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a b s t r a c t

This is the first in a series of papers dealing with generalized hypergeometric d-orthogonal
polynomials extending the polynomial families in the Askey-scheme. In this paper, we
give a characterization theorem to introduce new examples of generalized hypergeometric
d-orthogonal polynomials to be studied in the forthcoming works. For d = 1, we obtain
an unification of some known characterization theorems in the orthogonal polynomials
theory.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The generalized hypergeometric functions pFq(z) with p numerator and q denominator parameters are defined by ([1],
for instance)

pFq

(
(ap)
(bq)
; z
)
:=

∞∑
m=0

[ap]m
[bq]m

zm

m!
, (1.1)

where (ap) designates the set
{
a1, a2, . . . , ap

}
, [ar ]p =

∏r
i=1(ai)p and (a)p =

Γ (a+p)
Γ (a) . z being a variable in C the set of

complex numbers.
A generalized hypergeometric function pFq(z) is reduced to a polynomial of degree n called generalized hypergeometric

polynomial ifm numerator parameters take the forme∆(m,−n), where∆(r, α) abbreviates the array of the r parameters:
α+j−1
r , j = 1, . . . , r .
Around 1980 the Askey-scheme of generalized hypergeometric polynomials [2] becomes widely known as a convenient

graphical way to see the hierarchy of hypergeometric orthogonal polynomials. The Askey-scheme soon got a q-analogue,
which was made possible by the discovery of the Askey–Wilson polynomials. Recently, other similar tables to the Askey-
scheme [3,4] were coming after the study of the so-called Krall-type orthogonal polynomials (perturbations of linear
functional via the addition of Dirac delta functions) and the multiple orthogonal polynomials. On other hand, in the last
years, a generalization of the notion of orthogonality, the so-called d-orthogonality, have been intensively studied. It is
then natural to look for a similar table to the Askey-scheme in the context of the d-orthogonality notion. This notion was
introduced in [5] and completed in [6] as follows. Let P be the vector space of polynomials with coefficients in C and let
P ′ be its algebraic dual. We denote by 〈u, f 〉 the effect of the functional u ∈ P ′ on the polynomial f ∈ P . A polynomial
sequence {Pn}n≥0 is called a polynomial set (PS, for shorter) if and only if deg Pn = n for all non-negative integer n. Let d be a
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positive integer. We say that the PS {Pn}n≥0 is d-orthogonal (d-OPS, for shorter) with respect to the d-dimensional functional
vector Γ = t(Γ0,Γ1, . . . ,Γd−1) if it satisfies the following orthogonality relations:{

〈Γk, PrPn〉 = 0, r > nd+ k, n ∈ N = {0, 1, 2, . . .},
〈Γk, PnPnd+k〉 6= 0, n ∈ N, (1.2)

for each integer k belonging to {0, 1, . . . , d− 1}.
In the finite case where Pn is defined for n = 0, . . . , n0; n0 ∈ N; the polynomial sequence {Pn}

n=n0
n=0 is a PS if deg Pn = n

for n = 0, . . . , n0. Furthermore, we say that the PS {Pn}
n=n0
n=0 is a d-OPS with respect to the d-dimensional functional vector

Γ = t(Γ0,Γ1, . . . ,Γd−1) if it satisfies (1.2) with n = 0, . . . , n0.
For d = 1, the d-orthogonality is reduced to the orthogonality in the general sense defined in [7,8]. The d-orthogonality

conditions (1.2) are equivalent to the fact that the polynomials Pn, n ≥ 0, satisfy a (d+ 1)-order recurrence relation of the
type [6]:

xPn(x) =
d+1∑
k=0

αk,d(n)Pn−d+k(x), n ∈ N, (1.3)

with the regularity conditions αd+1,d(n)α0,d(n) 6= 0, n ≥ d, and the convention, P−n = 0, n ≥ 1.
This result, for d = 1, is reduced to the so-called Favard Theorem [8].
The d-orthogonality notion seems to appear rather naturally in some approximation problems, in particular in

simultaneous rational approximation of several functions defined by their series expansions. This new concept of
orthogonality appears as a special case of the general multiple orthogonality (see, for instance, [9–16]). This generalization
has receivedmuch attention these past years. That,many polynomials generalizing known orthogonal oneswere introduced
by solving certain characterization problems in the context of the d-orthogonality (see, for instance, [17–29]).
In this work, our interest is to give a characterization theorem for classes of generalized hypergeometric polynomials

containing, as particular cases, all polynomials belonging to the Askey-scheme. That allows us:

(i) To introduce new examples of generalized hypergeometric d-orthogonal polynomials which are useful to construct
similar table to the Askey-scheme in the context of d-orthogonality.

(ii) To derive new characterization theorems, based on generalized hypergeometric representations, for some known
d-orthogonal polynomials as Gould–Hopper polynomials [30], Humbert polynomials [31], a generalization of Laguerre
polynomials studied in [22] and a generalization of Charlier polynomials studied in [19]. Notice that the known
characterization theorems for these polynomial sets are related to special types of generating functions.

(iii) To unify many known characterization theorems for generalized hypergeometric orthogonal polynomials. That
concerns, for instance, Hermite, Laguerre, Jacobi, Bessel, Charlier and Meixner polynomials.

(iv) To state, as for as we known, for the first time characterization theorems for Wilson, Racah, Hahn, Continuous Hahn,
Dual Hahn, Continuous dual Hahn, Meixner–Pollaczek and Krawtchouk polynomials.

2. Main result

2.1. A characterization theorem

In the sequel, we use the following notations:

• m, l, p, q ∈ N, such thatm ≥ 2.
• c, µ, ai, bj ∈ C; i = 1, . . . , p, j = 1, . . . , q; such that ai 6= bj and µ 6∈ −N.
• N(x) =

∏p
i=1(x+ ai), D(x) =

∏q
j=1(x+ bj).

• λi(x), i = 1, . . . , s being s polynomials of degree 1 and {λi(x), i = 1, . . . , s} being a s-separable product set,

i.e. there exists a monic polynomial π of degree s such that:
∏s
i=1 (λi(x)+ r) = λ(x)+ π(r)with λ(x) =

∏s
i=1 λi(x).

Let us consider the following classes of generalized hypergeometric PSs.
Class A1: The set of PS {Pn}

n=n0
n=0 or {Pn}

∞

n=0 defined by:

Pn(x;m, (ap), (bq)) = xn m+pFq

(
∆(m,−n), (ap)

(bq)
;

1
xm

)
,

Class A2: The set of PS {Pn}
n=n0
n=0 or {Pn}

∞

n=0 defined by:

Pµn (x; l, (ap), (bq)) = l+p+1Fq

(
−n,∆(l, n+ µ), (ap)

(bq)
; x
)
,

Class A3: The set of PS {Pn}
n=n0
n=0 or {Pn}

∞

n=0 defined by:

Pµn (λ(x); l, c, (ap), (bq)) = l+s+p+1Fq

(
−n,∆(l, n+ µ), (λs(x)), (ap)

(bq)
;
1
c

)
,
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Class B: The set of PS {Pn}
n=n0
n=0 or {Pn}

∞

n=0 defined by:

Pµn (x;m, (ap), (bq)) = (µ)n x
n
m+pFm+q−1

(
∆(m,−n), (ap)

∆(m− 1, 1− µ− n), (bq)
;
1
xm

)
,

Class C: The set of PS {Pn}
n=n0
n=0 or {Pn}

∞

n=0 defined by:

Pn(λ(x); c,m, (ap), (bq)) = [λs(x)]n m+pFsm+q

(
∆ (m,−n) , (ap)
∆ (m, 1− (λs(x))− n) , (bq)

;
1
c

)
.

PutA = A1 ∪A2 ∪A3. Every PS in the Askey-scheme belongs to the classA (see Table 2). The polynomials defined by
the classB are reduced to the Gegenbauer ones [32] form = 2 and p = q = 0. The polynomials defined by the class C are
reduced to the Charlier ones [32] form = s = 1 and p = q = 0.
Our interest here is to solve the following characterization problem:
P: Find all d-OPSs inA ∪B ∪ C.
Such a characterization takes into account the fact that PS which are obtainable from one there by a linear change of

variable are assumed equivalent.
A solution of this problem is given by the following.

Theorem 2.1. The only d-OPSs inA ∪B ∪ C are given by Table 1 with the following conditions:

(1) bi 6∈ −N, i = 1, . . . , q.
(2) µ+ d(1− bi) 6∈ −N, i = 1, . . . , q.
(3)
∑d+1
i=1 (λi(0)− bi) 6∈ N.

(4) c = 1 and µ = − d+12 − (σ + σ
′)+

∑d+2
k=1 bk, where λ(y) = (y+ σ)(−y+ σ

′).
(5) b1 = −n0; n0 ∈ N; bi 6= 0,−1,−2, . . . ,−n0 for i = 2, . . . , q, and

n0 ≥ max[d+ 2, q+max(l, d), p+ s+max(l, d)] + 1. (2.1)

(6) µ+ d(1− bi) 6= 0,−1, . . . ,−n0 + d+ 1 for i = 1, . . . , q.

Remark 2.2. 1. The obtained d-orthogonal polynomials belonging to the classesA1∪B∪C andA2 with q = d and l = 0 or
dwere deeply investigated in [22,33,34]. They showed that these PSs have analogous properties of the one’s satisfied by
their corresponding PSs in the Askey scheme. That is why the authors use the appellations: PS of Laguerre type, Charlier
type, Jacobi type and so on. Here, for the sake of brevity in Table 1, we use instead: d-Laguerre, d-Charlier, d-Jacobi and so
on. Then, for convenience, we do so for the new d-OPSs. That will be justified by the type of the corresponding properties
to be established in a forthcoming work.
More details concerning the three different d-OPSs generalizing Charlier polynomials may be found in [18,33].

2. For some PSs in Table 1, we add the conditions d ≥ 2 since they collapse for d = 1. The corresponding appellations were
suggested by the limit cases.

3. Among the d-OPSs listed in Table 1, the known ones are also solutions of other characterization problems related to
some special types of generating functions. That concerns Gould–Hopper polynomials or d-Hermite [26,21], Humbert or
d-Gegenbauer polynomials [21], d-Laguerre [35,22,20] and d-Charlier I [18].

2.2. Proof of Theorem 2.1

To prove Theorem 2.1, we need the following four lemmas.

Lemma 2.3. Let l′ ∈ N such that n ≥ l′, l ≤ l′ and r = 0, 1, . . . , l′ + 1. For k = 1, 2, . . . , l′ + 1 and l 6= 0, we have

(−n)k−1 =
(−n)l′

(−n− 1+ k)l′+1−k
,

(n+ µ)l(k−1) =
(n+ µ− l′ + lk)l′−l(n+ µ− l′)lk

(n+ µ− l′)l′
,

(−n+ d′ − r)k =
(−n− 1+ k)l′+1−r (−n− r + l′)r

(−n− 1+ k)l′+1−k
,

(n− l′ + r + µ)lk =
(n+ µ+ lk− l′)r (n− l′ + µ)kl

(n− l′ + µ)r
.

(2.2)
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Table 1
d-OPSs inA ∪B ∪ C.

Class p m l s q Conditions Polynomials

A1 0 d+ 1 0 0 0 Gould–Hopper

0 1 0 0 d (1) d-Laguerre
0 1 0 0 d (5) Finite d-Laguerre

A2 0 1 d 0 0 d-Bessel
0 1 d 0 1, . . . , d− 1 (1), (2), d ≥ 2 d-Bessel–Jacobi
0 1 d 0 1, . . . , d− 1 (5), (6), d ≥ 2 Finite d-Bessel–Jacobi
0 1 d 0 d (1), (2) d-Jacobi
0 1 d 0 d (5), (6) Finite d-Jacobi

0 1 0 d 0 d-Charlier II
0 1 0 d 1, . . . , d− 1 (1), d ≥ 2 d-Charlier–Meixner
0 1 0 d 1, . . . , d− 1 (5), d ≥ 2 Finite d-Charlier–Meixner
0 1 0 1, . . . , d− 1 d (1), d ≥ 2 d-Laguerre–Meixner
0 1 0 1, . . . , d− 1 d (5), d ≥ 2 Finite d-Laguerre–Meixner
0 1 0 d d (1), c 6= 1 d-Meixner
0 1 0 d d (5), c 6= 1 d-Krawtchouk

A3 0 1 0 d d (1), c 6= 1 d-Meixner–Pollaczek
0 1 0 d+ 1 d+ 1 (1), (3), c = 1 d-Continuous dual Hahn
0 1 0 d+ 1 d+ 1 (3), (5), c = 1 d-Dual Hahn
0 1 d 1 d+ 1 (1), c = 1 d-Continuous Hahn
0 1 d 1 d+ 1 (5), (6), c = 1 d-Hahn
0 1 d 2 d+ 2 (1), (4) d-Wilson
0 1 d 2 d+ 2 (4), (5), (6) d-Racah

B 0 d+ 1 0 0 0 Humbert

0 d 0 1 0 d-Charlier I
C 0 m 0 d

m 0 d
m ∈ N \ {0, 1}, d ≥ 2 d-Charlier III

For k ≥ l′ + 1, we have

(−n)k−1 = (−n)l′ (−n+ l′)k−l′−1,

(n+ µ)l(k−1) = (n+ µ) (n+ 1+ µ)lk−l′−1(n+ µ+ lk− l′)l′−l,

(−n+ l′ − r)k = (−n+ l′ − r)r (−n+ l′)k−1−l′ (−n− 1+ k)l′+1−r ,

(n− l′ + r + µ)lk = (n− l′ + r + µ)l′+1−r(n+ 1+ µ)lk−l′−1 (n+ µ+ lk− l′)r ,

(n+ µ− l′)l′(n+ µ) = (n− l′ + µ)r (n− l′ + r + µ)l′+1−r .

(2.3)

Lemma 2.4. Let D and π be two polynomials such that:
deg [cxD(x− 1)− π(x)(x− n− 1)(lx+ n− l+ µ)l] ≤ l+ 1, n ≥ l. Then, for k ∈ N∗ = N \ {0}, there exist l+ 2 complex

numbers α′r,l(n); r = 0, 1, . . . , l+ 1; such that:

ck(−n)k(n+ µ)l(k−1)D(k− 1)− π(k)(−n)k(n+ µ)lk =
l+1∑
r=0

α′r,l(n)(−n+ l− r)k (n− l+ r + µ)lk, (2.4)

l+1∑
r=0

α′r,l(n) = 0. (2.5)

Proof. Let n ≥ l. Since deg [cxD(x− 1)− π(x)(x− n− 1)(lx+ n− l+ µ)l] ≤ l + 1 and the set { (n+µ−l)l (−n+l−r)r
(n+µ−l)r (−n)l

(−n − 1 + x)l+1−r(n + µ + lx − l)r}0≤r≤l+1 is a basis in Cl+1[X] the vector space of polynomials with coefficients in C
and of degree less or equal to (l+ 1), then there exist l+ 2 complex numbers α′r,l(n); r = 0, 1, . . . , l+ 1; such that:

cxD(x− 1)− π(x)(x− n− 1)(lx+ n− l+ µ)l

=

l+1∑
r=0

α′r,l(n)
(n+ µ− l)l (−n+ l− r)r

(n+ µ− l)r (−n)l
(−n− 1+ x)l+1−r(n+ µ+ lx− l)r , x ∈ C. (2.6)

Multiplying both side of the identity (2.6) with x = k by

ε(n, l, µ, k) =


(n− l+ µ)kl

(k− n− 1)l+1−k
, 1 ≤ k ≤ l+ 1,

(−n+ l)k−1−l (n+ 1+ µ)l(k−1)−1, k ≥ l+ 1,
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and using Lemma 2.3 with l′ = l, we deduce (2.4).
Replacing x = 0 in (2.6), we obtain (2.5). �

Now, we use Lemma 2.4 to state the following.

Lemma 2.5. Let B = {Bk}k≥0 be the basis in P given by:

B0(x) = 1 and Bk(x) =
k−1∏
r=0

(x+ π(r)) , k = 1, 2, . . . , (2.7)

where π is a polynomial such that π(0) = 0.
Let {Pn}n≥0 be a PS of the form

Pn(x) =
n∑
k=0

(−n)k (n+ µ)lk
ck k!

[ap]k
[bq]k

Bk(x). (2.8)

The only d-OPSs of the form (2.8) arise for l = d, p = 0, degπ ≤ 2, and
q ≤ d if π ≡ 0,
q = d+ 1 and c = σdd if π(x) = σ x (σ 6= 0),
q = d+ 2, c = σ2 dd and µ =

∑d+2
j=1 bj −

d+1
2 −

σ1
σ2
if π(x) = σ2x2 + σ1 x, σ2 6= 0.

Proof. This proof is divided into three steeps. The first one is devoted to show that l = d, which will be used in the
second step to prove that p = 0. Finally, in the third step, we use the obtained results to show that degπ ≤ 2 and we
determinate q.
Since {Pn}n≥0 is d-OPS then it satisfies a (d+1)-order recurrence relation of type (1.3). Hence {Pn}n≥0 verifies the following

recurrence relation

xPn(x) =
d′+1∑
j=0

α′j(n)Pn−d′+j(x), (2.9)

where d′ = max(d, l) and

α′j(n) = αj,d(n), d ≥ l, j = 0, 1, . . . , d+ 1,

α′j+l−d(n) = αj,d(n), d < l, j = 0, 1, . . . , d+ 1,

α′j(n) = 0, d < l, j = 0, . . . , l− 1− d.

(2.10)

Replacing (2.8) in (2.9) and using the fact thatBk+1(x) = (x+ π(k))Bk(x), we obtain:
n+1∑
k=1

[
ck(−n)k−1(n+ µ)l(k−1)

D(k− 1)
N(k− 1)

− (−n)k(n+ µ)lkπ(k)
]
[ap]k
ckk![bq]k

Bk(x)

=

n+1∑
k=0

d′+1∑
j=0

α′j(n)
(−n+ d′ − j)k(n− d′ + j+ µ)lk

ckk!
[ap]k
[bq]k

Bk(x).

By identification we get, for n ≥ d′,

d′+1∑
j=0

α′j(n) = 0 (2.11)

d′+1∑
j=0

α′j(n)(−n+ d
′
− j)k(n− d′ + j+ µ)lk

= ck(−n)k−1 (n+ µ)l(k−1)
D(k− 1)
N(k− 1)

− π(k)(−n)k (n+ µ)lk, 1 ≤ k ≤ n+ 1. (2.12)

Substituting respectively in (2.12) the identities (2.2) and (2.3)with l′ = d′. Multiplying both side of the obtained expressions
by

ε(n, k, d′, µ) =


(−n+ k− 1)d′+1−k
(n− d′ + µ)kl

, 1 ≤ k ≤ d′ + 1

1
(−n+ d′)k−d′−1 (n+ 1+ µ)lk−d′−1

, d′ + 1 < k.
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Then, we get, for 1 ≤ k ≤ n+ 1,

Qn,d′,µ(k) = ck(n+ µ+ lk− d′)d′−l
D(k− 1)
N(k− 1)

− π(k)(n+ µ+ lk− d′)d′(−n− 1+ k), (2.13)

where Qn,d′,µ is the polynomial defined by

Qn,d′,µ(x) =
d′+1∑
j=0

α′j(n)
(−n+ d′ − j)j(n− d′ + µ)d′

(−n)d′(n− d′ + µ)j
(−n− 1+ x)d′+1−j(n+ µ+ lx− d′)j. (2.14)

Using (2.13) and (2.14), it is easy to verify that Qn,d′µ is a polynomial in x of degree less or equal to d′+ 1 and Qn,d′,µ(0) = 0.
Then the identity (2.13) can be rewritten under the form

c
D(k− 1)
N(k− 1)

(n+ µ+ lk− d′)d′−l =
π(k)
k

(−n− 1+ k) (n+ µ+ lk− d′)d′ +
Qn,d′,µ(k)
k

. (2.15)

Put

Rn,d′,µ(x) = c(n+ µ+ lx− d′)d′−lD(x− 1)− N(x− 1)
[
π(x)
x

(−n− 1+ x) (n+ µ+ lx− d′)d′ +
Qn,d′,µ(x)
x

]
.

Then Rn,d′,µ is a polynomial in x of degree less or equal to max(q+ d′ − l, p+ degπ + d′, p+ d′), not depending on n.
Let n ≥ max(q+d′−l, p+degπ+d′, p+d′). From (2.15), we deduce that Rn,d′,µ has n+1 roots, that are k = 1, . . . , n+1.

Using (2.1) in the finite case and n ≥ d′ in the general case, we deduce that Rn,d′,µ ≡ 0 and (2.15) is valid for all x in C.
Substituting k = xn = −

n+µ−d′

l in (2.15), we obtain

α′0(n)(−n− 1+ xn)d′+1 (n− d
′
+ µ)d′ = 0, if l < d (2.16)

α′0(n)(−n− 1+ xn)l+1 (n− l+ µ)l = cxn(−n)l
D(xn − 1)
N(xn − 1)

, if l ≥ d. (2.17)

We consider the following two cases:
Case 1: l < d. In this case d = d′. From the regularity conditions of the recurrence relation given by (1.3) and (2.9), we have
α′0(n)(−n− 1+ xn)d+1 (n− d+ µ)d+1 6= 0, which is in contradiction with (2.16).

Case 2: l > d. Using (2.10) and (2.17), we obtain cxn(−n)l D(xn−1)N(xn−1)
= 0, n ≥ l. Therefore D(xn − 1) = 0, n ≥ l. Then

the polynomial D have n − l + 1 roots. That, by virtue of (2.1) in the finite case and n ≥ l for the general case, leads to a
contradiction with degD = q. Hence l = d.
By letting l = d in (2.17), it is easy to show that, for n ≥ d, D(xn − 1) 6= 0, which leads to µ + d(1 − bj) 6=

0,−1, . . . ,−n0 + d+ 1 for the finite case, and µ+ d(1− bj) 6∈ −N for the general case.
To show that p = 0, we put l = d in the identity (2.15). We deduce that DN is a polynomial. But N and D are coprime.

From that N = 1. Hence p = 0, which we suppose in the sequel.
Next, we prove that degπ ≤ 2 and we determinate q. Let us consider the two following cases.

Case 1: π ≡ 0. By comparing the degree of polynomials in both sides of (2.15) with l = d and p = 0, we deduce
degD = q ≤ d.
Case 2:π 6= 0. By comparing the degree of polynomials in both sides of (2.15)with l = d and p = 0,wededuce q = d+degπ .
Let π(x) =

∑q−d
j=1 σjx

j. Replacing l = d and p = 0 in (2.15), we obtain

Qn,d,µ(k) =
[
1−

dd

c
σq−d

]
kq+1 +

[
q∑
j=1

bj − q−
dd

c

(
σq−d

[
µ−

d+ 3
2

]
+ σq−d−1

)]
kq

+ ξ(n)kq−1 + Sn,d,µ(k), (2.18)

where Sn,d,µ is a polynomial of degree less then q − 2, and ξ(x) = σq−d
(d+1)q
2c x

2
+ φ(d)x + ψ(d), ψ and φ being two

polynomials in d.
Using (2.1) in the finite case and n ≥ d in the general case, we deduce that there exists an integer n satisfying ξ(n) 6= 0.

That leads to degQn,d,µ ≥ q−1. However, according to (2.14), we have degQn,d,µ ≤ d+1. Consequently degπ = q−d ≤ 2.
Furthermore, if degπ = 1, i.e. π(x) = σ1 x, (σ1 6= 0), then the identity (2.18) becomes

Qn,d,µ(k) =
[
1−

dd

c
σ1

]
kd+2 +

[
d+1∑
j=1

bj − d− 1−
dd

c
σ1

[
µ−

d+ 3
2

]]
kd+1 + ξ(n)kd + Sn,d,µ(k).

Taking into account the fact that degQn,d,µ ≤ d+ 1, we deduce that c = ddσ1.
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In the case when degπ = 2, i.e. π(x) = σ2x2 + σ1x, σ2 6= 0, the identity (2.18) becomes

Qn,d,µ(k) =
[
1−

dd

c
σ2

]
kd+3 +

[
d+2∑
j=1

bj − d− 2−
dd

c

(
σ2

[
µ−

d+ 3
2

]
+ σ1

)]
kd+2 + ξ(n)kd+1 + Sn,d,µ(k).

However degQn,d,µ ≤ d+ 1, then c = ddσ2 and µ =
∑d+2
j=1 bj −

d+1
2 −

σ1
σ2
.

To prove the converse, we show next that the PS {Pn}n≥0 verifies a (d+ 1)-recurrence relation of type (1.3).
By using the explicit expression of Pn given by (2.8), we get

xPn(x) =
n∑
k=1

[
ck(−n)k−1 (n+ µ)d(k−1) D(k− 1)− π(k) (−n)k (n+ µ)dk

]
A(k)Bk(x),

where A(k) is defined by A(k) = 1
ckk!

∏k−1
r=0

1
D(r) for k 6= 0, and A(0) = 1. That by virtue of Lemma 2.4, leads to

xPn(x) =
n+1∑
k=1

d+1∑
r=0

α′r,d(n) (−n+ d− r)k (n− d+ r + µ)kdA(k)Bk(x)

=

d+1∑
r=0

α′r,d(n)
n+1∑
k=0

[(−n+ d− r)k(n− d+ r + µ)kdA(k)Bk(x)]

=

d+1∑
r=0

α′r,d(n)Pn−d+r(x). (2.19)

On the other hand, Putting, respectively, k = 1− n+µ
d and k = n+ 1 in (2.6) with l = d, we obtain

α′0,d(n) =
−c(−n)d

d(n− l+ 1+ µ)d−1

D
(
−
n+µ
d

)(
−
(d+1)n+µ

d

)
d+1

and α′d+1,d(n) =
−c(n+ µ)

((d+ 1)n+ µ)d+1
D(n). (2.20)

Moreover α′0,d(n)α
′

d+1,d(n) 6= 0; n ≥ d; since bj, µ, µ+ d(1− bj) 6= 0,−1,−2, . . .. Then, according to (1.3), the PS {Pn}n≥0
is a d-OPS. �

Lemma 2.6. Every PS belonging toA2 ∪A3 is of the type defined by (2.8).

Proof. Let {Pn}n≥0 be a PS belonging to the classA2. Using (1.1), we obtain

Pn(x) =
n∑
k=0

(−n)k (n+ µ)lk
llk k!

[ap]k
[bq]k

xk.

Then {Pn}n≥0 verifies (2.8) with c = ll andBk(x) = xk, (π ≡ 0).
Let {Pn}n≥0 be a PS belonging to the classA3. Using (1.1), we obtain

Pn(λ(x)) =
n∑
k=0

(−n)k (n+ µ)lk
(cl)lk k!

[ap]k
[bq]k
[λs(x)]k. (2.21)

Since {λi(x), i = 1, . . . , s} is a s-separable product set then there exists a monic polynomial π of degree s such that:

[λs(x)]k =
k−1∏
r=0

(λ(x)+ π(r)) = Bk(λ(x)),

where λ(x) =
∏s
i=1 λi(x) and {Bk}k≥0 is the basis given by (2.7).

Replacing in (2.21), llc by c and [λs(x)]k byBk(λ(x)), we deduce that {Pn}n≥0 is a PS of the form (2.8). �

Proof of Theorem 2.1. The d-OPSs in the classA1 ∪ C were characterized in [33], where they showed that:

• The only d-OPSs inA1 arise for p = q = 0 andm = d+ 1.
• The only d-OPSs in C arise for p = q = 0 and d = sm.

The d-OPSs in the classB were characterized in [34], where they showed that the only d-OPSs inB arise for p = q = 0
andm = d+ 1.
For the class A2 ∪ A3 with l = 0, the d-OPSs were characterized in [17], where they showed that the only d-OPSs in

A2 ∪A3 with l = 0 arise for p = 0 in the following cases.
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Table 2
OPSs inA (also inA ∪B ∪ C).

Class p m l s q Conditions Polynomials

A1 0 2 × × 0 Hermite

0 × 0 × 1 b1 6∈ −N Laguerre
0 × 0 × 1 b1 ∈ −N Finite Laguerre

A2 0 × 1 × 1 b1, µ+ 1− b1 6∈ −N Jacobi
0 × 1 × 1 b1 ∈ −N Finite Jacobi
0 × 1 × 0 Bessel

0 × 0 1 0 c 6= 1 Charlier
0 × 0 1 1 b1 6∈ −N, c 6= 1 Meixner
0 × 0 1 1 b1 ∈ −N, c 6= 1 Krawtchouk
0 × 0 1 1 b1 = 2λ 6∈ −N, c 6= 1 Meixner–Pollaczek
0 × 0 2 2 b1, b2 6∈ −N, c = 1 Continuous dual Hahn

A3 0 × 0 2 2 b1 ∈ −N, c = 1 Dual Hahn
0 × 1 1 2 b1, 6∈ −N, c = 1 Continuous Hahn
0 × 1 1 2 b1, b2, µ+ 1− b1 6∈ −N ∈ −N, c = 1 Hahn
0 × 1 2 3 bi, µ+ 1− bi 6∈ −N, i = 1, 2, 3, c = 1 Wilson
0 × 1 2 3 b1 ∈ −N, c = 1 Racah

Case 1: s < q = d.

Case 2: q < s = d.

Case 3: q = s = d, c 6= ad.

Case 4: q = s = d+ 1, c = ad+1 and
ad
c − bd 6∈ N.

It follows that, to prove Theorem 2.1, it is sufficient to characterize all d-OPSs in the classA2 ∪A3 with l 6= 0.
Using Lemma 2.6, we deduce that the classes A2 and A3 belongs to the class of PS {Pn}n≥0 of the form (2.8). According

to Lemma 2.5, we deduce that the only d-OPSs belonging to the classA2 ∪ A3 with l 6= 0 arise for l = d, p = 0 and s ≤ 2,
where:

• q ≤ d if s = 0,
• q = d+ 1 and c = 1 if s = 1,
• q = d+ 2, c = 1 and µ = − d+12 − (σ + σ

′)+
∑d+2
k=1 bk, where λ(y) = (y+ σ)(−y+ σ

′), if s = 2.

All these results are summarized in Table 1. �

2.3. A characterization theorem for all PSs in the Askey-scheme

For d = 1 Theorem 2.1 is reduced to the following characterization theorem.

Corollary 2.7. The only OPSs inA (also inA ∪B ∪ C) are given by Table 2.

Remark 2.8. 1. Corollary 2.7 contains as particular cases five characterization theorems given in [36,37], and related to
Laguerre, Jacobi, Bessel, Hemite, Charlier and Meixner polynomials.

2. As far as we know, the characterization theorems concerning the other PSs in the Askey-scheme and which may be
deduced from Corollary 2.7 seem to be new ones.

3. The introduction of the classB and C in this paper allows us to obtain d-orthogonal polynomial sets not belonging toA
for d ≥ 2. But, for d = 1, the d-Charlier I and d-Charlier II polynomials are reduced to Charlier polynomials, and Humbert
polynomials are reduced to Gegenbauer polynomials, a particular case of Jacobi polynomials.

4. In this paper, we consider the notion of orthogonality (d = 1) in the general sense defined in [7,8]. That explains the
presence of the Bessel polynomials in Table 2 and not in the Askey-scheme.

5. The finite Laguerre polynomials given in Table 2 do not exist in the Askey-scheme. More details on these polynomials
may be found in [38,39].

3. Concluding remarks

• The limit relations between generalized hypergeometric orthogonal polynomials in the Askey-scheme are well
known [2]. It is possible to state analogue ones for the polynomials obtained in this paper and to construct a similar
table to the Askey-scheme in the context of the d-orthogonality. That will be the subject of a forthcoming paper.
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• The declared aim of the paper in the Introduction is to look for a similar table to the Askey-scheme in the context of the
d-orthogonality. Our approach was then to introduce first d-orthogonal generalizations of all the PSs belonging to the
Askey-scheme. That let us to define the classA as a class containing all PSs in the Askey-scheme to state a characterization
problem. We remark that if we extend this problem to the class A ∪ B ∪ C, we obtain new d-OPSs generalizing PSs in
the Askey-scheme and not belonging to A, for d ≥ 2. The classes B and C were suggested by certain transformations
concerning the generalized hypergeometric representations of the Charlier polynomials and Gegenbauer polynomials. It
is then natural to see one’s way to extend the characterization problem to a more general class of PSs containing all PSs
in the Askey-scheme.
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