2n(1 − q−n)(2 − q−n−1
− q−n)Pn−1(x|q) − αn


x
q


LqPn(x|q), (4.10)

where αn is given by (4.3).
Now, letting Lq operate on both sides of (4.10), we obtain

0 = q−2n(1 − q−n)(2 − q−n−1
− q−n)LqPn−1(x|q) − αn(x)L2qPn(x|q) + q−2n(1 − q−n)

× [2 + q − q−n(q−1
+ 1 + q)]LqPn(x|q). (4.11)

Multiply (4.11) and (4.9) by, respectively, q−1 and q−2n(q−n
− 1) and add, we obtain (4.2). �
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5. Concluding remarks

Manypapers dealingwith the d-orthogonality notion, generalized some known characterization theorems for orthogonal
polynomials to the d-orthogonality (see, [15,18,19,23,24,33,32,31]), especially, for continuous and discrete cases. But, the
basic casewas considered only in [35], who give the d-orthogonal polynomials analogous to q-Al-Salam–Carlitz’s ones, using
for this purpose a suitable generating function. In this paper, we use another technique based on the basic hypergeometric
representation of the considered polynomials to state a characterization theorem dealing with q-polynomials analogous
to the Little q-Laguerre ones. The obtained d-orthogonal polynomials can be viewed as a q-extension of the d-orthogonal
polynomials of Laguerre type [19], since we rediscovery some properties of these polynomials for the limiting case q = 1.
We summarize this point of view in the following scheme.
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