Combinatorial identities for the r-Lah numbers

Hacène Belbachir \& Imad Eddine Bousbaa
USTHB, Faculty of Mathematics, RECITS Lab., DG-RSDT BP 32, El Alia, 16111, Bab Ezzouar, Algiers, Algeria hbelbachir@usthb.dz \& ibousbaa@usthb.dz

Abstract

This paper is an orthogonal continuation of the work of Belbachir and Belkhir in sense where we establish, using bijective proofs, recurrence relations and convolution identities between lines of r-Lah triangle. It is also established a symmetric function form for the r-Lah numbers.

1 Introduction

The r-Lah numbers, denoted $\left\lfloor\begin{array}{l}n \\ k\end{array}\right\rfloor_{r}$, count the number of partitions of the set $\{1,2, \ldots, n\}$ into k non empty ordered lists, such that the numbers $1,2, \ldots, r$ are in distinct lists. They satisfy, see for instance $[3,1]$, the recurrence relation

$$
\left\lfloor\begin{array}{l}
n \tag{1}\\
k
\end{array}\right\rfloor_{r}=\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right\rfloor_{r}+(n+k-1)\left[\begin{array}{c}
n-1 \\
k
\end{array}\right\rfloor_{r},
$$

with $\left\lfloor\begin{array}{l}n \\ k\end{array}\right\rfloor_{r}=\delta_{n, k}$ for $k=r$, where δ is the Kronecker delta, and $\left\lfloor\begin{array}{l}n \\ k\end{array}\right\rfloor_{r}=0$ for $n<r$.

For $r=0$ and $r=1$, we get the classical Lah numbers.
The r-Lah numbers have the following explicit formula

$$
\left\lfloor\begin{array}{l}
n \tag{2}\\
k
\end{array}\right\rfloor_{r}=\frac{(n+r-1)!}{(k+r-1)!}\binom{n-r}{k-r}=\frac{(n-r)!}{(k-r)!}\binom{n+r-1}{k+r-1} .
$$

In a previous work, the first author and Belkhir [1], established a cross recurrence formula, a triangular recurrence with rational coefficient for the Lah numbers and a vertical recurrence relation using bijective proof.

Our aim is to give some new combinatorial identities for the r-Lah numbers. All the identities given in [1] deal with relations between columns of r-Lah triangle. Our work is a dual complement to [1] in sense that we give identities explaining relations between lines of r-Lah triangle. In section

ARS COMBINATORIA 115(2014), pp. 453-458
relation

$$
\left\lfloor\begin{array}{l}
n \tag{7}\\
k
\end{array}\right\rfloor_{r}=(n+r-1)\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{r}+\frac{(n+r-1)}{(k+r-1)}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{r} .
$$

Under the restriction $r=0$, we get relation (5) of [1].

Remark 3.2 For $s=n-r$ in relation (6), we get the classical explicit form of r-Lah numbers given by (2).

The following result improve the precedent one in sense that the coefficients are integers.
Theorem 3.3 Let s, r, k and n nonnegative integers such that $r \leqslant k \leqslant n$ and $r \leqslant n-s$, we have

$$
\left\lfloor\begin{array}{l}
n \tag{8}\\
k
\end{array}\right\rfloor_{r}=\sum_{j=0}^{s} \frac{(n+k-j-1)!}{(n+k-s-1)!}\binom{s}{j}\left[\begin{array}{l}
n-s \\
k-j
\end{array}\right\rfloor_{r} .
$$

Proof. We divide the n elements into two groups : a first one with s elements $\{1, \ldots, s\}$ and second one with $n-s$ elements. With the first group we can constitute j lists $(0 \leqslant j \leqslant s)$ and with the second group we can constitute $k-j$ lists such that $1, \ldots, r$ are in distinct lists (it is possible because $r \leqslant n-s$). The r fixed elements must be chosen from the elements of the second group. We have $\left\lfloor\begin{array}{c}n-s \\ k-j\end{array}\right\rfloor_{r}$ possibilities to constitute the $k-j$ lists. It remains to count how to constitute the j remaining ones. We have $\binom{s}{j}$ possibilities to choose j elements from the first group with one element by list. Then, we order the remaining $s-j$ elements into the k lists, so the first one has $(n-s+k)$ choices ($n-s$ ways after each ordered element and k ways as head list), the second one has ($n-s+k+1$) choices (one possibility added by the previews insertion) and so on.... The last element $s-j$ has $(n-s+k+(s-j-1))=(n+k-j-1)$ choices. It gives $\frac{(n+k-j-1)!}{(n+k-s-1)!}=(n-s+k)(n-s+k+1) \cdots(n+k-j-1)$ possibilities. We conclude by summing.
Remark 3.4 For $s=1$, we obtain the well known recurrence relation (1), and for $s=n-r$ we get again the explicit formula (2).

4 Relation between r-Lah and Lah numbers

It is established [1], by combinatorial approach, that the r-Lah numbers can be expressed in terms of Lah numbers as follows

$$
\left\lfloor\begin{array}{l}
n+r \\
k+r
\end{array}\right]_{r}=\sum_{s=0}^{n-k} \sum_{i_{1}+\cdots+i_{r}=s}\left(i_{1}+1\right)!\cdots\left(i_{r}+1\right)!\binom{n}{i_{1}, \ldots, i_{r}, n-s}\left[\begin{array}{c}
n-s \\
k
\end{array}\right] .
$$

(9)

To prove the relation above, the authors consider the r first lists containing the r first elements and $i_{j}(1 \leqslant j \leqslant r)$ other elements. So the operation of counting the different situations was done in two steps: first we choose the i_{j} elements, then arrange the elements of each lists.

Now, we give an other formulation expressing r-Lah numbers in terms of Lah numbers without counting a multi-sum with a combinatorial argument.

Theorem 4.1 Let r, k and n positive integers such that, $r \leqslant k \leqslant n$, we have

$$
\left\lfloor\begin{array}{l}
n \tag{10}\\
k
\end{array}\right]_{r}=\sum_{s=0}^{n-k} \frac{(s+2 r-1)!}{(2 r-1)!}\binom{n-r}{s}\left[\begin{array}{c}
n-r-s \\
k-r
\end{array}\right]
$$

Proof. The r first elements can be considered as representing of the r first lists. Because we have to constitute k lists, let us consider the s $(0 \leqslant s \leqslant n-k)$ elements that will belong to the r first lists. We have $\binom{n-r}{s}$ possibilities to choose them. Then, we insert the s elements to the r lists and we have $2 r$ possibilities for the first one, $2 r+1$ possibilities for the second and so on \ldots, until the last element s, it has $(s+2 r-1)$ possibilities. This gives $2 r(2 r+1) \cdots(2 r+s-1)=\frac{(s+2 r-1)!}{(2 r-1)!}$ possibilities. Finally, we constitute the remaining $k-r$ lists with the remaining $n-r-s$ elements and we have $\left[\begin{array}{c}n-r-s \\ k-r\end{array}\right\rfloor$ possibilities.

Corollary 4.1.1 For $r=1$, in the relations (9) and (10), we get the vertical recurrence relation for the Lah numbers

$$
\left\lfloor\begin{array}{l}
n \tag{11}\\
k
\end{array}\right\rfloor=\sum_{i=0}^{n-k}(i+1)!\binom{n-1}{i}\left[\begin{array}{c}
n-i-1 \\
k-1
\end{array}\right\rfloor .
$$

5 Expression of the r-Lah numbers in terms of the ($r \pm s$)-Lah numbers

The r-Lah numbers satisfy the following horizontal recurrence relations. They express an element $\left\lfloor\begin{array}{l}n \\ k\end{array}\right\rfloor_{r}$ of r-Lah triangle in terms of the elements of the same line from the $(r+s)$-Lah triangle and $(r-s)$-Lah triangle.

Theorem 5.1 The r-Lah numbers satisfy

$$
\begin{align*}
& \left\lfloor\begin{array}{l}
n \\
k
\end{array}\right]_{r}=\frac{(n+r-1)!}{(k+r-1)!} \sum_{i=0}^{s} \frac{(k+i+(r+s)-1)!}{(n+(r+s)-1)!}\binom{s}{i}\left[\begin{array}{c}
n \\
k+i
\end{array}\right]_{r+s} \tag{12}\\
& \left\lfloor\begin{array}{l}
n \\
k
\end{array}\right]_{r}=\frac{(n-r)!}{(k-r)!} \sum_{i=0}^{s}\binom{s}{i} \frac{(k+i-r+s)!}{(n-r+s)!}\left\lfloor\begin{array}{c}
n \\
k+i
\end{array}\right\rfloor_{r-s},(r \geq s) \tag{13}
\end{align*}
$$

Proof. From (2), $\left\lfloor\begin{array}{c}n \\ k\end{array}\right\rfloor_{r}=\frac{(n+r-1)!}{(k+r-1)!}\binom{n-r}{k-r}$, Vandermonde's formula gives $\left\lfloor\begin{array}{l}n \\ k\end{array}\right\rfloor_{r}=\frac{(n+r-1)!}{(k+r-1)!} \sum_{i=0}^{s}\binom{s}{i}\binom{n-r-s}{k+i-r-s}$, thus we get the result. The same approach gives the second relation.

An expression of the Lah numbers in terms of the s-Lah numbers can be deduced from (12) for $r=1$.

Corollary 5.1.1 For $s \geq 1$, we get

$$
\left\lfloor\begin{array}{l}
n \tag{14}\\
k
\end{array}\right\rfloor=\frac{n!}{k!} \sum_{i=0}^{s-1}\binom{s-1}{i} \frac{(k+i+s-1)!}{(n+s-1)!}\left\lfloor\begin{array}{c}
n \\
k+i
\end{array}\right\rfloor_{s},
$$

And for $s=1$, in relations (12) and (13), we get
Corollary 5.1.2 Triangular recurrence relations

$$
\begin{align*}
& {\left[\begin{array}{l}
n \\
k
\end{array}\right\rfloor_{r}=(k+r+1) \frac{(k+r)}{(n+r)}\left[\begin{array}{c}
n \\
k+1
\end{array}\right]_{r+1}+\frac{(k+r)}{(n+r)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{r+1},} \tag{15}\\
& {\left[\begin{array}{l}
n \\
k
\end{array}\right]_{r+1}=(k-r+1) \frac{(k-r)}{(n-r)}\left[\begin{array}{c}
n \\
k+1
\end{array}\right]_{r}+\frac{(k-r)}{(n-r)}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{r} .} \tag{16}
\end{align*}
$$

Using (7) in (15), we get a recurrence relation of order 3 with integer coefficients which improve the quality of the recurrence relation.

Corollary 5.1.3 The following recurrence of order three holds

$$
\left\lfloor\begin{array}{l}
n \\
k
\end{array}\right\rfloor_{r}=\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right\rfloor_{r+1}+2(k+r)\left[\begin{array}{c}
n-1 \\
k
\end{array}\right\rfloor_{r+1}+(k+r+1)(k+r)\left[\begin{array}{l}
n-1 \\
k+1
\end{array}\right]_{r+1} .
$$

As a special case of (13), for $s=r$, we get
Corollary 5.1.4 Expression of the r-Lah numbers in terms of the Lah numbers

$$
\left\lfloor\begin{array}{l}
n \\
k
\end{array}\right\rfloor_{r}=\frac{(n-r)!}{n!(k-r)!} \sum_{i=0}^{r}(k+i)!\binom{r}{i}\left\lfloor\begin{array}{c}
n \\
k+i
\end{array}\right\rfloor .
$$

Acknowledgement 1 The authors would like to thank the anonymous referee for careful reading and suggestions that improved the clarity of this manuscript.

References

[1] H. Belbachir and A. Belkhir. Cross recurrence relations for r-Lah numbers. Ars Combin., 110:199-203, 2013.
[2] A. Z. Broder. The r-Stirling numbers. Discrete Math., 49(3):241-259, 1984.
[3] C. A. Charalambides. Enumerative combinatorics. CRC Press Series on Discrete Mathematics and its Applications. Chapman \& Hall/CRC, Boca Raton, FL, 2002.

