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Abstract. The object of this paper is to find an asymptotic formula for
determinants of finite dimensional Toeplitz operators generated by a class

of functions with singularities. The formula is a generalization of the Strong

Szegö Limit Theorem.

1. Introduction. For a function a E LX(SX) consider the family of matrices

Tn[°] " (CJk)>       Jfk-0.n,

where

The matrices T„[o] are called Toeplitz matrices and their determinants Dn[o]

are called Toeplitz determinants.

The asymptotic behavior of these determinants has been the object of study

by many people for some time. The basic problem has been to determine the

asymptotic behavior given a set of conditions for a.

The first main result was proved by Szegö [8, §5.5]. He originally proved

that if a was positive and had a derivative satisfying a Lipschitz condition,

then for D„[a] one has the asymptotic formula

(1.1) Dn[o]~E[o]G[o]"+x,      n->oo.

The factors E[a] and G[a] are defined by

00

G[a] = exp i0,      E[a] = exp 2 ^V-*»
*-i

where

log o(0)= 2 *«".
A:—— ao

(1.1) has since been shown to be valid for a's satisfying weaker conditions

We mention here only that it was proved by Hirschman [10] that if a satisfies
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34 ESTELLE BASOR

(i)      a(0)*0,

(h)     A_„<fl<7rargo-(0) = O,

(m)      In +
— CO

then (1.1) holds.

We will, however, be concerned with o's where this formula breaks down.

To be more precise, suppose

R

(1.3) o(0) = t(9) Il (2 - 2cos(0 - e,)) "-(-e*9-9^) *>
r=l

where

(i)|arg(-e'(8-^)|<7r;

(ii) T(f?) satisfies (1.2(i), (ii));

(iii) r(9) has a derivative satisfying a Lipschitz condition with some positive

exponent;

(iv)Rar> -\.

The asymptotic behavior for this a (9) was investigated by Hartwig and

Fischer [6]. They conjectured that the correct asymptotic formula takes the

form

(1.4) E[r, a„ ..., a„ /?„ ..., ßr, 9X, ..., 9r] x n^-^G[r]n*1

where E[t, a,.ar, 9X,..., 9r] is some constant. They were able to verify

this in the case t(9) = 1, R = 1 and ar = 0. Moreover, they gave a heuristic

argument leading to a conjecture concerning the form of the constant in the

general case. More will be said about this later. Lenard [12] conjectured the

same result with ar > — \ and ßr = 0, and he was able to prove his

conjecture in the case t(9) = 1, R = 2, 9X = 0 and 92 = m.

A much more complete result was obtained by Widom [16] who showed

that if /?, = 0 then (1.4) holds. We should also remark here that in all of the

above special cases the constant was determined.

In [16], Widom also proved (1.4) with R = 1, a, ß real, and |a|, |jß| < \,

but did not determine the constant.

We shall prove (1.4) in this paper, with the additional restriction that ßr is

purely imaginary. Without this restriction, the arguments used in [16] for

R = 1, a, ß real, and |a|, \ß\ < \ do not extend to more than one point of

singularity.

Before we state the exact values of the constant, let us make the following

observations. It is no loss of generality to assume that G [a] = 1. We will do

this for the rest of the paper. And with our assumptions (1.2(i), (ii)) for r(9)

we have a factorization

2 |*| |c4 < oo,
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TOEPLITZ DETERMINANTS 35

t(9) = t+(9)t_(9)      withT*1 effw,   tzxEHx.

Recall /^ is the set of Lp functions on the unit circle whose Fourier

coefficients vanish for negative values of the index. Hp is the set of functions/

where/ G Hp. We define the factors t+ and t_ by

T+(0) = exp

where

10gT((?)=   Jjji».
— oo

Here we choose any continuous logarithm, and since G[t] = 1, we may

assume s0 = 0. The constant in (1.4) is then

E[r] n (1 - e^-V)-^^
r¥=s

(1.5) ><T[T+((>rya' + ß'T-(9rra'-ß'I[Ear,ß,
r r

where (|arg(l - eii,'-''r)\ < w/2).

Here

Eafi = G(l + a + ß)G(l + a - ß)/G(l + 2a),

where G is the Barnes G-function [1].

We shall now outline the sections of this paper. In §2 it is shown that for

\Rar\ < { and ß imaginary, the limit of Dn[o]n~^->^a'~ßr2) exists. The propo-

sitions in this section are taken from [16] but with certain modifications. The

restriction to imaginary ß actually makes things considerably easier.

In §3 a preliminary form of the asymptotic formula is determined. The

problem of finding the constant in the asymptotic formula is reduced to

finding one for

o-(0) = (2 - 2 cos 0)"(-<?'*/.

In this section we restrict ourselves to «, real and \ar\ <\. The reason we can

do this is the following. Suppose we think of a, as fixed and think of D„[o] as

a function of the a/s. It is easy to see that D„[a] is an analytic function of the

ar's for Rar > - \. Hence Dn[o]n~1,('^~ß') (written Sn[o] in what follows) is a

family of analytic functions. In §5 we will show that the family is uniformly

bounded on compact sets in Rar > — |. Hence, by the Vitali convergence

theorem and the existence of the limit already established for \Rar\ < \, we

will have the existence of the limit for a, satisfying Rar > — |, and this limit

must be an analytic function in the a/s. Thus we can say that when we are

,s,,e ¡kB t_(0) = exp -ike
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36 ESTELLE BASOR

concerned with the constant in (1.4) it is enough to consider or, real and

hl<*.
With these restrictions we obtain a preliminary form of the asymptotic

formula. In §3, computations that lead to this preliminary form contain

uniform asymptotic formulas for orthogonal polynomials with a weight

function of the form o. This is of independent interest. We should also

remark that the techniques used here are all borrowed from Widom [16], and

this preliminary form verifies the conjecture of Hartwig and Fischer.

In §4 we consider the function

a(9) = (2-2cos9)a(-ei9)ß,      \Ra\<\.

Let Dn[a] denote Dn[o] for the above a. In §4 it is shown that

7>„_,[a + l]«-2«-'       T(l + « + ß)T(l + a - ß)

«-™ /5^V¡ r(l + 2a)J7(2 + 2a)       *

This implies that the factor Eaß in (1.5) satisfies the difference equation

r(i + « + j8)r(i + a - ß)
E*+hß T(l + 2a)r(2 + 2a) a'ß~

We should remark here that this is not a surprising result. Leonard showed

that if ß = 0 then

Eatß = G(l + a)2/G(l+2a),

where G is the Barnes G-function [1] mentioned previously. It is also easy to

show from the computation of Hartwig and Fischer that if a = 0 then

Eaiß~G(l + ß)G(l-ß).

Since (7(1) = 1 one might guess

Ea,ß = G(\ + a + ß)G(l + a - ß)/G(l + 2a).

Now the Barnes (7-function is an entire function of order 2 with the following

properties:

(i)G(-n) = 0,n = 0,1,2,3,...,
(ii) G(—n) is a zero of order n + 1,

(iii) G(z + 1) = r(z)C7(z).
If the guess is right the difference equation should follow.

§5 ties the loose ends together. Here it is shown that S„[o] is uniformly

bounded on compact sets in Ra > — j. This might seem an awkward place

to include this result, but the proof follows naturally after the difference

equation section and we would be confronted with too much repetition

otherwise.

Then it is shown that Eaß is actually (7(1 + a + ß)G(l + a - ß)/G(\ +
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TOEPLITZ DETERMINANTS 37

2a). This is really not too difficult once one has the difference equation.

We end this introduction by stating some notation that will be used

throughout the paper. T„[o] can be thought of as an operator on a space of

sequences {a0,...,a„) or the space of polynomials <70 + • • • + a„z" of

degree at most n. The latter interpretation will be used most frequently.

We should also note here that a can be written as

TT /        z \"r + Pr I        Zr \a'~ßr

'<",?,(*-t)    ('"i)

where z = e'8 and zr = e'9'. Here (1 - z/zr)ar+ßr denotes the limit on the unit

circle of that branch of the function which is analytic in \z\ < 1 and takes the

value of 1 at z = 0. The term (1 — zr/z)a,~ßt is defined similarly. Both of

these representations will be used.

The last representation allows us to write o(9) as a product o+(9)a_(9)

where

(1.6) o+(0) = r+(0)ll(l ~jj+ßr       (z = «*)

and

(1.7) a_(0) = T_(0)ll(l - jf (z = eie).

Here t+(0) and t_(0) are the factors of t defined for (1.4). Since G[t] = 1,

o+, a_, t+ and t_ can all be assumed to have 1 as the constant term in their

Fourier expansion.

Finally, the kth Fourier coefficient of a function/will be denoted by/*.

2. Existence of limSJo-] when \Rar\ < \. The existence of limn_œS„[o] can

be proved by the methods of [16] with obvious modifications. In this section

we shall show that for some 8 > 0,

(2.1) ^M -l-SW-A^ + oOr1-1).
unla\ r

It is clear that (2.1) implies the existence of the above limit and we proceed to

derive it.

Suppose now that the function o(9) possesses a factorization o(0) =

a+(9)a_(9) where afx E H2, ozx E H2, o+/o_ E LM, a_/a+ E Lœ. We

define the following operators:
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()+:

L2 -» H2, ( )   is projection onto H2,

Li^zH» (f)+ -/-(/)",

_L2-*z//2, (/)_=/-(/)+,

U:zH2^>zH2, U:<t>^>(z-"<¡>o_/o+)+,

V:zH2^zH2, V:ip^>(z">po+/o-.)_.

Notice the dependence of U and V on n. In [16] proofs are given for the

following two propositions.

Proposition 2.1. If the operators I- UV: zH2^*zH2 and I- VU:

zH2-*zH2 are invertible, then Tn[o] is invertible andp = Tn[o]~xq (p and q

are polynomials of degree at most n) is given by

p = q/o + <¡>/o+ +z"\p/o_,

where <b and \b are the solutions of

(2.2) (7 - VU)<b = -(z"(o+/o_)(z-"q/o+y )_,

(2.3) (7 - UV)) = -(z-"(o_/o+)(q/o_)+ )+.

Proposition 2.2.Assume that o_ and o+ have constant term equal to 1 in

their Fourier expansion. Then if the operators I — UV and I — VU (and hence

Tn[o]) are invertible we have

Dn-i[°]    , ,  i  r „r/   °+(z) jn1       fil Oj

Dn[o] 2mJ^   ^>o_(z)

where \p(z) corresponds to q = 1 in (2.3).

In order to apply Propositions 2.1 and 2.2 to the case in question, we use

(1.6) and (1.7) for the factors o+ and o_. We can also assume, as noted

previously, that the factors o+ and o_ have constant term equal to 1 in their

Fourier expansion. The rest of this section will be devoted to proving

Proposition 2.3. As one can easily see, Propositions 2.2 and 2.3 yield the

formula (2.1).

Proposition 2.3. For sufficiently large n, (I- UV)~X and (I- VU)~X

exist (and hence Tn[o]~x), and for some 8 > Owe have

h /_>« £$ * - - ? w - /■,>- + »<»-->.
where \p(z) corresponds to q = 1 in (2.3).

We begin by considering the operator Ka: L2(0, co)-»L2(0, co) where Ka

has kernel
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TOPELITZ DETERMINANTS 39

— m--2TK(x,y) = -n-2T(l + 2ß)T(l - 2/3)sinit(a + jß)sin w(a - ¿8)

-'o

z/z

(z-r^ + iy-2^(z+y+l)1+^'

Now we remark that Ka also depends on ß, but we suppress this dependence

since we are eventually going to think of Dn[a] as a function of the a/s. In

[16] it is shown that / - Ka is invertible for \Ra\ < { and/ = (/ - KJ'^g is

given by the following.

Let

G(s)=r(x+iy-xg(x)dx,      Rs<\.

The function G (s) belongs to H2 of the half-plane Rs < \. Therefore it has a

boundary function that exists a.e. and belongs to L2 of Rs — \. Thus the

function

T(t-a + ß)T(t + a + ß)    G(t)

T(t)T(t + 2ß) (t-s)

is in Lx of Rt = \ for Rs < \ and we can define a function G_($) by

1    ri/2+iooT(t-a + ß)T(t + a + ß)G(t)
at,

Rs <

(2.4)     - <5' " 2m J1/2_/a0 r(i)T(r + 2/3 )(i - s)

2 ■

Then if

(2.5) F_ (s) = f°°xs- f(x - 1) dx,

we have

»A «■   ^      r(l-J-a-^)r(l-i + a-/t)^   „

(2'6)      F-(5)-r(i - J)r(i - 2/3 -,)-G-(s)

and

(2.7) f(x) = ¿- /,/2+i0°F_ («X« + I)"' A

The operator 2r(/ - K^)'1 will be used to approximate (/ - UV)~X and

this will lead to an approximation for the i//(z) in Proposition 2.3. Recall UV

was the operator on z//2-»z//2 that sent <b-*(z~"(zn<j>o+/o_)_o_/o+)+.

Let us look at the functions o+/o_ and o_/o+. From (1.6) and (1.7) the

functions o+ and o_ are given by
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40 ESTELLE BASOR

fi   I ,   \«r + A
a+(z) = r+(z)Il(l-fr   ',

r- 1X zr I

z, \*-ATT   /" Zr \a,~Pr

'-w=T_(z)n(i-f)   ,

where t+ and t_ have 1 as the constant terms of their Fourier expansion and

these functions have derivatives satisfying Lipschitz conditions. Notice in the

above formulas we have used t(z) instead, of t(9). "Here t(z) — r(9) where

z = eie. This will be used whenever convenient. It follows that for k > 0,

k ->oo,

1    /-•+,*,
2tt

r  +
J-*o_■¡r "-

(2'8) 1   Â      . r(l + 2j8,)sin ttK -ft)
» 1 V azk—_—_—-_— +0(k-x~s\

2tt

]     /•«■   0"_

27T J-„0+ '

(2'9) 1   * T(\-2ßr)sinv(ar + ßr)

where

«, = ^ (2,) II (-e^-e'^(2 - 2cos(0, - 8,)) \

T

b, - -=■ (O II (-e^-*))-*(2 - 2cos(0r - *,))"*
s?*/-

and^-ô,. = 1.
Now zk (k > 1) is a basis for z//~2. So consider f/y as a semi-infinite

matrix. Using (2.8) and (2.9) we see that UV has/', k entry

„£Í£        „       > T(l - 2j^)simr(otr + j8,)        , ..,)

\èiV' (l+k + n?~™

+ 0((!+k + n)-x-s)\.

When multiplying these expressions the contribution from terms involving
O'sis 0(U + n)-x/2~s(k + n)-'/2-5).

If r ^ s we have a sum of the form
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TOEPLITZ DETERMINANTS 41

S   _(Js/fl_
¿i (l+j + n)x'2ß'(l + k + n)x+2ß' '

If we sum this by parts, using the fact that the partial sums of ~2,(zs/zr)1 are

bounded, and apply the mean value theorem to the terms of

1

i-n (l+j + ny-¿p'(l + k + ri)l-Wfl a. Z-j. ^1+2A

(1+1+J + n)x~2ß'(l + 1 + k + n)x+2ß-

we see that this sum is O ((j + n)~ x(k + n)~x). We are left with

•n-2 2 W-}?{\ - 2ßr)T(\ + 2/3r)sin <n(ar + ßr)
r-l (

X sin <n(a, - ßr) f (/ +j + n)~x+2ß'(l + k + n)-1-2* 1
/-i J

+ 0((j + nyx/2-s(k + n)-x/2-s).

Now let us jump another step and think of the semi-infinite matrix UV as

acting on a subspace of L2(0, oo) consisting of functions which are constant

on (k - 1, k]. Let {x) = the smallest integer not less than x. Then UV may

be thought of as the integral operator with kernel

m~2 2 {zrW-Mr(l - 2ß,)T(l + 2/?Jsin 7r(ar - ßr)

X sin v(ar + ßr) 2 (/ + {*} + n)-X+2ß'(l + {y} + n)'1^' }
/-i J

+ 0(({x) + nr'2-S({y) + nr'2-S)

- f-2 2 \zW-lx)T(\ - 2ßr)T(l + 2ßr)sinv(a, - ßr)

ir(a. + ßr) I     -7-T^-rrZß- f
K '        'Jq   (z + x + n)x-2ß'(z + y + n)x+2ß' J

+ 0((x + n)-x/2-s(y + n)-x/2-s)

R R+\

2 K + K~   2  Ki (KR + l = Ke)'
r-\ i-1

r-1

x sin
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42 ESTELLE BASOR

Lemma 2.4.The operator I - UV = I - 2R„xKr - Ke is invertible.

Since

Krf(x) = [z7^K^{z^f(nx))](x/n),

each / — Kr is invertible (since / — K is invertible). The operator / — Ke is

invertible also for sufficiently large n since Ke has norm 0(n~s), where this O

refers to the L^ norm of the operator Ke. Consider the following identity:

fr+\ ) [       r+\     )
(2.10)     j 2 (/ - K,yx - RI j (/ - 2 K, j = / + 2 (/ - K,rxK¿,

which can be derived from the identity

(I-K)~X=I-

lïi¥= ï < R + I, integration by parts shows K¡Kr has kernel

(/- K)~x= / + (/- K)'XK.

oir_--
Wo    (z + x + n)x-2ß'(z + n)x+2ß'

x f00_dz_\
Jo    (z + n)x-2ß'(z+y + n)x+2ß'j'(z + ny-¿p'(z+y + ny

From this last expression it follows K¡Kr has norm 0(n~l). The operator Ke

has norm 0(n~s) and so we can say the right side of (2.10) is / + 0(n~s). It

follows that

(r+\     \~x    R + \

/-2^l    = 2(I-K,)-l-RI+0(n-')

= Í(I-Kryx-(R-l)I+0(n-s).
i = i

Now

R + \

I - UV= I- 2 K¡.
/•-=i

Hence / — UV is invertible for sufficiently large n. The same statement is

valid for / - VU, and we can conclude from Proposition 2.1 that rjo]-1

exists for the same n.

We have now proved the first part of Proposition 2.3 and we turn now to

the estimate for the integral

1     r-n °+(z)

± f  z"t(z) -44 d9.
2m )_m a_(z)
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The function \(/(z) here is from (2.3):

(I - UV)-\-{z-"(o_/o+)(q/o_)+)^

where q = 1. We proceed to solve this now for a general q. Although this is

not necessary in this section, it will be helpful later on and take care of q = 1

at the same time.

So let q = z'. Then

<- -te(£)Vte i-i^L-H;
Call 4>m the solution to

(I-UV)t = (z-»>o_/o+)+.

From the above computation one can see that a linear combination on the \pm

yields a solution to i|/(z) corresponding to q = z' and, thus, eventually to any

polynomial. Notice that in the special case q = 1 = z° we have \p(z) =

- f(z).
We now prove

Lemma 2.5.

*T*}- îr"1 2 kzr{x}~"T(l - 2ß,)smv(a, + ß,)
r=l L

(2.12) X (7 - Kar)~\nx + m + 1)-i+2A(jc/i)]

+ 0((m+l)-,/2-8),

and this O refers to the L2 norm.

To  prove  this  let  us  return  to  the  infinite  matrix situation  where

(z~mo_/o+)+ has kth coefficient equal to

R

2 b,z;
1   £ .__t_IHr(l-2y3r)sing(flL + j8r)

(k + m + 1)1_2A

+ 0((Jfc + iM + l)"'"s)

= I j,,_-ixi-,r(l-2ft)rinir(cL + /L)

»,T, " (x + m + 1)1-2-5'

+ 0((jc +w+ l)-1-0)

- 2 Ä- + «r
I
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\\ge\\2=0{(m + l)-x/2-<).

So for ̂ £j we have

2(I-Kryx-(R-l)I+0(n-s)
r-l

2(1-K)
-i

r-l
2&+ &)-(*-of 2& + &J

+ 0(«-S(/71+l)-I/2)

since the norm of each gr is at most (m + 1)~1/2. From (2.10),

(I-Kryxgs = (I-Kr)-xKrgs + gs.

If r ¥= s, integration by parts shows that

I f00 dz \

Kr8s = °\Jo    (Z + X + n)x+2ß'(m + l)x-2ß'(z + m)x~2ß' )

which has L2 norm 0((m + l)~ln~l/2). So t//£} becomes

z?

2
r-l

2 (/-*,)-'&+2 (/-*,)"'&
r#i

+ 2 {(/ - K)~Xg. - (R - 0(& + &)} + 0(n-s(m + I)"'/2)
r-l

- 2 (/ - K)~x8r + 2 ((/ - *,)~X& + &)
r-l r^i

+ 2 {(/ - *)"'& - (J? - \)(gr + ge)} + 0{n-\m + I)"'/2)
r-l

R R

= 2(1- Kryxgr +2(R- \)gr + 0(n-'/2(m + l)"1)
r-l r-l

+ 2 [(/ - Kr)~xge -(R- l)(gr + ge)] + 0{n-*(m + 1)",/2)
r-l

= î(i-Kryxgr+o((m + iyx/2-s).
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Thus we can say

•-*?*}= w-' 2 [brz7W"mr(l - 2ß)sin 7r(ar + ßr)

X(I- A"J~'(hx + m + 1)~i+2*(jc/h)]

+ 0((m + l)-,/2-i).

We now complete the proof of Proposition 2.4. By Lemma 2.5 for q = 1, we

have

= -*-1 2 [Vrw-T(l - 2/?r)sin,r(ar + ßf)

x(7-7^)~,(«A: + «)-1+2Ä(x/«)] + 0(n-1/2).

The function \pix) will mean this special one until the end of this section. Our

final step in the proof is to write the integral

1      fir 0+(z) rea

where £{*}+„ is the — (x) — nth Fourier coefficient of z"o+(z)/o_(z), and

do some substitution. We already have an expression for \p^xX, namely (2.12),

and from (2.8) one can see that

fw--- 2<}+"-(JC +„)»•*■*-+0((x + n)     )"

When one multiplies uV£} and f w+n and integrates from 0 to oo, the cross O

terms contribute 0(n~x~s). The remaining terms are a double sum

2,^/ .. .dx. Let r-^i. Then we are integrating a constant times

(J)w[(i-^rl(«+«rI+*(i)](*+«r1-^

Integration by parts shows that this is «_2 times the total variation of

[(/- ^r'(* + irI+2ÄK*M Let

(/-iy-v+l)-,+2A«/v
Then

(/-^K-(x+l)-,+2A

or
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fa, = (x + iyx+2ß'+Karfar.

The variation of K^ equals 0(\\(x + 1)_I+2Ä||2) which is 0(1), and the

variation of (x + 1)~1+2ä is also finite. Hence the variation of (/ — K^)~x(x

+ \)~x+2ß' is finite and these cross terms contribute at most 0(n~2). There-

fore the integral in Proposition 2.3 is equal to

R

- tT2 2 r(l + 2ßr)T(l - 2ß)sin ir(ar - j8,)sin ir(ar + ßr)
r-l

(2.13) x/o°°[(/ - ^)-'(« + nyx+2ß'(±)](x + nyx-2ß>dx

+ o(«-'-5).

Using (2.5)-(2.7) we can compute the remaining integral. We need to evaluate

F_(—2ß) where, g(x) = (x + 1)-1+2^ (using the notation for formulas

(2.5)-(2.7)). For this g(x) we have

G(s) = (1-5-2/3)-',

T(l-a-ß)T(\ + a-ß)ft     _      _,
C-«-ÏXÏT2É)-0-V-')

So

_ T(l + j8 - q)r(l + j8 + a)r(l -a- ß)T(l + a - ß)

_(     P' T(l - 2ß)T(l + 2ß)

2_ 2cscg(a-^)cscg(q + ^)

(a       a )m       r(1 + 2/8)r(l -2/3)      '

Substituting this in (2.13) we have

j["Ww+.- - 2(«,2 - A2)«-' + G(«->-fi).

Thus Proposition 2.3 has been proved and (2.1) is valid.

From the existence of the limit of S„[a] we can say that for fixed ar in

|/to, | < 5 we have

(2.14) SR[o] = 0(1).

In §5, we will need to know that (2.14) holds uniformly for \Rar\ < \ and \ar\

bounded. To see this notice that if we move the line of integration to the left

in (2.7) we have an estimate ||(1 + jc)-1»(/ - Ka)~xg\\2 = 0(||g||2) for each

T> > 0. This last estimate is uniform for \Rar\ < \ and \ar\ bounded. Using

this estimate we can use the methods of [16, §VI] and say that (2.14) holds

uniformly for \Rar\ < { and |a,| bounded.
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3. Preliminary form of the asymptotic formula for D„[o]. The last section

was concerned with the existence of the limit of S„[o] for ¡R^] < \. §3 will be

concerned with finding a preliminary form of the asymptotic formula for

D„[o]. We begin by stating the following result found in [9]. If p = r„[a]-1l

and q = r„[a(f?)]_1l, and if p and q have zeros only outside the unit circle,

then

(3.1) Dn[o]=(Dn[o]/Dn_x[o])"+lE(n)

where

E(n) = exp{ - ¿r fjogp(ei9) dlog ̂ ) }.

This indicates that we need more information aboutp = rn[a]_Il. We make

in this section, for computational purposes, the assumption that each ar is real

and |ar| < ^. From Proposition 2.1 the equation for/» is

p = I/o + <b/o+ +z'Sb/o_

or

po+ = l/a_ + <p + z"4<o+/o_,

l/o-_ E/72,       <f>Gz772,        po+EH2.

So

po+ = 1 + (z")o+/o_) .

Using the expression obtained in Lemma 2.5 for \pix) we can write

(z"4>o+/o_)+ as

R

- 7T-' 2 "~,+2A¿,sin ir(<xr + ßr)T(l - 2ßr)z;n

where

£(*) =[(7 - Ä-J-'i* + l)-,+2A]W

and f^ is defined to be zero for x < 0. We can now follow essentially the

same procedure used in [16] and replace several terms in this last expression

with approximations that lead to something that one can actually compute.

The reader is referred to [16, IX, pp. 358-362]. We only mention here that the

essential change is to replace (o+/o_)(eix/n) by areiv^SSflx(x/n)2^ for x > 0,

ahorse* x ( _ x/nfßr   for x < o

instead of the replacement used in [16, IX]. This produces the following
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results, which are analogous to those found in [16, IX, p. 367].

We first set

IYa-ß+l)       ,    ow„
*¿9) =    T(2a + 1)    e~^a+ß)/29a+ß^(a + ß,2a + l,- i9),

where $ is the confluent hypergeometric function with parameters a + ß and

2a + 1 [2, 6.1, (1)], and where we take 0 < arg0 < it for 50 > 0. Now

suppose we let

X(0) = 11(1 - e^-e^'^¿n(9 - 9r)).

Then one has the following estimates:

||p(e'>+(e'")X(eii)-l||oo = 0(«-8),

\\logp(ei'>)r+(ei9)X(9)\\oo^O(n-s),

\\logp(ei'>)T+(ei9)\(9)\\2 = 0(n-V2-*),

\\{\ogp(ei<>)r+(ei9)\(9)}'\\2=0(nx^2-s).

Here we choose the principal branch of the logarithm, and these norms are

all taken over the interval /, where / is chosen to be any closed interval of

length 2ir which contains for each r a 0r satisfying zr = ei$r.

If a is nonnegative,

p(e'e) = e^e-»),

where <b„ is the suitably normalized nth orthonogonal polynomial associated

with a(—9) [13, 11.1]. Thus the above formulas give the uniform asymptotic

formulas for orthogonal polynomials promised in the introduction.

We should also remark here that the introduction of confluent

hypergeometric functions is not surprising. The analogous results of Widom

contain expressions involving Bessel functions which can be written in terms

of confluent hypergeometric functions. However in this more general case the

function ¥„(0) cannot be reduced to an expression containing Bessel

functions.

The estimates just obtained are useful because they can be substituted into

(3.1). We can duplicate the analysis of [16] and write log E(ri) as

-£¡J/o(0)dSo(9) + O(n-s)

where

/o(0) = logT+(e")A(0),   go(0) = logT_(*")X(0) .

See [16, X, pp. 367-368].
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The above integral can then be written as a sum of integrals in an obvious

way. Using integration by parts several times and the fact that

logll*Jn(0 - 9r))   =0(log n/ri)
r I

(see [2, 6.13.1, (3)] and [16, X, pp. 368-370]), we are left with the following
formula:

log E(n) = log E[t] - 2 (ar + Â)log t_ (zr)
r

-2to-ß)iogT+(zr)

-2K + ̂ )(«i-Ä)iog(i-^-^>)
r*s

+ n2F(n,ar,ßr) + 0(n-s),
r

where

!     „       (l-ei9)a+ß (\-e-i9^'ß

F(n, a,ß) - - ^ /Jog     %{ng)      d log -=
n9)

Now let us return to (3.1). The factor (Dn[o]/Dn_x[o])n+x can be written as

exp{2(a2 - ß2) + 0(n~s)). This can be seen from (2.1). We have just

determined the factor E(ri) except for the terms F(n, ar, ßr). These last terms

depend on n, ct, and ßr. Therefore, using (2.1) we will be able to determine an

asymptotic formula for D„[o] (at least when |7îar| < \ and iar = 0) if we can

asymptotically evaluate F(n, a, ß). We have therefore reduced the problem

to finding an asymptotic formula for D„[o] where

o(0) = (l-ei9)"+ß(\-ei9)a~ß.

We will do this in the last two sections of the paper.

4. A difference equation. In this section we let D„[a] denote D„[o] where

a(9) = (1 - ei9)a+ß(l - e~i9f-ß. Our first step in finding an asymptotic

formula for D„[a] is the following.

Proposition4.\.For \Ra\ < \,

/>._,[«+!] r(l + q-r/î)r(H-a-/î)

D„[a] T(\ + 2a)T(2 + 2a)

We begin the proof by stating the following lemma, which appears in [16,

§VII], If T„[o] is invertible then
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-V,

(4.1)

ÍO-íX'-í)
=      II      ̂ -^-^„[a]

Kr<i<p
M_,(jU-^)(^)

lr,j =1./>.

This lemma indicates that as a function of a, /)n[a] should satisfy a difference

equation. In fact forp = 1, zr = 1, a = (1 - *?,'9)a+/!(l - e~i9y-ß, we have

(4.2) £„_,[(*+ !] = />„[«]< «"Ü')(0
We proceed now to determine for \Ra\ <\ the second factor of the right-

hand side of this equation. From Proposition 2.1, the polynomial p =

T„[a]~lq is given by

p = q/o + <b/o+ +z'\¡//o_

or

(4.3)    p[0inl(i) = (f) .(0 + Í7-)  (o + f^r)  (0-
V o /[<,,„] \ a+ )[0n] \ a_ J[0n]

Here/[ofc] means "2bk„Jkzk. Each of these terms must be estimated at z = 1.

Let us restrict ourselves first to z"(\p/o_)l0n](l). The function »/> in this case

corresponds to q = SJz*. From (2.11) u^ is given by

í-oU-d-ílU-wJ     / m=omlö-/

where sm(l/a_) is the sum of the first m Fourier coefficients of l/o_. This

means we can evaluate z"(^m/o_)[0n](l) and then sum our evaluations. Now

(<"f)   O-(f)    (0-2 I«.,

■|,*^-.l,*W^)-*(a:)]-
A computation in [16, §VII] shows that

sN(l/a_) = T(l + a - ßyxNa~ß + 0(N~X'2-S).

Thus

[z"v-)   (0=-r(i + a-/3)-'2 J^-)!«"
V       a-  /[0,„] m-0      Va-  /A-l

X[(* + /z)"-^ - ka~ß + 0(k-x/2~s)].
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The inner sum equals fô)"x)[(x + n)a~ß - xa~ß + 0(1)], where, from

Lemma 2.5,

T(l - 2ß)sin tr(a + ß) . i+m/x\
*&}---^7~^-^-(I-Ka)-x(nx + m + l)-x+2ß(±)

+ 0(m+ l)"1/2~5.

Using this expression fon//™ ) gives us for the inner sum

T(l - 2ß)simr(a + ß)  fco , n-i+Vi/ * \

+ 0(„*'+«/2(|M+1)-'/2-»)>

and this O refers to the L2 norm. We can use Fubini now to interchange

integration and we are left with

(zn— )     (1)= -T(l + a- ßyxT(l - 2ß)sin tr(a + ß)w~x

x/;m^)([(/-^)-v+m+.)—](f))
x[(x + n)a~ß - x"-"] dx

+ 0(n2Ra+x-s).

This uses the estimate for SN(l/o_) to estimate the last O term. Using the

above estimate again and the linearity of (7 — Ka)~x we can write the above

integral as

-I\l + a - ß)~2T(l - 2ß)simr(a + ß)n~xn2a+x

(,4)     xjf;[(/_Ji)-,S.(-±.)-'(,+a±i)-»*'

x[(x + l)a~ß - x"-ß] dx

+ 0(n2Ka+l-*).

Finally we replace

0  »V     n     )      \ n     ) y   Jo  (x + k)l~2ß

(x)

(x + ky

This can be justified using Minkowski's inequality for integrals. Then we can

say that for \Ra\ <\,
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hm j ^ j     (l)/«2a+1 = -T(l + a - ß)~2T(l - 2ß) sin ir(a + ß)7r~l

\      ~   ho,n\

X f[<7 - *>".£ -r-^Tß *]«[<* + V"ß - x-ß] dx.

To evaluate this integral we will return to the formulas for the inversion of

/ - Ka, and for convenience we will call the integral A, and fx0ta~ß/(x +

t)x~2ß dt will be denoted by g(x). Now recall that if (/ - Ka)f = g, then by

(2.5), ¡$(x + iy~xf(x) dx was F_(s), where

T(l-s-a-ß)T{l-s + a-ß)^   /x

F-(i) =-r(i - s)T(i -2ß-s)-G-(s)'

1     rl/2+,00 r(f - a + ß)T(t + a + ß)   G(t)
- W = <

and

G-V = HVi)x/2_i0Q -r(/)r(/ + 2i8)-7=7* *<*»

G(s)=r(x+iy-xg(x)dx.

One can then write A using the binomial theorem as

T(k - a + ß)
2^-(«-/3-/c+ 0

T(k + l)T(ß - a)

_ ~ T(k- 2a)T(k)T(k - a + ß)G_ (a - ß - k + 1)

(4*5) " Y    T(ß - a + k)T(k -a- ß)T(k + l)T(ß - a)

_ » T(k- 2a)G_ (a- ß-k+l)

7      T(k-a- ß)kT(ß - a)

where G_ corresponds to this g(x). The function G(s) can be written in terms

of a hypergeometric function and G_(s) can be computed using residues and

the Beta function (see [2, 2.8, (46)]). We leave the details to the reader. This

allows us to write the integral A as

T(l + a - ß)T(l -a- ß)T(a + ß)

IYj8-a)r(l-2fl)

f »   - T(l + a - ß)T(k -I-2a)       T(k - 1 - 2a) |

X [V      T(l + 2a)kT(k -a-ß)       +      T(k + 1)      J*

Now
» T(k - 1 - 2a)       T(-2a)

Y      T(/c + 1) 1 +2a

and

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



TOEPLITZ DETERMINANTS 53

»   T(k - 1 - 2a)

V kT(k-a- ß)
T(-2a)(-a-ß)     , „

- w^mrk {♦<« - '+» - ♦<-« - «)•
where ̂  is the logarithmic derivative of the gamma function. (See [2, 2.8, (46)]

and [2,17.4, (30)].) So

r(l + a - ß)T(l -a- ß)T(a + ß)T(-2a)
A m

T(ß-a)T(\-2ß)(l+2a)

x-ß)     (-a-ß)    ..

2ÔT T(l-a-ß)^*-ß+V-*(-a-V] + l\

Hence
r(-2«)

f -r(i + a
[    r(i + 2

(*) (1)/„~._
X HO.n]

r(0-a)(l+2a)

*-ß)

T(l - a - ß)T(l + 2a)

x[*(« - jS + 1) - f(-a - 0)] - r(1 + ^ _ i8) } + 0(n"s)

T(-2a) .. . ,
-w—-[Ha-ß+l)-*(-a-ß)]

T(2 + 2a)T(ß-a)T(-ß-a)

T(-2a)    sin <n(a - ß)
-+0(n-°)

(1 + 2a) v

Looking at (4.3) we still must estimate (<t>/a+)[o,n](l) and (?/a_)[0n)(l). But if

pa - 1 + z + • • • + z" + <p/0+ +zn)/o_,

then

»(¿Mi)- z"^"')        ^(z"1)
1 + Z + • •  •   + Z" + -T-   +

a+(z-')      a_(z->)

Since z"p(z~x) is a polynomial of degree n, <Kz-1) corresponds to ^ for

<r(z-1). Replacing z by (z-1) for our a only changes ß into -¿8. Thus we

have

l±)    (I)/«2-

r(2 + 2a)r(T-aa)r(-/3-a) W« + * +1> - #(- + «]
T(-2a)   sin7r(a + /?)

(1 + 2a) «r v      '
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The computation of (q/a\0n](l) is straightforward. It comes from the obser-

vation that the Fourier coefficients of a~ ' can be written as

siniT(a + ß)T(l -2a) ■1+2«

7T
+ 0(k-l+2a-B)   forA;>0

and

shnr(a-j8)lYl -2a)      ,, ,  ,    a
-v-zv_v-J_k_l+2a + 0.k_l+3a_..   fork<0

•n v '

Notice

So we have

(;M»-|(»+i-w)(i)(

S(-+«-w)(¿),
sin tr(a + ß) r(l - 2a)       sin tr(a - ß) T(l - 2a)

tr(2a)(2a + 1)
,2o+l

m (2a)(2a + 1)

+ 0(n2a+x~s).

We have now evaluated all three of the terms in (4.3). Putting them together

we have

^[o,„](0/«2a+1 =
T(-2a)

T(2 + 2a)T(ß- a)T(-ß-a)

T(-2a) sin 7r(a - ß)
x[xf(a-ß-rl)-4,(-a-ß)] -

IX-2a)

(1 + 2a) 7T

r(2 ♦ 2<,)r(y3 - «wFß^T) W« + * + 0-<(-« + «]
T(-2a) sin 7r(a + ß)      sin 7r(a + ß) T(l - 2a)

(1 + 2a) ir

sin (a - ß)T(l -2a)

77(2a)(2a + 1)

+ 0(n~s)
w (2a)(2a + I)

T(l + a - ß)I\l + a + ß) sin tr(a + ß)sin tr(a - ß)

r(l + 2a)r(2 + 2a) ir(-sin 2tra)

x[i£(a-ß + l)~4>(-a- ß) + j(a + ß + 1) - «£(-a + ß)]

+ 0(/z-fi).
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Now \¡/(l - z) — \¡>(z) = 77C0t(7Tz) [see 2, 1.7.1, (11)]. So the term in brackets

is

— m
' cos 7r(a + ß)       cosw(a-ß)

sin v(a + ß)        sinfl-(a - ß)

cos ir(a + /?)sin 7r(a — ß) + cos m(a — /3)sin 7r(a + ß)
= — tr

sin m(a + /3)sin 7r(a — ß)

= 77 •
— sin 27ra

+ O (/r8).

sin 7r(a + /?)sin tr(a - ß)

Substituting this in the bracket we have

pto,fl](i)/«2a+, = (7;-1[a]i)(i)/«2o+l

T(l + a - ß)T(l + a + ß)

r(l + 2a)r(2 + 2a)

The substitution of this in (4.2) proves the proposition.

From (2.1) and Proposition (4.1) we know that for |7?a| < \ and

-j< Ra<j the limit of D„[a]n~a'+ß2 exists and satisfies a difference

equation.

5. Final result. In this section we will first show lim„_>0O5n[a] exists for

Rar > - j. We begin by proving Proposition 5.1.

Proposition 5.1. S„[o] = 0(1) uniformly in any compact subset of

Rar> -\.

If D„[o] is the Toeplitz determinant for o which \Rar\ < {, we want to

replace ar by ar + kr where kr - 0, 1,-For simplicity's sake let us

suppose each kr is 0 or 1. Using (4.1) we have the identity

Dn-P .fi(.-íXi-í)

= n \z. - z. 2A,[o] t.[o]-1 2vv
\*-oKr<s<p

Thus we need to estimate/? = T~x[o]q at z = zr where

to
r,i-l.

9=2^" ,-*,*
* = 0

As in the previous section one has
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Using the techniques of the last section where we found the difference

equation and referring to details in [16, VIII], one can easily show that both

of the terms (z"i>/o_)[QM(zr) and (<t>/o+\0M(zr) are 0(nR(a'+a-)+x). We must

also estimate (q/o\0nX(zr) for q = ~2"k_0z~kzk. Referring again to [16, VIII]

one has (z = eie, z, = ei9r, z, = ei9-)

[-)        (Zr)= T~   I      °(Z) -7-i-7-i-   dQ
\ o Ao.«] 2tt J-„ z/zs - 1 zr/z - 1

= 0(nR(a'+a-)+x)   for Ra„ Ras ^ 0.

The constant implied in this O is 0(\Rar\~x + \Ras\~x).

From these estimates we have for Rar, Ras ¥* 0,

T„[o]-\2zs-kzk)(zr)=0(n*^+x),

where again the constant implied in the O is 0(|i?ar|-1 + l/ta,!-1). And so

»'-[•]",(2^%)|r>i_i   ^-0(«2*2**+').

The constant implied in this last O is IIf(7^ar)-2. This can be seen by

factoring (Rar)~x and (Ras)~x out of the rth row and jth column, respec-

tively.

Hence from (2.14) it follows that for \Rar\ < \ and \Rar\ =£ 0, Dn[oWx(\ -

z/zr)(l — zr/z)] is at most a constant times

The extension of this result to arbitrary nonnegative kr can be done with

slightly more complicated calculations.

We still must extend this result to the lines Rar = a nonnegative integer

and Rar = a nonnegative integer + \. These lines are taken care of by the

following lemma found in [16, VIII].

Suppose h is analytic on |z| < | and satisfies there |A(z)| < |7<z|-c, where c

is a positive constant. Then for each subdisc |z| < p (p < |) we have

|A(z)| < A, where A is a constant depending only on c and p.

By using the estimates obtained in this section and the fact that Sn[o] is

uniformly bounded for \Rar\ < \ and |ar| bounded, we have S„[o] =

O (IT d~2), where dr is the distance from ar to the nearest exceptional Une. The

left side of this equation is analytic in the ar. Hence, by repeated applications

of the lemma (with c = 2 and the center of the disc on Tía, = \, 1) we obtain

Sn[a] = 0(1) uniformly in any compact subset of Rar > — \ and the propo-

sition is proved.
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Combining Proposition 5.1 with (2.1) yields the existence of the limit-SJa],

for Ra, > — 5, which is an analytic function of the a/s. In particular we

know that the limit of Dn[a]n~^~ßl) exists for Ra > -j. Call this limit

Eaß. Now we need to recall the results of §4. There it was shown that for ar

real and \ar\ <\,

A,[°] = {Dn{o]/Dn_x[o])n+XE(n),

where E (n) is given by (3.2) and equals

E[T]TLT+(°r)-a' + ß"r-((>r)-a'-ß'

r-1

(5.1) .   R .

X IT (1 - ^-*>)-(<"+Ä)(a'-Ä) exP   2 F(n,a„ßr)  .
r¥=s [r-l )

Recall also that from (2.1) for \Rar\ < \,

Therefore for Dn[a] with a real and |a| < \, we have

limDn[a]n-"2-ß2 = fon exp{a2 - ß2 + F(n, a, ß)}«"°2+^ = Eaß.

Thus eFin'a"ß') is determined asymptotically in terms of E(ar, ßr). Substitution

into (5.1) therefore gives for ar real and |ar| < \,

liuXSm[o] = E[r]  fi T+(0r)-a' + ß'T-(9r)-a'-ß'
r-l

x n (i - e^-^)-(a'+A)("«-Ä) n e^.
r+s r-l

Since the right-hand side of the equation is an analytic function of the a/s for

Rar > —\, and since the limit of S„[o] exists and is analytic for Ra, > — \,

the above holds for all a, satisfying Ra, > — ¿.

From Proposition 4.1 we have

Ea+hß = T(l + a - ß)T(\ + a + ß)

Ea>ß T(\ + 2a)r(2 + 2a)

The rest of this section will be devoted to proving that

Ea<ß = G(l + a + ß)G(l + a - ß)/G(l + 2a)

where G is the Barnes G-function. The proof of this is divided into several
lemmas.
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Lemma 5.2. Let

Q(a) = EaßG(l + 2a)/G(l + a- ß)G(l + a + ß).

Then Q (a) is an entire periodic function of a with period one and Q (a) has no

zeros.

Proof. Eaß is analytic for Ra > - \ and the zeros of G(l + a ± ß) occur

at a = +ß — k, k = — 1, - 2,.... Hence Q(a) is analytic for Ra > — |.

From §4 and [1] we know Eaß and G(l + 2a)/G(l + a - ß)G(l + a + ß)

satisfy the same difference equation for Ra > - \. Hence their quotient

must be a periodic function with period one, and since Q (a) is analytic for

Ra > — |, it is actually entire. Finally G(l + 2a) has no zeros for Ra > —\,

and since Eaß is given by an exponential (using the preliminary form in §3)

for Ra > —\, we can conclude that Q(a) has no zeros.

Our next step is to show that log Q (a) is an entire function of the

exponential type. We need the following technical lemma in what follows.

Lemma 7.3. Suppose o(9) = (1 - ei9)a+ß(l - e-ia)a-ß. Then for \Ra\ < {

the O in (2.1) in 0(f?3"101), and this last O is independent of a. The 8 in (2.1) in

this special case is 1. In addition we can say that (2.1) holds for n > Na, where

Na can be chosen to be 0(e0"+e^) (e > 0).

In order to do this, we retrace our estimates of §2. Recall that the O in (2.1)

was given by integrating from O to oo the product of (here R = 1)

-r(l-2ß)sin7r(a + ß) . ,+M/r\
*W-~^- (I - Kay\nx + n)~x+2ß( J )

and

T(l +2ß)sin7r(a-ß)

it(x + n)x
:«+»"-       _,.. .    u+2/3-+0((x + n)        ).

The O's above referred to the L2 norm. Thus we must investigate the O's in

these two terms. Now in the case we have now

o(9) = (l-ei9)a+ß(l-e-i9)a'ß,

and we can make the formulas for ^{Jc} and £w+n more precise. One can

easily show that for k > 0,

sinn(a-ß)   T(l + 2ß)T(k + a - ß + 1)
eikB d9 =1     H   p +

2tt J_t 0_ "     "*" 7T T(k + a + ß + 2)

and
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1     H  a-

2tt J_w o+

_¡k$d9 m sin *(« + £)   V(l-2ß)T(k + a + ß + \)

m T(k + a - ß + 2)

Now an expansion of the form T(z + A)/T(z + B) has an asymptotic

expansion [2, 1.18, (4)]

zA-"[\ +\z~ï(A - B)(A - B + 1) + 0(z~2)],       \z\

Thus one can then say as k -» oo,

-» oo.

(5.2)

and

1   n a+

2tr J-„ o_
,ik0 AÛ =d9 =

(5.3)

L r —
lit J-v o+

-ik« AÜ _d9 =

simr(a- ß)T(l + 2ß)

IT

+ (0|a|A:-2)

sinv(a + ß)T(l + 2ß)

k~x~2ß

k~x+2ß
2-n J-v o+ ir

+ (0|a|Ä:-2),

and the O's in these expressions are independent of a. Thus retracing our

estimates for f {jc}+„ and using the fact that [sin 7r(a + ß)\ < Ae^a[ where A

is some constant independent of a, we have that

IY1 + 2ß)sinir(a- ß)
fw+--7—"TÏT^-+0(|a|e-W(x + /t)"1-5),

7r(x -r n)

and this O depends only on ß.

We now turn to the estimates for uV{xj. The term ¡p^ was given by

[(7 -K)'1 + 0(n~s)]g(x), where

r(l-2/?)sin,r(a + /?)
*(*) =

,1-2/9

+ 0(n-x/2~s).

•n(x + n)

Again these O's refer to the L2 norm. The O in the expression for g(x) is

0(e"la|«_1/2~5). This can be seen by computations that are similar to the

previous ones done for ^xX+„. The O in the expression for the operator came

from the norm of (7 - Ka)~x(I - (I - Kay%)~1- From (5.2)-(5.3) one can

see that the norm of Ke contributes O (a V*1"1). We now concentrate on the

norm of (7 — Ka)~x. From the inversion formulas for (7 - Ka)~x one has

that

(5.4) IK7-*«)-1!
T(t - a + ß)T(t + a + ß)

T(t)T(t + 2ß)

line Rt = i. He

||r(r - a + ß)T(t + a + ß)/T(t)T(t + 2ß)\\ao for a sufficiently large. Our

where the oo norm is taken on the line Rt = \. Hence we must estimate

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



60 ESTELLE BASOR

estimates are concerned with the usual infinity norm and they are straight-

forward if one uses [2,1.18, (6)]

lim |r(* + iy)\evW2\y\x-x/2= Ç^2).

One can then easily see that

\\(I-Kttyx\\=0(e-^).

These estimates however are not valid if Ra = \ or Ra = — \. But by

moving the line of integration to the left in (2.5) as we did for (2.14) we can

see that these estimates are uniform for \Ra\ < \ and |a| sufficiently large.

Hence we can conclude that uniformly in \Ra\ <\ for a sufficiently large

T(l-2ß)sin7r(a + ß) . i4.M/r\

+ 0(e2"|a|/J_1/2-s).

Putting all of this together we have shown that the O in (2.1) is O^3"1"'). The

statements about the 5 and N follow by retracing our estimates for 8 in the

above proof and using the just obtained estimate for the O in (2.1).

From this result we will now get estimates for Eaß with \Ra\ < j. Recall

that

Eaß = fon Dn[a]n-°2+ß\      Ra>-{-.

We can now estimate lim„_0OZ);i[a]rt"a2+^2 using (2.1). Suppose now that

(2.1) holds for n > Na. Then from (2.1) we have

^f\=IL(\-n-x(a2-ß2) + 0(n-x-')).

So

logDN[a] - logDK[a] = 2H{\ - n~x(a2 - ß2) 4- 0(n~x-s))

= 2"-l(<*2-ß2) + 0(n-x-s)

K

= (a2 - ß2)(log N - log Na) + 0(N-S).

Hence

DN[a]N~^2 = DN<x[a]N-«2+ßI<*f>{0(N-s)}.

This last O is still 0(e3,r|a|). Now because of Lemma 5.3 we can choose 7V0 to

be 0(e(3"+e)|a|) (e > 0) for all \a\ sufficiently large. Hence one has
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(5.5) DN[o]N-a'+ß'= 0(DNa[a]¿eW)

where/?(a) is again some polynomial.

This last formula implies that we must still estimate DN [a]. This is done in

the following

Lemma 5.4.

DNJ[a] = 0(expe(4*+l)M).

Proof. We use now the formula from [15],

(5.6) T„[o]Ttt[oZl]Tn[olx] =In- PnH[o]H[5Zx]PnTn[olx].

Here we are using the notation

TM = (h-j),   H[4] = (4>i+J+l),       ij = 0,...,n,

^(z) = 4>(z_1) and I„ and P„ are the identity and projection matrices on C,

respectively. The determinant on the left-hand side of (5.6) is D„[a]. The

right-hand side of (5.6) has determinant

Det[/„ - J»JliSr[a]J5r[ôZ,]P1,7'II[«;1]].

Using the inequality [7, IV §1, (1.2)]

|Det[/-i4]| < e*\

where | • |, is the trace norm of the operator A, one has

Dn[o] < exp\Hn[o]H„[5Zx]Tn[oZ%

where 77n now means H„[<b] = (<bi+J+x), i,j = 0,..., «. The Schwarz

inequality for operators gives

(5.7) D.[o] < «p^'IU^e^'IU^^'IL
where || H^ is the usual operator norm, and || ||2 is the Hubert Schmidt norm.

For definitions of these norms and proofs of the inequalities, see [7, Chapters

II and IV]. Thus in order to estimate D„[a] we will estimate these three

norms. We need again the estimates for the coefficients of o, öZx and olx.

These coefficients can again be found exactly in this case. We have for k > 0,

1    r    -MM      -r(l+2a)sinff(a + /S)      T(k - a - ß)
oe      M =- -

2ir J-v it T(k - ß + a + 1) '

T(a - ß + k)

2v J-„ - T(a - ß)T(k + 1) '

:xeik9d9 = 0,i r .
2Ï J..BH

1   r n-~-U-»„,     ** + ß + *)
d9 =

T(a + ß)T(k + 1)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



62 ESTELLE BASOR

Using the asymptotic formula for T(z + A)/T(z + B) we have for k > 0,

J_
2tt

1    n       -,a -T(l+2a)sin7r(a+ ß) r
\- J   ae-'k9 d9-— [\k - ß\-x~2° + 0(k~2)],

i r.. xe~ikB d9 = 1
T(a - ß)

[\k\-x+« + 0(k~2)].

From these estimates we can say

Hence,

T(l 4-2a)sin7r(a + ß)
2[k\k-ß\-2-'a + o(k-2)]

\m°]\\2=

o

'I
o

T(l +2a)sin7r(a + ß)
IRa

m
)

T(l + 2a)sin m(a + ß)

■ïï log«

T(l + 2a)sin <n(a + ß)

■n \

\

Ra <0,

Ra = 0,

Ra >0.

Similarly,

ms-%
0(\l/T(a-ß)\nRa), Ra>0,

0(|l/r(a-ß)|logzz), Ra=0,

0(|l/r(a-ß)|), Ra<0.

In order to estimate (5.6) we still need to estimate ||7'n[o-+,]||00. For Ra <

0, o+' is bounded, and since

where this last infinity norm refers to the usual sup norm on S ', we can say

For Ra > 0 we replace o-;1 in T„[o~l] by the function 21„(o~l)keike. Recall

(o+x)k is the kth Fourier coefficient of o+x. Clearly the norm of || /"„[a+'JH^

is not changed by this replacement.

n^]\\ 2K-), ,ik9

where the last infinity norm refers to the usual oo-norm. Now
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Hence,

and

(oZx)k= T(a + ß + k)/T(a + ß)T(k + 1)

= (i/r(a + /?))[i*r0-' + oi*r2].

!^')J=fe»i

Putting the estimates for ||7/n[a]||2, ||7/„[âz']||2 and ||7;[a+,]||00 together with

(5.7) we have

DN =

O

O

exp

exp

sin ir(a 4-/3) T(l+2a)

m )N"

2Ra

for Ra > 0,

sinn(a + ß)  T(l + 2a)

TT

e*\a\/2N2\R<x\

T(a + ß)

for Ra < 0.

Using the asymptotic expansion for T(x + iy), \y\ -> oo, and the fact that

\Ra\ < \, we have

DNm = 0(expe*|al7Ya).

Hence for Ra > - j, and recalling the fact that Na = 0(e{3v+e)M), we have

DNa[o] = 0(exp(e(4"+£)lal))

and the lemma is proved. From (5.5) and the above lemma we know that Eaß

satisfies a growth condition that is O (exp e{4,r+')M) for |.Ra| <{.

Let us now turn for a moment to the factor 0(1 + 2a)/G(l + a - ß)G(l

+ a + ß) in Q(a). G (I + z) has a factorization of the form

ff B   1 * *

and herep(z) has degree 2. Using this factorization and [4, Theorem 2.6.18] it

is clear that on the strip -\ < Ra < \ the above factor has order two.

So at least we can say that from Lemmas 5.2-5.4, Q(a) has an entire

logarithm that satisfies

Tilogß(a) < A(e(4v+t)W).
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Using the Carathéodory inequality [4, Theorem 1.3.1] one can conclude that

|log ß(°0| is also 0(e(4ff+e)|a|). Hence the logarithm is of exponential type.

Fortunately there are very few entire functions that are periodic of

exponential type. In fact any function Q (a) satisfying these conditions must

be of the form [4, Theorem 6.10.1]

(5.8) exp aa + b +   2   cke
n

2-nika

fc— — n
k*0

where « is less than or equal to the type t of the function 1fLncke2'mka. In this

case n is clearly < 2. We now want to eliminate all the coefficients in (5.8).

Our first observation is to remark that (5.8) can be written as

/ 2 2 \

(5.9) expl aa + b + 2 cAsm 2mka + 2 ck> cos 2-nk'a J

where all the coefficients now are real. This can easily be seen by observing

that Q (a) is real on the real axis and then taking conjugates in (5.8).

In order for (5.9) to be periodic it is necessary for Ra = 0 and, hence,

a = 0. We observe also that (5.9) can be written as

expl b + 2 dksm(2wka + yk) ],

where the dks are still real and 0 < yk < it. Now for 0 < Ra < \ we have

from our estimates for \\Hn[o]\\2, \\Hn[ÖZx]\\2 and || T^]^ in (5.7),

DNa = O (exp e'WjVy4) = O (exp e5"W2),

since Na = 0(e(3"+e)|a|). From the behavior of sinQ.<nka + y) on appropriate

lines in the strip 0 < Ra <\, one can see the above representation is

impossible unless d2 = 0, and we can say that (5.9) can be written as

exp(/> + c,sin 27ra + c2cos 2-na).

To complete the proof that Q(a) = 1 and conclude that

Ea,ß = G(\ + a + ß)G(\ + a - ß)/G(l + 2a),

we need to know the value of Q(a) at three points. At the points a = 0, 4-ß,

- ß we can say Q(a) = 1. The case a = 0 follows from results of Hartwig

and Fisher [6]. The case a = ß follows from the fact that when a = ß,

Tn[a] = Tn[(l - e»f\

The matrix Tn[o] is hence triangular and Eaß = 1. Since at a = ß, G(l + a

+ ß)G(l + a- ß)/G(l + 2a) = 1, we have Q(a) = 1. The same result

holds for a = — ß. Therefore we can conclude that Q (a) = 1 for all a and
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Ea<ß = G(l + a + ß)G(\ + a - ß)/G(\ + 2a).
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