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In this paper is introduced a system of polynomials orthogonal with respect to
the classical discrete weight function for Meixner polynomials with an extra point
mass added at x =0. A difference operator of infinite order is constructed for which
these new polynomials are eigenfunctions and a second-order difference equation is
given with polynomial coefficients, n-dependent and of at most degree 2, which
these polynomials satisfy. © 1994 Academic Press, Inc.

1. INTRODUCTION

For the polynomials {L>"¥(x)}>_, that are orthogonal on [0, ) with
respect to the weight function

1

@, —x _ >
F(oz+l)xe + N é(x), a>—-1, N=20

(see Koornwinder [7]), Koekoek and Koekoek [6] found a differential
equation of the form

N Y ai(x) yOx) +xp"(x) + (a+ 1= x) y'(x) + ny(x) =0,

o

o

i

i

where the coefficients a,(x), ie{1,2,3,..}, are independent of » and
ag(x)=ay(n,«) depends on n but is independent of x. For a more
constructive approach to this differential equation see [2].

At a conference held in Erice (May 1990), Askey [1] posed the problem
of finding difference equations of a similar form for generalizations of the
discrete orthogonal polynomials that are orthogonal with respect to a
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classical weight function at which a point mass at the point x =0 is added.
In [3] a solution to this problem for Charlier polynomials is given and in
the present paper we deal with the more complicated case of Meixner poly-
nomials. Moreover, we construct a second-order difference equation with
polynomial coefficients, n-dependent and of degree at most 2, which the
generalized Meixner polynomials satisfy.

2. MEIXNER POLYNOMIALS
Taking a normalization slightly different from the one used in [4], we

define the classical Meixner polynomials M, (x; f, ¢) by the generating
function

i (x; B, c) "= (1-9‘\'(1—1)“-*”, (2.1)
from which it easily follows that
. —_f n “ X _x_ﬁ —k
M, (x: B, ) =(~1) Z<k)( e )c 22)
- ff 2F1< ’ﬁ o 1-%), n=0,1,2 ... (23)

Note that (2.2) can be used for all values of § and ¢ except ¢ =0. Formula
(2.3) is not defined for =0, — 1, —2, ..., and for ¢ =0. Obviously

M,,(O;B,c)=(n3", n=0,1,2, ... (24)

Meixner polynomials are closely related to Jacobi polynomials. In fact, we
have

M, (x;B,c)=(—c) " PE=mA-D(1_2¢), n=0,1,2,... (2.5)

For >0 and 0 <¢< | the Meixner polynomials satisfy the orthogonality
relation

(1 —C)ﬁ i M,,()C,‘ ﬂ, C) Mp(x;ﬂ’ C) C-"(ﬂ')x
X

np=0,1,2,.. (2.6)
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and the second-order difference equation
x AVy(x)+ [Be—x(1—c)] Ay(x) + n(1 —c) y(x)=0, (2.7)

where Ay(x)= y(x + 1) — y(x) and Vy(x)= yp(x)— y(x—1).
Direct consequences of (2.1} are the following formulae which are valid
for all real x, f, ¢ (except c=0), and v, and for all ne {0, 1,2, ..}:

n k
M,(x+v;f—v,c)= 3 (v)(_%) M, _.(x;Bc) (2.8)

k=0 k
My(x;B—v.c)= Y (;)(—l)an_k(x;ﬂ, ). (29)
k=0
AM, (x; B, c)=<f-;—1) M, (x;B+1,¢). (2.10)

In the sequel we always take >0, 0 <c<1, and since ¢ is kept fixed
during the whole paper we simplify the notation putting M, (x; ) instead
of M,(x; B, ¢).

3. GENERALIZED MEIXNER POLYNOMIALS

Let P denote the space of all polynomials with real coefficients. We
consider the inner product

¢*(B)«

x!

e gy =1 S s ) o)

x=0

+ Nf(0) g(0), N20,f, geP. (3.1)

We show that coefficients 4,, and B, can be chosen in such a way that the
polynomials MY (x; )= MY (x; B, c) that are orthogonal with respect to
the inner product (3.1) can be written as

M:/(x’ﬂ}=AnMn(x;ﬁ)+BnMn—l(x—19ﬁ+1)

Suppose that # > 2 and p(x)= xq(x) with degree [g(x)]<n—2. Then we
obtain using (2.6)

{(p(x), MY (x; B)>

=B,(1—c)* i
x=0

T g M, (e 1 4 1)

& T+

=B,(1-c)cp ). 1)1 g(x) M, _(x—1;5+1)=0.
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Hence for n = 1 the coefficients 4, and B, have to fulfill only the following
condition:
0=<1, M} (x;8)>

B, (1-op Y, S

!
x=0 X

+NA,M,(0;B)+ NB,M,_(—1;8+1)

M, (x=1;6+1)

By using (2.8) with v= —1 and (2.6) it follows that

ixw M, (x—1;B+1)=c """,

So a possible choice for 4, and B, is A,=Nc""'M, ,(—1;8+1)+1 and
B,= —Nc"~'M,(0; B), and we put

MY(x;By=[Nc""'M,_(=1; B+ 1)+ 1] M,(x; )
~Ne" M (0: )M, (x—1;8+1), n=0,1,2,...
(3.2)

Here and m the sequel we use M _,(x; /3 ¢)=0, k=1,2,... Note that
MO%(x; B)=M,(x; B) and that MY (0; 8)=M,(0; B).

4. THE DIFFERENCE EQUATION

We are looking for a difference equation of the form

Nz a;(x) Ap(x) 4+ x AVy(x) + [Bc— x(1 —¢)]

i=0

x Ay(x)+n(l—c) y(x)=0 (4.1)

for the polynomials {M N(x; By}, given by (3.2), where the coeflicients
{a;(x)}2 ={aix, B, )}, are functlons of x, B, and ¢, but are inde-
pendent of the degrec n. Moreover, since we want the polynomials
{MY(x;B)} ., to be eigenfunctions of a difference operator, we assume
ag(x)=ay(n, B, c) to be independent of x but dependent on n. So we insert

y(x)=M}(x;B)
=[Ne""'M,_ (-1, B+ 1)+ 1] M, (x;B)
—NC"ian(O;B)Mnil(X—l;ﬂ-F1)
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into (4.1). Using the difference equation (2.7) for the classical Meixner
polynomials, (2.10), and (2.8) in the case v=1, we find

NINE™'M, (~1;8+1)+11 Y a,(x) A'M, (x; B)

SNTUML0:6) Y, @) AM, (x— 1 B+ 1)
i=0
~Ne" ="M, (0; B)(1—¢) M, (x—2;f+2)=0.

This relation has to hold for all values of n, §, ¢, and N> 0. Its left-hand
side is a polynomial in N, so each coefficient must be zero. Thus we find

M, (—LB+1) Y a(x) AM, (x; B)

=0
M08 Y a(x)AM, (x—1;8+1)=0  (42)
i=0
and

a(x)A'M,(x; B)—c""'(1—c) M, (0; /)M, (x—2;8+2)=0.

M8

i=0

This leads to the following systems of equations:

S a,(x) AM, (x; B) = "~ (1 = ¢) M,,(0; B) M, _, (x—2; B +2),
=0 (4.3)

i a;(x)AM,_(x—1;B+1)=c"""'(1-¢)
i=0

XM, (-1;B+1)M,_(x—2;8+2)
(4.4)

Formula (4.2) can be rewritten as

a;(x) [M,_(=1;+1)A'M,(x; f)

1

gl

1

—M,(0; ) A'M, (x—1;8+1)]
=ao(n, f,c) [M, (x—1;8+1)M,(0; B)
—-M,(x;B)M, (—-1;8+1)]
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The right-hand side is 0 for x =0 and since this holds for all values of n,
B, and ¢, we conclude step by step that a;(0)=a,(0, 8, ¢)=0 for all
ie{1,2,..}. Therefore, setting x =0 in formula (4.3), we obtain

ag(x)=ag(0)=ao(n, B, c)=c""'(1—c) M, (=2;8+2), (45)

and Eqgs. (4.3) and (4.4) can be rewritten as
Z X)AM, (x; B)=c"" (1 —¢) [M,(0; B) M,,_,(x—2;+2)

—M,(x; )M, (—-2;+2)], (4.6)

and

S a(x) AM,_ (x—1;5+1)

i=1
=) M, (- B+ DM, (x—2:+2)
M, (x-1;+1)M, (-2;8+2)] (4.7)

We now show that any solution of the system (4.7} also satisfies (4.6).
Since by (2.8) with v=1 we have

e}

T a,(x) AML(x: B)= Y a(x) AM, (x—1: B+ 1)
i=1

i=1
1 oAq
;Zal n l(x_lsﬁ-}'l)a

it remains to be proved that for n>1,
=) [M (0, B) M, (x—2;p+2)-M,(x; Y M, _,(—2;5+2)]
=c"l—c) [ M (-1, B+ 1) M (x=2;+2) - M, (x—1;+]1)
XM,(=2;+2)]—c""*(1—c) [M,_(=1;8+1)
M, ((x=2;8+2)-M, (x-1;8+1)M, (=2;+2))

This can be shown by combining terms and applying the formula (2.8) with
v=1 for different values of x and f.
5. A FORMULA FOR THE COEFFICIENTS a,(x)

We now solve the system (4.7). Writing »n instead of n—1 and using
(2.10), we get
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i a;(x) (c; 1>1an,-(x— 1;8+i+1)

=c"(1—c)[M,(=1;B+1) M, (x—2;5+2)
M (x=1; B+ )M (=2;8+2),n=1,2...  (51)

If we consider a,(x)(1 —1/c)’ as unknown, the matrix 7 of the system
(5.1) is triangular with entries ¢, for which we have

=M, (x—1;8+j+1), for i,j=1,2,...
We show that the entries u; of the inverse matrix are
u; =M, (—x+1;—-§-1), for 4, j=1,2,... (5.2)

In order to prove (5.2) we use the generating function (2.1) to find that

Y M (—x+ 1 —f=i)" Y M, (x— 1L f+j+ 1) =(1~0)" /L
n=0 n=0
Equating the coefficients of # =/ (i = j) on both sides we obtain

S M, (—x+1; =B—i)M, ,(x—1;6+j+1)=0,.
k=j

We conclude that the unique solution of the system (5.1) reads

a,-<x>=(cjl)" S M, ((—x+1;—f—i)

xc*(1—c) [M(=1; B+ )M, (x—=2;8+2)
M, (x—1;0+1)M(-2;5+2)], i=1,2,... (5.3)

The difference equation (4.1), with a,(x) given by (4.5) and a,(x) by (5.3)
for i=1,2, .., is of infinite order for all values of § and ¢ (0 <c<1) and
N>0. We prove this by evaluating the coefficient k;,=k,(8, ¢) of x' in
a,(x), iz 1. From (2.3) we derive that

1 -1\
M, (x; P, c)=m (c " ) x" + terms with lower powers of x. (5.4)

Furthermore, in the case v =n, formula (2.8) can be rewritten as

(—e)y My(x+n:f—nc)= 3 (Z)(—e)kMk(x;ﬂ, o (55)
k=0

409:184/3-5
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Hence we can write, using (5.3), (5.4), (5.5), and (2.8) with v=1
c \ 1 c—1\"*
k= - k(1 —
=(5) Sm(-) oo
xl(c—l k
kK'\ ¢

) [My(~1; B+ 1)~ My(=2;8+2)]

1 ™M~

1
. )Z () (=) [My(=1: B+ 1) = My(—2; B +2)]
c'(1—r¢)
s

IM(i—1;8—i+1)—-M,(i

i—1 _1
=C—-—(;——2M,-_,(i—2;ﬁ—i+2).

—2;p—-i+2)]

(5.6)

Hence using (2.5) we obtain

1-
ki= (= 1) == PZpP 00

l! i—1 —ZC)

1y
= PES 2 ),

In particular, k, =c¢— 1. Expressing the Jacobi polynomials in terms of
.F’s and using Euler’s transformation

] b — U, _b
v (“ z>=(1—z)"*"-”2F1 (c @
C C

we obtain the relation

2P 0z) = (n+ Bz + 1) PY2),

n—1

Hence

1
k(ﬁ ) E.—((_,—:l—))P(ﬂ ’*“)(2C—1),

for =2 (5.7)
In order to show that the difference equation (4.1) is of infinite order we
prove that no pair of consecutive coefficients (%, k;,,) can vanish

simultaneously. This even holds for arbitrary complex values of f§ and ¢
provided that fc(c—1)#0.
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We start with two known relations for Jacobi polynomials (see [5,
p. 173, formula (33), with » replaced by n— 1, and formula (35)]):

nP*9(z)
= —(B+n) PPi2) + 3(o+ B+ 2n)(1 + 2) PF V(z),

(a+ﬁ+2n)P£,°“l‘m(2)
= (a+ B+n) PEP(2) — (B+n) PA2).

We eliminate P{*#)(z) from these two relations to find

n—1

(B+n) PPN z)+nP 1P (z) = %(a +B+n)(1+z) P=At1(z)

d
=(1+2) = P~ 0(z),
dz
and we take the special case =1, n:=i—1,a:=f—i+1:
. . d .
PS4 (i—1) PEED ()= (1 + 2) = PPN (2). (5.8)
z
Now suppose that k,(f,c)=k,. (B, c)=0 for some i>2. Putting for
convenience 2¢ — 1 =z, we then get from (5.7)
PPy =pPP " (z)=0  for some i>2.

Hence from (5.8) we conclude that both P “"(z) and its derivative
vanish. Since the Jacobi polynomial satisfies a second-order differential
equation, this is impossible if z is a regular point of the differential equa-
tion, for then all its derivatives would vanish. The only singular points are
z=—1 and z=1 corresponding to ¢=0 and c=1.

It is well known that the Charlier polynomials C!{*)(x) can be regarded
as limits of Meixner polynomials:

a\” a
C!“(x)= lim (——) M,,(x; B, —).
po\ B i
By using this relation in (4.5), (5.3), and (5.6), we retrieve the results of [3]
for generalized Charlier polynomials.

6. A SECOND-ORDER DIFFERENCE EQUATION

In this section we show that the polynomials MY (x; B, ¢) satisfy a
second-order difference equation with polynomial coefficients, n-dependent,



462 BAVINCK AND VAN HAERINGEN

and of at most second degree. We construct this difference equation in a
way similar to the method derived in [7, Prop. 6.1], for obtaining differen-
tial equations for systems of orthogonal polynomials.

First, using (2.10) twice, we write (3.2) in the form

M (x; B)y=[Nc""'M, (=1 B+ 1)+ 1] M,(x—1;B)

+[1—’N < 1M,,(-l;ﬁ)]AMn(x—1;B), n=0,1,2, ..
c—
(6.1)
and from (2.7) it is not difficult to derive that
e(x+ )M, (x—1;8)+ [(c— D(x—n)+cpIAM,,(x—1; )
+(I—~c)aM, (x—1;8)=0, n=0,1,2, ... (6.2)
If we put
u:=M"N(x;p), pi=14+Nc""'M, (—1;8+1),
" (6.3)
qi=1—NC_1Mn(—1;ﬂ), yi=M,(x—1;8),
(6.1) and (6.2) can be rewritten as
u=py+qAy, (6.4)

(ecx+ef)Ay+{c—Dx+c(B—n)+r]Ay+(1—c)ny=0. (6.5)

We assume g # 0. We eliminate Ay and A%y from (6.4), (6.5), and the equa-
tion obtained by taking the difference of (6.4). This leads to the relation

glex + cf) Au+(ax + b)u+(dx+ f) y=0, (6.6)
with
a:=qlc—1)—pc, b:=pc(g—p)+gn(l—c), d:=pic—pg(c—1),
f:=p*cp—pg(cf—cn+n)+qg* 1 —c)n (6.7)

Next we eliminate y and Ay from (6.4), (6.6), and the first difference of
(6.6). We finally obtain

glcldx + fY(x+B+1) A%
+[glax+a+b+qgc)dx+ f)+qgc{x+ B)dpx +dp+ fp—dg)] Au
+[(dx+ag+d+f)Ndx+ )+ (ax+b)dpx+dp+ fr—dg)]u=0,

where u, p, and g are given in (6.3) and q, b, d, and f in (6.7).
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