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Abstract 

In this paper we consider the polynomials {P~'V(x)}~0, orthogonal with respect to a certain symmetric bilinear form 
of Sobolev type. These polynomials are the result of two linear perturbations to the orthogonal polynomials {Pn(x)}~0, 
eigenfunctions of a linear differential or difference operator L. We show that the polynomials {Pff'V(x)}~0 are eigenfunc- 
tions of one or more linear differential or difference operators (possibly of infinite order) of the form L + #A + vB +/~vC. 
@ 1998 Elsevier Science B.V. All rights reserved. 
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I. Introduction 

Let {P~(x)}~0 with deg [P~(x)] = n be a system of  orthogonal polynomials relative to a positive- 
definite moment functional tr and let {2 .}~ 0 be a sequence of  real numbers with 20 = 0 and {2.}~1 
not all equal to zero such that {P~(x)}.~ 0 are eigenfunctions of a linear differential or difference 
operator L of  the form 

oo 

:= ei(x)   (1) 
i = 1  

2 with eigenvalues { ~}~=0- Here {ei(x)}~, is a sequence of  polynomials with deg [ei(x)] ~<i for all 
iE{1 ,2 ,3 , . . . } .  ~xy(X) may be read as the derivative Dy(x)=dy(x)/dx,  the forward difference 
Ay(x) = y(x + 1 ) -  y(x) or backward difference Vy(x )  = y ( x )  - y ( x -  1 ) and ~ i y ( x )  = ~ x ( ~  -I  y(x)) ,  
~°y(x)  = y(x). Let ~b be the symmetric bilinear form of  Sobolev type defined by 

~p(p. q) = (tr. pq) + pp(t, )(el )q(l, )(cl ). 
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where/a > 0 and c~ are real constants, ll E {0, 1,2 . . . .  }, p and q are any polynomials and the notation 

p(h )(x) = ~x l' p(x) 

is used. In [3, Section 4.1] (see also [6]) it was shown that if P,(l')(cl ) ¢ 0 for all n E {ll, Ii + 1, Ii + 
2,. . .},  then the corresponding orthogonal polynomials {PnU(X)}~0, which we call linear perturbations 
of {P,(x)},~__0 of the class 11 at cl with parameter #, are eigenfunctions of one (or more if ll > 0) 
linear operators of the form L + #A with 

o o  

A := ~ ai(x)U x (2) 
i=1  

and eigenvalues {2, + / ~ . } ~ 0 .  Here {ai (x)}~ is a sequence of polynomials with deg [ai(x)] ~<i for 
all i E { 1,2, 3,. . .}, 0~0 = 0 and (if l~ > 0 )  the numbers {e.}l,__~ can be chosen arbitrarily. The operator 
A and the numbers { .}.=l,+t are uniquely determined, when {e,}l.k I are chosen. 

In this paper we consider polynomials {P~U,V(x)}~0, orthogonal with respect to the symmetric 
bilinear form of Sobolev type defined by 

~k(p,q) = (a, pq) + I~p(l')(cl )q(/')(cl ) + vp(12)(c2)q(h)(c2), (3) 

where/~ >0,  v>0 ,  c~ and c2 are real constants, l~ and 12 are nonnegative integers, and p and q are 
any polynomials. We will show that if PS')(c~) ¢ 0 for all n E {l~, ll + 1, ll +2 , . . . }  and P.(h)(c2)¢O 
for all n E {12, 12 + 1, 12 + 2  . . . .  } and some other conditions are satisfied, the polynomials {P~U'V(x)}~0 
are eigenfunctions of one (or more if min(/1, 12)> 0) linear differential or difference operators of 
form 

L +/~A + vB + ~vC (4) 

with eigenvalues 

+ + + . (5)  

Here the operators A, B and C have similar forms as (2). ~0 =//o = 7o = 0 and the numbers -fc~ V, I_ n J n = l  

.r. am~.{t,.t2} (if min{l~. /2} > 0 )  can be chosen arbitrarily. The (if ll >0) .  {/~.})=, (if /2>0)  and tyn~.=, 
operators A, B and C and the numbers {e.}~,,+l.{3.}~,~+, and {7.}~mi.(,,.,:}+, are uniquely 

1~ .f , ] m i n { l l , l z }  determined, when {e.}.=l, {/~n})=l and tynj~.=~ are fixed. 
In the last part of the paper we will give applications of the results in some concrete situations, 

where the polynomials {P.(x)}~o are classical orthogonal polynomials, eigenfunctions of a second- 
order differential or difference operator L. 

2. Orthogonal polynomials with two linear perturbations 

We construct polynomials orthogonal with respect to (3) by adding to {P~(x)}.~ 0 successively a 
linear perturbation of the class 11 at c~ with parameter ¢t and a linear perturbation of the class 12 at 
c2 with parameter v. If we write 

8(r)(x)8(')(y), K~r'S)(x, y )  = ~ ~ n,r, s e {O, 1,2,. ..}, 
i = 0  \ , i / 
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then (see [1, 2])  the polynomials  {Pfl(x)}~0 can be written as 

P~U(x) :=  P~(x) + #O,(x)  = (1 + ld(~h', 1' )(c,, c, ))P~(x) - #p(l, )(c, )K~°'_l, ' )(x, c, ). 

For the kernel 

~ Pi~(x)Pi"(y) 
G.(x, y; It) = O(p~ ,pu)  , (6) 

i=0 

by using Proposit ion 3.2 in [6], the following formula is derived 

It K(r'I')(X'cl)K(I''s)(cl'y) n,r, sE{O,  1,2 . . . .  }. (7) 
G ( r " ) ( x ' Y ; I t ) = K ( r " ) ( x ' Y ) -  1 + itK(,l"t')(c,,c,) ' 

Applying the second perturbation we obtain 

P2"V(x) = P2(x) + vQ*(x; It) 

= (1 + va~h'[ 2)(c2, c2; It))P#(x) _ vpu(t2)(c2)u._f..-.(o,t.).tx.c2; It) 

(•2,•,) ~-lXn- 1 k t'l~ t ' 2 J /  
= 1 + vK~_ 1- (cz, c2) - Itv ..-(1,,t,),~ 

1 + I t : " . - t  t , - l ,cj)  

×[(1 + #K~2",z')(c,,c, ) )P~(x) - ixpj1')(ct )K~°'_',')(x.c, )] 

-v [ (1  + lug~2', 1' )(c,. c, ) )P.(12)(c2) - Itp(i, )(c, )K~t'_', 1"-)(cl, c2)1 

[v(O,l:)t.~ ~..(o.1, ] )-/'kn _ 1 tCl ,  C2) It a*n- I  )(X, Cl .. r~'(l, 12)." 

x 1 + " 

Hence 

P.(x) v(°'l')t~ P.(x) (0,12~ /~n--I I . ~ , e l )  X n - 1  (X 'C2)  

7-- ~-  y V(12,12)[~ P~'V(x) P o ( x ) + I t  P(l')(Cl) K~2'll')(Cl,Cl) P.(1')(c2) ,~._, ~,.2,c2) 

P n ( x  ) v(o '12)[  x c2 ] ~txn_ l]((O'll)(x,cl) IXn_ 1 ~. , ~, 

+ I t v  P~()(Cl) "~'n--1 ) ( C I , C l )  lXn--1 I,l"l ' l"2] 

P.(")(c2) ..(12,1,) . . . .  (12,t,). . e%_l tc2. cl) 1%_1- tc2. c2) 

:=P~(x) + ItQ,(x) + vR,(x) + ItvS~(x), n E {0, 1 ,2 , . . .} .  

Note that Q , ( x ) = 0  for all n E { 1 , 2  . . . .  , l l} ,  R , ( x ) = 0  for all n E { 1 , 2 , . . . , / 2 }  and S , ( x ) = 0  for 
all n E { 1 ,2 , . . .  max{/ , ,  12}}. I f  we assume that Pl(1')(cl) # 0, then we have deg [Q,(x)] = n for all 

n E {ll + 1,ll + 2,/1 + 3 , . . .}  and if  we assume that Pt(t2)(c2)#O, then we have deg[R, (x )]=n 
for all n E {12 + 1, 12 + 2, 12 + 3 , . . .} .  Moreover,  by the Cauchy-Schwarz  inequality, it follows 
that deg[S , (x )]=n for all n E {max{/~,/2} + 1,max{ll ,12} + 2 . . . .  } unless l, = 12. I f  Ii =12, then 
St,+l(x) = 0 and deg[S,(x)]  = n  for all n E {ll + 2, ll + 3, Ii + 4 , . . .}  unless cl =c2 .  In the following 
we will assume that (el, Ii ) ¢ @2, 12). 
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3. The operators 

Let {P,(x)}~0 be a system of  orthogonal polynomials relative to a positive-definite moment 
functional o- and let {2,}~0 be a sequence of  real numbers with 20 = 0 and {2n}~=l not all equal to 
zero such that {P,(x)}~0 are eigenfunctions of  a linear operator L of  the form (1) with eigenvalues 

2 { ,},=0. We will construct operators, linear in /.t and v, for which the polynomials P~'V(x), found 
in the preceding section, are eigenfunctions and with a sequence of  eigenvalues of the form (5). 
The general idea of this construction is as follows. By applying the (cl, ll ) perturbation first and 
the (c2, 12) perturbation afterwards we obtain a set V of sequences of  eigenvalues of  the form (5), 
where each element of  V corresponds to a linear differential operator, depending linearly on v. In the 
second construction we apply the (c2, 12) perturbation first and the (cl, l l)  perturbation afterwards. 
We then obtain a set W of  sequences of  eigenvalues of  the form (5), where each element of W 
corresponds to a linear differential operator, depending linearly on #. By Lemma 1 in [3] it is clear 
that a sequence of  polynomials and a sequence of eigenvalues uniquely determine a linear differential 
operator, possibly of  infinite order. Thus to each element of  V N W corresponds a linear differential 
operator of  the form (4). Since we are only interested in elements of V A W, we will in the cases 
that in both constructions certain values of ~,, ft, or 7, can be chosen arbitrarily, take them to be 
the same in both constructions. Without loss of the generality we may assume that 

Ii ~12. 

3.1. The first construction 

In [3, Section 4.1] it was shown that if 

P~") (c , )¢O for all n ~ { l l , l ,  + 1,l, + 2 , . . . }  (8) 

holds, then the polynomials {P~(x)+ #Q,(x)}~0,  orthogonal with respect to 

c~(p, q) = (a, pq) + #p(t, )(C 1 )q(ll )(C 1 ), 

are eigenfunctions of  an operator L + #A with eigenvalues {2. + #~.}~o, where ~0 = 0, {~.}~.'=1 are 
arbitrary (if Ii > 0 )  and for n>l l  

= - ~j-1)*'-)-I tCl,,-l). (9) 
j=ll+l 

Similarly, if 

P~t2)(c2) + ktQ~n'2)(c2) ¢ 0 for all n C {•2, 12 + 1, 12 + 2, . . .}  (10) 

holds, then the polynomials 

P~'~(x) = (P.(x) + ktO.(x)) + v(R.(x) + ItS.(x)), n E {0, 1,2 . . . .  }, 

orthogonal with respect to (3) are eigenfunctions of  an operator (L + ~A) + vB(/,) with eigen- 
values {2. + #a. + vfl.(/z)}.~ o, where ~O(~)~--O,{~n(12)}ln2=1 can be chosen arbitrarily (if 12>0), 
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and for n > lz 

\ r,(12,12 ) I f  ~ fl.(~) = 3,,(~) + (,~j + l , ~ j -  , z j - , -  ~ j - t ) ~ , ) _ , ,  ~,c2;~), 
j=12+l 

where G,(x, y; It) is given by (6). We choose flj(#) = flj +/*2j for j E { 1,2,. . . ,  12} (if 12 > 0), hence 
linear in #. We find for n > 12 

fl.(~) = fl;2 + m',2 + ~ (4 ~-J-, - ) K ) : ;  { "  ;'~ (c2,  c2 ) 
j=/2+l  

- ,~j- l ) t t~j_t  (Cl,Cl)A)_1 tCz,,.Z)-- (g~]t2)(cl,c2))2]. 
j=12+l 

It follows that the eigenvalues of the operator L -4- #A -4- vB(#), which is linear in v, can be written 
as 

2. + l~Ot. + vfl. + l*VT., 

where {~.}~.'--t are arbitrary (if l, >0) ,  ~. is given by (9) for n>l,.{fl.}t.~=, are arbitrary (if 12 >0)  
for n > 12, 

/~j_l),t~.j_ 1"~I''(12'12)1" ~,t.2, C2 ) , ( 1 1 )  

j=12+l 

{7.}~=1 are arbitrary (if lz >0) ,  and for n > l z  

7. = Yl2 + Z ( 2j - 2 j _ , ) [ K ) _ ,  (,,,,,) (c , , c , )K j_  1 (,2,,:) (c2, c2) - (K)t_';':)(c,,c:))2]. ( 12 )  
j=12+l 

3.2. The second construction 

If 

P~':)(c2)¢0 for a l l n E { 1 2 , 1 2 + l , 1 2 + 2 , . . . }  (13) 

holds, then the polynomials {P.(x) + vRn(x)}n~=O, orthogonal with respect to 

dp*(p,q) = (a, pq) + vp(t2)(c2)q(t2)(c2), 

are eigenfunctions of an operator L -4- vB* with eigenvalues {.~. -4- vfl.}.~ o, where fl0 = 0, {fl.}t~ are 
arbitrary (if 12>0) and for n>12 we have (11). Similarly if 

P~6)(c,) .4.vR{.")(c,)¢O for all n E { l , , l ,  4- 1,ll -4-2 . . . .  } (14) 

holds, then the polynomials 

e~'~(x) = (Pn(x) -4- yR.(x))  ÷ l~(Q.(x) -4- vS.(x)),  n • {0,1,2,...}, 
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orthogonal with respect to (3), are eigenfunctions of an operator (L+vB*)+#A*(v )  with eigenvalues 
* oo {2, + vfln + p~, (v)},= 0, where c~*(v) * " =0 ,{~ , (v )} ,=  1 can be chosen arbitrarily (if II >0) ,  and for 

n>ll  

~ ( Y ) = O { ~ l ( l " ) - } -  (t~j'Jf- Y~j ~j-1 Y~j- l ,~ j - -  1 ) ( C I , C 1 ; Y ) ,  
j = / l + l  

where G*(x,y; v) is given by 

* P'*V(xlP2V(Y) 
G, (x, y; v)= i=0 ~b*(p'*v'p/*v)' 

with Pn*V(x)=P,(x)+vR,(x). For G*(x,y; v) a formula analogous to (7) holds. We choose ~*(v)=  
~j+vTj for j C  {1 ,2 , . . . , l l}  (if 11>0), hence linear in v. We find for nC{l l  + 1,ll + 2,... ,12} (if 
Ii <12) 

", r.,'(ll, II ), ~ x ~@n(Y)'~-O~l, -}- Y~I, + ('~j -}- YJ~j -- "~j--I - Y / ~ j - I ) / ~ j - 1  tCl,Cl) 
j = l l + 1  

and for n > 12 

: + + 

j = h + l  

"}-Y ~ (~J ~j_l)[K(ll~")'c c ~-r*"(",l') " - -  I, 1, 1) /kj_-  1" 1,C2, C2)-- (K(11~12)(Cl,C2))2]. 
j=/2+1 

It follows that the eigenvalues of the operator (L + vB*)+ / ,A*(v ) ,  which is linear in /~, can be 
written as 

2. + # ~  + vfl. + ltVyn, 

where {~.}~.'=1 are arbitrary (if 11 >0) ,  ~. is given by (9) for n>ll ,{fl .}~=l are arbitrary (if lz>O), 
ft. is given by (11) for n>12,{7.}t.'=~ are arbitrary (if ll >0) ,  in the case that 11 <12 for nE {ll + 
1, Ii + 2 , . . . ,  12} the values of 2. are given by 

t'J-1)t~)-I ...-(z,,t. ). tel,el) (15) 
j = l l + l  

and for n > 12 they are given by (12). 

3.3. Conclusion 

Let the conditions (8), (13), (10) and (14) hold. We see that if the arbitrary values {~k}~'-_l and 
{flk}~l are chosen the same in both constructions, then all the other values of ~k and flk remain 
the same in both constructions. In the first construction the values {Tk}kt~l were arbitrary, in the 
second {7k}~'=1, whereas if Ii < 12 the values 12 {7k}k=l,+l were given by (15). In both constructions the 
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higher values of  ?k are given by (12). It is clear that the second construction imposes the strongest 
conditions. We may conclude that if the eigenvalues are taken as in the second construction, then 
the corresponding differential operator will depend linearly on /~ and v, hence it will be of  the 
form (4). 

4. General form of the operators 

Let ~ denote the vector space of  polynomials with real coefficients. For k E { 1,2, 3, . . .} we define 
the operator Jk on ~ by 

JkP,(x) = 6n, kP~(x) for all n C {0, 1,2, . . .} 

and the operator Kk on ~ by 

KkP~(x) = 0 for all n E {0, 1 , . . . , k  - 1 }, 

KkP~(x)=P,(x)  for all n E { k , k +  1 , k + 2  . . . .  }. 

Further we define the operator Mk on ~ by 

MkP~(x)=0  for a l l n E { 0 , 1 , . . . , k - 1 } ,  

MkQn(x) = 6n,kQ~(x) for all n E {k,k + 1,k + 2,. . .} .  

and the operator Nk on ~ by 

N k P , ( x ) = 0  for a l l n C { 0 , 1 , . . . , k - 1 } ,  

NkR,(x)  : R , ( x )  for all n E {k,k + 1,k + 2, . . .} .  

Let I~ ~< 12. The operator A can be put in the form 

11--1 

A = A o  + ~ ~kJk + ~t,Kt,, 
k=l 

where {~}t,'_ 1 are arbitrary (if ll > 0) and the operator Ao is uniquely determined by 

AoP~(x) = 0 for all n ~ {0, 1 , . . . ,  l~}, 

AoQn(x) = ~°Qn(x) for all n E {l, + 1, l, + 2, l, + 3,. . .},  

where for n > Ii 

o 
a n = - -  ) l ~ j _  1 ( C I , ~ I J .  

j= / l+ l  

The operator B can be put in the form 

12--1 

a = no + ~ / ~ k J k  + ~t, Kt2, 
k=l 
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where {fl,}t,~ I are arbitrary (if 12 > 0 )  and the operator Bo is uniquely determined by 

B oP , (x )=0  for all n C {0 ,1 , . . . ,  /2}, 

BoR,(x) = fl°R,(x) for all n E {/2 + 1, 12 + 2, 12 + 3,. . .},  

where for n > 12 

o ~ (2j " "K(;";a)~c e ~  - z j _ , )  2 . . . .  • 

j=/2+1 

The operator C can be put in the form 

/i--1 12--1 
0 

C = C 0  -~ ~ ])kJk "-J[- ])II(KII - KI2+1 ) ~- ~ ])°Mk + ]), N,a, 
k=l k=l~+l 

where {]),}/,'= 1 are arbitrary (if ll > 0) and in the case that ll < 12 for n C {ll + 1, Ii + 2 , . . . ,  12} 

? /Jj-1) j-1 . :  - -  ~ . , K ( I h f i  

j=ll+l 

If  12 > Ii the operator Co is uniquely determined by 

CoP,(x) = 0 for all n E {0, 1, . . . ,  12}, 

CoS,(x) = ])°S,(x) for all n E {12 + 1,12 + 2, 12 + 3,. . .},  

where for n > 12 

])On = ~ ( 4  _ _  4_l-ffv(l,,l,)t~/t,~.j -1 ~'t'l' t~lfZ~'J - 1 ~  ,v(I,.,12)l~l.t.2, C2) -- (K(1']12)(c1,c2))2]._ (16) 
j=la+l 

If  l~ = 12 the operator Co is uniquely determined by 

C o P , ( x ) = 0  for all nC{0 ,1  . . . .  , ll  + 1}, 

CoS,(x) = ])°S,(x) for all n E {ll + 2, Ii + 3, l, + 4, . . .},  

where for n > l l  + 1 (16) holds. 

Remark. If  for a certain value n =no  one of the conditions (10) and (14) is not satisfied, then it is 
possible that some more freedom is available in the choice of  the eigenvalues for n = no in the first 
or second construction. However, if (8) and (13) are both satisfied, this will only lead to a more 
general operator of  the form (4), if (10) and (14) both fail for the same value n =no,  due to the 
fact that the eigenvalues must be the same in both constructions. 
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5. Applications 

5.1. Sobolev-type Laguerre polynomials 

l Consider the Sobolev-type Laguerre polynomials {L~'M'N(x;k, )},=0, which are orthogonal with 
respect to the inner product 

// 1 f (x )g(x)x% -x dx + MDkf(0)Dkg(0)  + NDtf(0)Dtg(0) ,  <f '  g> - + 1) 

with M > 0 ,  N > 0 ,  e > - l ,  k, l E { 0 , 1 , 2  . . . .  }, k < l .  By the results of Section 3 it follows that 
there exist linear differential operators A(~,k,O,B(~,k,~),C (~,k,o and numbers i~,(~,k,t)l~ ~n(~,k,~)l~ I - ~ n  J n = 0 '  I_k 'n  Jn=O~ 

{~,(~,k,t)l~ such that for n = 0, 1,2 the polynomials {L~,M,N)(x;k, I)}~0 are solutions of the dif- ~'n J n = 0  " " " 

ferential equation 

[(L (~) - nl)  + M(A (~'k'0 - ~ 'k ' t ) I)  

+ N(B (~'k'0 - fl~'k'°l) + MN(C (~'k'0 - ?~'k't)I)]y(x) : O. 

Here L (~) is given by 

L (~) := - x D  2 - (~ + 1 - x)D 

and 

A(~'k'°=~-~a~(x;~,k, 1)D i, B(~'k'O= b~(x;c~,k, I)D i, C(~'k '°=~_ci(x;~,k,  I)D ~. 
i = 1  i = 1  i = 1  

We have to take .(~,k,o n(~,k,o .(~,k,o % =vo  =Yo : 0  and the values .f~,(,,k,t)~k (if k>O),  ~R(.,k,t)U t ~ n  J n = l  L P ' n  J n = l  ' 

{~,(~,k,t)'tk (if k > 0 )  can be chosen arbitrarily. The form of the operators can be determined by t ' n  J n = 0  

means of Section 4. Further we state the following conjecture. 

Conjecture 1. In the case that all the values t~.nY~("k't)lkjn:~ (/f k > 0 ) ,  /n(~,k,0U ~,(~,k,~)lk (tf I . P n  J n = l ~  I J n  J n = l  

k > 0 )  are taken to be 0 and ~ is a nonnegative integer, the correspondin9 linear differential 
operator 

L (~) + MA(o "'k'O + NB~ " ' '0  + MNC~ ~'k'̀ > 

is o f  finite order 4~ + 6 + 4k + 41. In all the other cases the differential equation is o f  infinite 
order. 

In [10] this conjecture has been proved when k = 0 ,  l =  1. One of the problems there was to 
prove the existence of the linear differential operators. This is now a consequence of the results of 
[3] and of this paper. Here the conditions (8), (13) and (10) are always satisfied. Condition (14) 
becomes 

(nn+C~) [ 1 - - - N  ( n + c ~ + l ) ]  ~ + 1  n - 2  5 0 ,  n C {2,3,4 . . . .  }. 
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This is always true if N > ~ + 1; for smaller values of  N this may not be true for one specific value 
of  n. 

The case of  one perturbation ( M = 0 ,  N > 0  or M > 0 ,  N = 0 )  has been treated in [4]. 

5.2. Sobolev-type Meixner polynomials 

In [5] Sobolev-type Meixner polynomials are considered, orthogonal with respect to the inner 
product 

OO 

( f ,g)  =(1  - c)~ Z (fl)xC' x-----~, f (x)g(x)  ÷/ t f (0 )g(0)  + vAf(O)Ag(O), (17) 
x = 0  

f l>0 ,  0 < e < l ,  # >~ 0, v ~> 0. It was shown that the polynomials {MI,',V(x;fl, c)}~o, which are or- 
thogonal with respect to (17), are eigenfunctions of  a difference operator of  the form L + pA in the 
case p > 0, v = 0 and of  a difference operator of  the form L + vB in the case /.t = 0, v > 0. In both 
cases these difference operators are of  infinite order. By the results of  this paper we may conclude 
that the polynomials {M~,V(x;fl, c)}~o are eigenfunctions of  linear difference operators of  the form 
L +/.zA + vB + pvC. The operators A and B were shown to be of  infinite order in all the cases. 
As in the preceding example the conditions (8), (13) and (10) are always satisfied and condition 
(14) may fail for one value of  n. Similarly linear difference operators can be investigated having 
the polynomials, orthogonal with respect to inner product 

( f ,  g) = ( 1 - c)/~ 

c' 

x ~  f (x)g(x)  + pAkf(O)Akg(O) + vAtf(O)Atg(O), 
x = O  

9 > 0 ,  O < c < l ,  p~>O, v~>O, k, lE {0, 1,2,. . .},  k<l ,  as eigenfunctions. 

5.3. Jacobi type polynomials 

In different papers (see [7, 9]) the problem is considered of  finding differential equations for the 
generalized Jacobi polynomials (Jacobi type polynomials) {P~'~'M'N(x)}~=O, which are introduced in 
[12] and are orthogonal with respect to the inner product 

F(~ + fl + 2) / 1  
f(x)g(x)(1 - x)~(1 + x) a dx 

( f ,  g) = 2=+/3+ , + + 1) 

+M f ( -  1 )g( -  1 ) + N f (  1 )g( 1 ), 

where 0~ > -  1, fl > -  1, M >~ 0, N >~ 0. From the results of  this paper we may conclude that there 
exist unique linear differential operators A ='/~, B "'/~ and C ='~ and numbers {~,},°°__0, {ft,},°°__ 0 and {7,}~0 
such that the polynomials {P]'~'M'N(x)}~O are eigenfunctions of  the operator L =,e + M A  ='tj + N B  "'~ + 
MNC ~,~ with eigenvalues {2, + M~, + Nil, + MNT,},°°__ 0. Here 

L ~'~ = ( x  2 - 1 )D 2 + (~ - fl + (a + fl + 2)x)D 

and 2n =n(n + o~ + fl + 1) for nE  {0, 1,2 . . . .  }. The conditions (8), (13), (10) and (14) are always 
satisfied in this context. Very recently Koekoek and Koekoek [10] succeeded in showing that in 
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the case that 0c and fl are both nonnegative integers the operator A ~'~ is of  finite order 2fl + 4, the 
operator B ~'~ is of  finite order 20~ ÷ 4 and the operator C ~'~ is of  finite order 2~ ÷ 2fl + 6. Note that 
in the case that 0~=fl and M=N,  a simpler operator is known (see [8]). 
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