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Scale invariance is a property shared by the operational opera-
tors xD , Dx and a whole class of linear operators. We give a
complete characterization of this class and derive some of the com-
mon properties of its members. As an application, we show that a
number of classical combinatorial results, such as Boole’s additive
formula or the Akiyama–Tanigawa transformation, can be derived
in this setting.
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1. Introduction

Let p(x) and q(x) be two polynomials. The proof of a formula such as

p
(
q(x)

) =
∑
k�0

(q(x) − x)k

k! p(k)(x) (1)

does not require any analytic apparatus. One can show it using only formal mathematics. More pre-
cisely, it can be viewed as an expansion of the composition operator Cq p(x) = p(q(x)):

Cq =
∑
k�0

(q(x) − x)k

k! Dk. (2)
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Specializing to q(x) = x + a, we have the ubiquitous shift operator

Ea =
∑
k�0

ak

k! Dk. (3)

The study of the class of the linear operators that commute with Ea is the subject of the Umbral Cal-
culus [10,16]. These operators are essentially formal power series equipped with the Cauchy product
(discrete convolution)

(∑
n�0

antn
)(∑

n�0

bntn
)

=
∑
n�0

(
n∑

k=0

akbn−k

)
tn. (4)

The choice q(x) = ax seems to have attracted less attention. It corresponds to applying the scale
operator Sca p(x) = p(ax). We deduce from (1) that this operator can be expanded as

Sca =
∑
k�0

(a − 1)k xk

k! Dk. (5)

The linear operators that commute with the scale operators are the main topic of this paper. No-
table operators of this type are xD and Dx. We shall see that the scale invariant operators are also
essentially formal power series, this time equipped with the product

(∑
n�0

antn
)

�
(∑

n�0

bntn
)

=
∑
n�0

anbntn. (6)

The shift operators and the scale operators exhaust the class of the automorphisms acting on the
polynomials. Indeed, every automorphism is of the form Ta,b p(x) = p(ax + b), that is, a shift followed
by a scaling. Together, the shift invariant operators and the scale invariant operators are a gold mine
for finding formulas and expansions in numerical and combinatorial analysis.

In Section 2, we tackle a classical elementary result as a motivation and show how one is gradually
led to a scale invariance situation. Section 3 is devoted to the systematic characterization of the
scale invariant operators and some of their properties. All the expansions are carried in terms of the
differential operator D , even though this can be done with other operators. A matrix formulation
of the theory has been left out. In Section 4, we apply our results to some well-known examples
borrowed from combinatorics.

The level of the exposition is quite elementary and no specialized background is assumed.

2. Boole’s additive formula

In [11], a proof of Boole’s additive formula

n∑
k=0

(−1)n−k
(

n

k

)
kn = n! (7)

is given as a consequence of Lagrange’s interpolation theorem. As a motivation for the theory to come
in the next section, let us derive this formula using simple operator methods. Recalling that

(xD)nxk = knxk, (8)
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where D = d
dx , we have

n∑
k=0

(−1)n−k
(

n

k

)
knxk =

n∑
k=0

(−1)n−k
(

n

k

)
(xD)nxk

= (xD)n
n∑

k=0

(−1)n−k
(

n

k

)
xk

= (xD)n(x − 1)n.

We used the binomial theorem to get the last equality. Hence our problem amounts to proving

e1(xD)n(x − 1)n = n!, (9)

where e1 is the evaluation functional at x = 1 (ea p(x) = p(a)) [15]. In order to do so, let us use the
familiar expansion (see for instance the classic book of Riordan [14, p. 218, (34)])

(xD)n =
n∑

k=0

S(n,k)xk Dk (10)

where S(n,k) are the Stirling numbers of the second kind. Apply this to the polynomial (x − 1)n:

(xD)n(x − 1)n =
n∑

k=0

S(n,k)xk Dk(x − 1)n

=
n∑

k=0

S(n,k)xk(n)k(x − 1)n−k

= S(n,n)xnn! +
n−1∑
k=0

S(n,k)xk(n)k(x − 1)n−k.

The result follows upon replacing x by 1 and using the fact that S(n,n) = 1.
Observe that none of the properties of the Stirling numbers were used. Only the form of the

expansion (10) is necessary. We shall return to this point.
Note also in passing that if we apply the operator (xD)m to the polynomial (x − 1)n and then

replace x by 1, we get the classical identity [6, p. 67, (49)]

n∑
k=0

(−1)n−k
(

n

k

)
km = n!S(m,n). (11)

The right hand side of (11) is equal to 0 for 0 � m < n.
From (8), we deduce by linearity that for any polynomial p(x) we have the well-known operational

formula

p(xD)xk = p(k)xk (12)

and, for arbitrary scalars a and b,



K. Belbahri / Advances in Applied Mathematics 45 (2010) 548–563 551
p(a + bxD)xk = p(a + bk)xk. (13)

Hence

p(a + bxD)(x − 1)n =
n∑

k=0

(−1)n−k
(

n

k

)
p(a + bk)xk. (14)

On the other hand, for a given integer r � 0, we have

n∑
k=0

(−1)n−k
(

n

k

)
(a + kb)r =

r∑
m=0

(
r

m

)
ar−mbm

n∑
k=0

(−1)n−k
(

n

k

)
km

= n!
r∑

m=n

(
r

m

)
ar−mbm S(m,n)

by (11). In particular,

n∑
k=0

(−1)n−k
(

n

k

)
(a + kb)n = bnn!.

Thus, if p(x) is of degree n, we get

n∑
k=0

(−1)n−k
(

n

k

)
p(a + bk) = p(n)(a + bx) (15)

which is the main result of [11].
What happens if we use the operator Dx instead of xD? The pendant of (8) is obviously

(Dx)nxk = (k + 1)nxk. (16)

The same argument as above, and the expansion [14, p. 221, (47a)]

(Dx)n =
n∑

k=0

S(n + 1,k + 1)xk Dk (17)

give the formula (contained in (15))

n∑
k=0

(−1)n−k
(

n

k

)
(k + 1)n = n!. (18)

The operators (xD)n and (Dx)n share a common property of scale invariance. This is the subject of
Section 3. Some examples are given in Section 4.
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3. Scale invariant operators

In the sequel, K will be a field of characteristic 0 (in practice, K = R or C) and P = K[x] the
algebra of polynomials in the variable x over K. Let A be the algebra of all linear operators acting
on P over the same field.

Given a scalar a, the scale operator Sca is defined by

Sca p(x) = p(ax) (19)

where p(x) is a polynomial. It is easy to see that the class of scale operators Sca (a �= 0) is a
multiplicative abelian group isomorphic to the group of shift operators (and to the group (K∗, ·)).
A particularly important scale operator is the linear functional Sc0 = e0:

Sc0 p(x) = p(0). (20)

An operator A in A is said to be scale invariant if it commutes with all scale operators. In symbols

A Sca = Sca A (21)

for all a in K. As noted earlier, examples of scale invariant operators are xD and Dx.
We now characterize these operators.

Proposition 1. A linear operator A is scale invariant if and only if there exists a sequence of scalars an such
that

Axn = anxn, (22)

for n = 0,1,2, . . . .

Proof. Suppose A is defined by Axn = anxn , where an is a given sequence of scalars (n = 0,1, . . .), and
let h be a parameter in the field K. Then we have

A Schxn = Ahnxn = hn Axn = hnanxn

and

Sch Axn = Schanxn = an Schxn = anhnxn.

This proves that A is scale invariant. To prove the converse statement, let A be scale invariant and
put Axn = pn(x). Then

Sch Axn = Sch pn(x) = pn(hx),

while

A Schxn = Ahnxn = hn Axn = hn pn(x).

Hence, we have the equality

pn(hx) = hn pn(x).
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Put x = 1 and then replace h by x:

pn(x) = pn(1)xn = anxn

with an = pn(1). The result follows by simple linearity (replace xn by an arbitrary polynomial). �
Remark. A careful look at this proof shows that our definition of scale invariance can be relaxed. If
the operator A commutes with Sch for some h �= 0 and |h| �= 1, then A is scale invariant.

The following consequences are immediate.

Corollary 2. Any two scale invariant operators commute.

Corollary 3. A scale invariant operator Axn = anxn is invertible if and only if an �= 0 for all n.

Corollary 4. The class of all scale invariant operators is a commutative subalgebra of A.

Corollary 5. The algebra of scale invariant operators is isomorphic onto the algebra (S,+,�) of scalars se-
quences, where � is the Hadamard product [2, p. 85, Problem 30] (an) � (bn) = (anbn).

Other characterizations of the scale invariant operators are given in the following proposition.

Proposition 6. Let A be a linear operator. The following statements are equivalent:

1. A is scale invariant.
2. The operators A and xD commute: AxD = xD A.
3. The operators A and Dx commute: ADx = DxA.

Proof. Since the operators xD and Dx are both scale invariant, they commute with all scale invariant
operators. Let us show that if xD and A commute, then A must be scale invariant. Put

Axn = pn(x) =
∑
k�0

cnk
xk

k!

for n = 0,1,2, . . . . Now

AxDxn = npn(x) =
∑
k�0

ncnk
xk

k! (23)

and

xD Axn = xDpn(x) =
∑
k�0

kcnk
xk

k! . (24)

Equating the extreme right hand sides of (23) and (24), we get

ncnk = kcnk
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for all n � 0 and k � 0. But this is possible only if cnk = 0 whenever n �= k, that is if pn(x) = cnnxn .
Now, since xn is a base for the vector space P, the result remains true for any polynomial p(x) and
therefore A is scale invariant. The proof of the last part is identical to the above one. �
Notations. We shall frequently use the convenient umbral notation an = an [10, p. 199]. If A is a scale
invariant operator with Axn = anxn , then we simply write A = Sca and Sca p(x) = p(ax).

Remark. The action of the operator Sca on xn may be viewed as the Hadamard product of the se-
quence an with the sequence xn . If L is the linear functional defined by Lxn = an , and if we equip
the class of linear functionals with this product (L � M)xn = (Lxn)(Mxn), making it into an algebra,
then a scale invariant operator is essentially a linear functional (the two algebras are isomorphic).
On the other hand, every shift invariant operator P may be defined by the discrete convolution

P xn

n! = an ∗ xn

n! = ∑n
k=0 ak

xn−k

(n−k)! . Furthermore, we have L = Sc0 P (here L xn

n! = an). Hence, if we equip
the linear functionals with the underlying discrete convolution (L ∗ M)xn = Lxn ∗ Mxn , we see that a
shift invariant operator is essentially a linear functional [15].

The polynomial (x − 1)n played a prominent role in the derivation of Boole’s formula. We have

Sca(x − 1)n = (ax − 1)n =
n∑

k=0

(−1)n−k
(

n

k

)
akxk. (25)

In particular,

e1 Sca(x − 1)n = (a − 1)n =
n∑

k=0

(−1)n−k
(

n

k

)
ak = �na0,

where � is the difference operator: �an = an+1 − an . Hence,

(a − 1)n = �na0. (26)

We will also write

an = �na0. (27)

The following well-known result (binomial transform) will be used repeatedly.

Lemma 7. Let an(x) and an(x) be two sequences of polynomials and put an = an(1), an = an(1). Then we have
the inversion formulas:

an(x) =
n∑

k=0

(
n

k

)
ak(x)xn−k ⇐⇒ an(x) =

n∑
k=0

(−1)n−k
(

n

k

)
ak(x)xn−k. (28)

In particular,

an =
n∑

k=0

(
n

k

)
ak ⇐⇒ an =

n∑
k=0

(−1)n−k
(

n

k

)
ak. (29)
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Proof. There exists a number of proofs of (28). We give one based on the discrete convolution (the
Cauchy product) of two sequences un and vn: un ∗ vn = ∑n

k=0 uk vn−k and the fact that the inverse

with respect to ∗ of the sequence xn

n! is (−x)n

n! . Now the first relation in (28) can be written as 1
n!an(x) =

1
n!an(x) ∗ xn

n! while the second one can be written as 1
n!an(x) = 1

n!an(x) ∗ (−x)n

n! . The result is apparent.
Put x = 1 in (28) to get (29). �

We give our first expansion theorem.

Theorem 8. Every scale invariant operator Sca can be uniquely expanded as

Sca =
∑
k�0

ak
xk

k! Dk (30)

where ak = �ka0 .

Proof. It suffices to prove that the right hand side of (30), when applied to the monomial xn ,
gives anxn . We have

∑
k�0

ak
xk

k! Dkxn =
∑
k�0

(
n

k

)
akxn = xn

∑
k�0

(
n

k

)
ak = anxn

by the inversion formulas (29). �
Example. Let p(x) be an arbitrary polynomial and c a scalar. Then, from (30), we get

p(cx) =
∑
k�0

(c − 1)k xk

k! p(k)(x). (31)

Taylor’s formula is obtained as a particular case:

p(0) =
∑
k�0

(−x)k

k! p(k)(x). (32)

Note also that if we formally replace c by x in (31), we get

p
(
x2) =

∑
k�0

(
x2 − x

)k 1

k! p(k)(x). (33)

This is a special case of (1).

Corollary 9. Let L be a linear functional defined on P and put Lxn = an. Then L = e1 Sca and it can be uniquely
expanded as

L = e0

∑
k�0

ak

k! Dk (34)

= e1

∑
k�0

ak

k! Dk. (35)
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Proof. The first expansion (34) is a classical result [15]. It suffices to apply both members to xn and
then extend by linearity to all polynomials. The second expansion (35) is a direct consequence of (30):

Lxn = an = e1 Scaxn = e1

∑
k�0

ak
xk

k! Dkxn

= e1

∑
k�0

ak

k! Dkxn.

The result follows for an arbitrary polynomial. �
Example. As a simple example, consider the definite integral L f (x) = ∫ 1

0 f (x)dx. We have an = Lxn =
1

n+1 and a trite calculation (using (29)) gives an = (−1)n

n+1 . Using both expansions (34) and (35), we get
the identity

∑
n�0

1

(n + 1)! f (n)(0) =
∑
n�0

(−1)n

(n + 1)! f (n)(1), (36)

valid at least for all polynomials f (x). This identity may be used for instance to accelerate the con-
vergence of a series. As an illustration, take f (x) = 1

1+x . Then we get (we omit the details) a classical
result:

ln 2 =
∑
n�0

(−1)n

n + 1
=

∑
n�0

1

(n + 1)2n+1
.

The expansions developed in this section can be used to derive numerous well-known identities.
We give a sample in the next section. Furthermore, the form of expansion (30) (in terms of the
powers Dk) is not peculiar to scale invariant operators. In fact, every linear operator in A can be
expanded this way as we show now (for the sake of completeness).

Theorem 10 (General Expansion Theorem). Let A be a linear operator and put Axn = an(x), n = 0,1, . . . . Then
A can be uniquely expanded as

A =
∑
k�0

1

k!ak(x)Dk (37)

where an(x) is a sequence of polynomials defined by

an(x) =
n∑

k=0

(−1)n−k
(

n

k

)
ak(x)xn−k. (38)

Proof. Apply (37) to xn and use (28). �
Remark. The expansion (37) is implicit in (28). It is a particular case of an apparently more general
one, known as the Kurbanov–Maksimov theorem [7]. We say apparently because the latter can be
derived from (37).
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Corollary 11. The vector space (A,+) is isomorphic to the vector space of generating functions of sequences
of polynomials. This isomorphism sends the operator

A =
∑
n�0

an(x)
1

n! Dn

onto the generating function

a(x, t) =
∑
n�0

an(x)
tn

n! . (39)

We omit the obvious proof.
The generating function a(x, t) is called the indicator of the operator A.
Our next result gives a simple device to find a(x, t) and hence the expansion of A.

Proposition 12. Let A be a linear operator. Then the indicator a(x, t) of A is given by the operational formula

a(x, t) = e−xt Aext . (40)

Proof. This is just (38) expressed via generating functions:

e−xt Aext =
(∑

n�0

(−x)n

n! tn
)(∑

n�0

an(x)
tn

n!
)

=
∑
n�0

(
(−x)n

n! ∗ 1

n!an(x)

)
tn

n!

=
∑
n�0

an(x)
tn

n! = a(x, t). �

Example. Apply (40) to Sca:

e−xt Scaext = e−xteaxt = e(a−1)xt .

In particular, for a = 0, the indicator of Sc0 is e−xt = ∑
k�0

(−x)k

k! tk , in accordance with (32).

4. Some examples

In this section, we show how our simple minded operator technique can be used to easily derive
well-known results and even extend them somewhat. The list is by no means exhaustive and is only
meant to show the power of the method.

Example (Euler’s transformation). Apply the expansion formula (30) to the formal power series

1

1 − xt
=

∑
n�0

xntn. (41)

We obtain
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∑
n�0

anxntn =
∑
k�0

(
�ka0

) (xt)k

(1 − xt)k+1
.

Put x = 1:

∑
n�0

antn =
∑
k�0

(
�ka0

) tk

(1 − t)k+1
. (42)

Note that if an = p(n) is a polynomial in n, the right hand side of (42) reduces to a finite sum. In
particular, if p(n) = nr , we have an expression of the Eulerian polynomials [1], [4, Lemma 2.7], [8].

These polynomials are sometimes given by the generating function [5]

En(x) = (1 − x)n+1
∑
k�0

(k + 1)nxk.

Hence the operational formula

En(x) = (1 − x)n+1(Dx)n(1 − x)−1.

Replace the operator (Dx)n by an arbitrary scale invariant operator Sca:

(1 − x)n+1 Sca(1 − x)−1 =
∑
k�0

(
�ka0

)
xk(1 − x)n−k.

Truncating the right hand side at n, we get a generalization of the Eulerian polynomials:

En(x;a) =
n∑

k=0

(
�ka0

)
xk(1 − x)n−k. (43)

Convergence questions depend on the choice of the sequence an .

Example (Bernstein polynomials). Apply both sides of (30) to the polynomial (1 − x)n (see (25)):

n∑
k=0

(
n

k

)
(−1)kakxk =

∑
k�0

ak
xk

k! Dk(1 − x)n

=
∑
k�0

(
n

k

)
(−1)kakxk(1 − x)n−k.

Put bn = (−1)nan and bn = (−1)nan . We obtain

n∑
k=0

(
n

k

)
bkxk =

∑
k�0

(
n

k

)
bkxk(1 − x)n−k, (44)

valid for any sequence of scalars bn .
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Example (The Borel transform and Dobinski formula). Apply both sides of (30) to the exponential func-
tion ex and then multiply by e−x (see (40)). We get the Borel transform [12, pp. 55–56]

e−x
∑
k�0

ak
xk

k! =
∑
k�0

(
�ka0

) xk

k! . (45)

Take ak = a(k) = kn . In this case, using (8), we see we are expanding the operator (xD)n and, special-
izing to (10), we get Dobinski’s formula for the exponential polynomials [15, p. 66]

ϕn(x) = e−x
∑
k�0

kn

k! xk =
∑
k�0

S(n,k)xk. (46)

Example (Automorphisms of P). The automorphisms of P are all of the form Ta,b p(x) = p(ax + b),
where a and b are scalars, a �= 0. To see this, let T be an automorphism. Then, obviously, deg T xn =
deg(T x)n = n deg T x. Since T is surjective, we must have deg(T x) � 1, for otherwise x would not
be the image of any polynomial. Similarly, since T is injective, we must have deg T x � 1. Hence
deg T x = 1 and T x = ax + b, a �= 0. In other words, Ta,b is the product of a shift operator and a scale
operator: Ta,b = Sca Eb . The indicator (40) of Ta,b is given by

a(x, t) = e−xt Ta,bext = e−xte(ax+b)t = e((a−1)x+b)t

and therefore, using (37), we have

Ta,b =
∑
k�0

((a − 1)x + b)k

k! Dk. (47)

This expansion remains valid if a = 0, in which case T0,b is the evaluation functional T0,b p(x) =
Sc0 Eb p(x) = p(b).

Now, if an and bn are two arbitrary sequences of scalars, we may define the operator Ta,b p(x) =
p(ax +b). This is the product of a scale invariant operator with a shift invariant operator and we have
the expansion

Ta,b =
∑
k�0

((a − 1)x + b)k

k! Dk. (48)

Now, apply both sides of (48) to xn and put x = 1. We get, after some rearrangement

n∑
k=0

(
n

k

)
akbn−k =

n∑
k=0

(
n

k

)(
�ka0

) n−k∑
j=0

(
n − k

j

)
b j. (49)

Put cr = ∑r
j=0

(r
j

)
b j and use the inversion formula (29). We obtain the reciprocity formula (see

[3, p. 221, (1.8)]) between two arbitrary sequences an and cn:

n∑
k=0

(
n

k

)
an−k

(
�kc0

) =
n∑

k=0

(
n

k

)
cn−k

(
�ka0

)
. (50)
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Example (The Akiyama–Tanigawa transformation). In [9], the operator A = 1−(1−x)D (and its powers)
is the defining operator of the Akiyama–Tanigawa transformation. Theorem 2.1 of [9] states that

An =
n∑

k=0

(−1)k S(n + 1,k + 1)(1 − x)k Dk (51)

where S(n,k) are the Stirling numbers of the second kind. The proof of this theorem was given by
induction. Now, observe that A can be written in the alternative form A = D(x − 1) and that (51)
is formally identical to (17) where x is replaced by x − 1. We proceed to “explain” this. The op-
erator D(x − 1) is a “shifted” scale invariant operator in the following sense: (D(x − 1))(x − 1)k =
(k + 1)(x − 1)k and, more generally, (D(x − 1))n(x − 1)k = (k + 1)n(x − 1)k . Now, using the shift oper-
ator E (Ea p(x) = p(x + a)), we have the equalities

(
D(x − 1)

)n
(x − 1)k = (k + 1)n(x − 1)k = E−1(k + 1)nxk = E−1(Dx)nxk.

On the other hand,

(
D(x − 1)

)n
(x − 1)k = (

D(x − 1)
)n

E−1xk.

We have thus the following characterization of (D(x − 1))n:

(
D(x − 1)

)n = E−1(Dx)n E. (52)

We now proceed to prove (51). The indicator of (D(x − 1))n = E−1(Dx)n E is given by

a(x, t) = e−xt E−1(Dx)n Eext = e−xt E−1(Dx)ne(x+1)t

= ete−xt E−1
n∑

k=0

S(n + 1,k + 1)xk Dkext

= ete−xt E−1
n∑

k=0

S(n + 1,k + 1)xktkext

= ete−xt
n∑

k=0

S(n + 1,k + 1)(x − 1)ktke(x−1)t

=
n∑

k=0

S(n + 1,k + 1)(x − 1)ktk.

This is the indicator of (51). Note that we used (17).

Example (A generalization of the Akiyama–Tanigawa transformation). One can obviously use the slightly
more general operator A = D(ax + b) where a and b are scalars, a �= 0. We have

(
D(ax + b)

)n
(ax + b)k = an(k + 1)n(ax + b)k (53)

where n is a non-negative integer. We see that this operator merely “scales” the base (ax + b)k . The
same argument as in the previous example gives
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(
D(ax + b)

)n = an Sca Eb(Dx)n E−b Sc1/a. (54)

The indicator of this operator is computed in a similar way and we have the expansion

(
D(ax + b)

)n =
n∑

k=0

S(n + 1,k + 1)an−k(ax + b)k Dk. (55)

Since the operator (D(ax + b))n is obviously invertible (it sends a base to a base), we compute its
inverse. From (53), we have

[(
D(ax + b)

)n]−1
(ax + b)k = 1

an(k + 1)n
(ax + b)k.

A glance at (54) shows that finding an expression of the inverse operator reduces to finding an ex-
pression of the inverse (x−1 D−1)n of (Dx)n . The indicator of this inverse operator is given by

e−xt((Dx)n)−1
ext = e−xt

∑
k�0

1

k!(k + 1)n
xktk

=
∑
k�0

(
1

k!(k + 1)n
∗ (−1)k

k!
)

xktk

=
∑
k�0

(
k∑

i=0

(−1)k−i
(

k

i

)
1

(i + 1)n

)
xk

k! tk.

Hence,

(
(Dx)n)−1 =

∑
k�0

(
k∑

i=0

(−1)k−i
(

k

i

)
1

(i + 1)n

)
xk

k! Dk (56)

as one should expect.

Example (The Binomial Transform revisited). In [13], one finds the following pair of inversion formulas:

tn =
n∑

k=0

(
n + d − 1

n − k

)
bn−kckak ⇐⇒ an = c−n

n∑
k=0

(
n + d − 1

n − k

)
(−1)n−kbn−ktk. (57)

The formulas are derived using complex integration (residues). It is possible to extend this result a
bit further. Let us first derive (57) using our operator method. Introduce the convolution operator Kb
defined by

Kb f (x) = xf (x) − bf (b)

x − b

where b is an arbitrary scalar. This operator can alternatively be defined by (hence the name)

Kbxn =
n∑

bkxn−k = bn ∗ xn.
k=0
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Since the generating function of the polynomial sequence xn is 1
1−xt , we have

Kb
1

1 − xt
= 1

1 − bt

1

1 − xt
.

For an arbitrary positive integer k, the k-fold convolution operator K k
b is defined (using induction) by

K k
b

1

1 − xt
=

(
1

1 − bt

)k 1

1 − xt
.

We formally extend this definition to an “α-fold” convolution (for arbitrary complex α) in the obvious
way:

Kα
b

1

1 − xt
=

(
1

1 − bt

)α 1

1 − xt
.

Now, consider the operator

T = Sca Eb Kα
b .

We have

T
1

1 − xt
= Sca Eb Kα

b
1

1 − xt
=

(
1

1 − bt

)α

Sca Eb 1

1 − xt

=
(

1

1 − bt

)α

Sca 1

1 − bt

1

1 − xt
1−bt

=
(

1

1 − bt

)α+1

Sca
∑
k�0

xktk

(1 − bt)k

=
∑
k�0

akxktk

(1 − bt)k+α+1
=

∑
k�0

akxktk
∑
r�0

(−k − α − 1

r

)
(−b)rtr

=
∑
n�0

(∑
k�0

(−k − α − 1

n − k

)
(−b)n−kakxk

)
tn.

Using the identity
(−k−α−1

n−k

)
(−1)n−k = (α+n

n−k

)
, we finally get (isolating the coefficient of tn in the last

equality)

T xn =
∑
k�0

(
α + n

n − k

)
bn−kakxk.

This is precisely the left hand side of (57) with α = d − 1 and x = c. Now, obviously both operators
Eb and K α

b are invertible (with respective inverses E−b and K −α
b ), so that (57) reduces to the trivial

equivalence:

T = Sca Eb Kα
b ⇐⇒ Sca = T K −α E−b. (58)
b
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Hence, (58) is nothing more than a special case of

T = Sca P ⇐⇒ Sca = T P−1, (59)

where P is an invertible linear operator. Now, if we put P xn = ∑
k�0 cnkxk , P−1xn = ∑

k�0 dnkxk and
T xn = tn(x), then (59) amounts to

tn(x) =
∑
k�0

cnkakxk ⇐⇒ anxn =
∑
k�0

dnkxk (60)

and the challenge is the effective computation of the so-called connection constants cnk from dnk and
vice versa in this general setting [10, p. 202].
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