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Every ordinary Riordan array contains two naturally embedded Riordan arrays. We explore this phenomenon, and we compare it
to the situation for certain moment matrices of families of orthogonal polynomials.

1. Introduction

Riordan arrays [1] have been used mainly to prove combi-
natorial identities [2, 3]. Recently, their links to orthogonal
polynomials have been investigated [4, 5], while there is a
growing literature surrounding their structural properties [6–
10]. In this paper we investigate an embedding structure,
common to all ordinary Riordan arrays. We also look at
this embedding structure in the context of moment matrices
of families of orthogonal polynomials. In addition to some
knowledge of Riordan arrays, we assume that the reader has
a basic familiarity with the theory of orthogonal polynomials
on the real line [11–13], production matrices [14, 15], and
continued fractions [16]. We will meet a number of integer
sequences and integer triangles in this paper. The On-Line
Encyclopedia may be consulted for many of them [17, 18]. In
this paper we will understand by an ordinary Riordan array
an integer number triangle whose (𝑛, 𝑘)-th element 𝑇

𝑛,𝑘
is

defined by a pair of power series 𝑔(𝑥) and 𝑓(𝑥) over the
integers with 𝑔(𝑥) = 1 + 𝑔

1
𝑥 + 𝑔
2
𝑥2 + ⋅ ⋅ ⋅ , 𝑓(𝑥) = 𝑥 + 𝑓

2
𝑥2 +

𝑓
3
𝑥3 + ⋅ ⋅ ⋅ , in the following manner:

𝑇
𝑛,𝑘
= [𝑥
𝑛

] 𝑔 (𝑥) 𝑓(𝑥)
𝑘

. (1)

The group law for Riordan arrays is given by

(𝑔, 𝑓) ⋅ (ℎ, 𝑙) = (𝑔 (ℎ ∘ 𝑓) , 𝑙 ∘ 𝑓) . (2)

The identity for this law is 𝐼 = (1, 𝑥) and the inverse of (𝑔, 𝑓) is
(𝑔, 𝑓)

−1

= (1/(𝑔∘𝑓), 𝑓), where𝑓 is the compositional inverse

of 𝑓. For a power series 𝑓(𝑥) = ∑∞
𝑛=0
𝑎
𝑛
𝑥𝑛 with 𝑓(0) = 0, we

define the reversion or compositional inverse of 𝑓 to be the
power series𝑓(𝑥) such that𝑓(𝑓(𝑥)) = 𝑥.We sometimeswrite
this as 𝑓 = Rev𝑓.

If a matrix 𝐴 is the inverse of the coefficient array of
a family of orthogonal polynomials, then we will call it a
moment matrix, and we will single out the first column as the
moment sequence.

2. The Canonical Embedding

Let (𝑔, 𝑓) be an ordinary Riordan array 𝑅, with general term

𝑇
𝑛,𝑘
= [𝑥
𝑛

] 𝑔𝑓
𝑘

. (3)

Then we observe that there are two naturally associated
Riordan arrays “embedded” in the array 𝑅 as follows.

Beginning at the first column of 𝑅, we take every second
column, “raising” the columns appropriately to obtain a
lower-triangular matrix 𝐴. The matrix 𝐴 is then the Riordan
array

𝐴 = (𝑔,
𝑓
2

𝑥
) (4)
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with general term 𝐴
𝑛,𝑘

given by

𝐴
𝑛,𝑘
= [𝑥
𝑛

] 𝑔(
𝑓2

𝑥
)

𝑘

= [𝑥
𝑛

] 𝑔𝑥
−𝑘

𝑓
2𝑘

= [𝑥
𝑛+𝑘

] 𝑔𝑓
2𝑘

= 𝑇
𝑛+𝑘,2𝑘
.

(5)

Similarly, starting at the second column of 𝑅, taking every
second column and “raising” all columns appropriately to
obtain a lower-triangular matrix, we obtain a matrix 𝐵. This
matrix 𝐵 is then a Riordan array, given by

𝐵 = (𝑔
𝑓

𝑥
,
𝑓2

𝑥
) . (6)

We have

𝐵 = (
𝑓

𝑥
, 𝑥) ⋅ 𝐴. (7)

The general term 𝐵
𝑛,𝑘

of 𝐵 is given by

𝐵
𝑛,𝑘
= [𝑥
𝑛

] 𝑔
𝑓

𝑥
(
𝑓
2

𝑥
)

𝑘

= [𝑥
𝑛

] 𝑔𝑥
−𝑘−1

𝑓
2𝑘+1

= [𝑥
𝑛+𝑘+1

] 𝑔𝑓
2𝑘+1

= 𝑇
𝑛+𝑘+1,2𝑘+1

.

(8)

Example 1. We take the example of the binomial matrix

𝑅 = (
1

1 − 𝑥
,
𝑥

1 − 𝑥
) . (9)

We then have

𝐴 = (
1

1 − 𝑥
,
𝑥

(1 − 𝑥)
2
)

with general term (𝑛 + 𝑘
2𝑘
) ,

𝐵 = (
1

(1 − 𝑥)
2
,
𝑥

(1 − 𝑥)
2
)

with general term (𝑛 + 𝑘 + 1
2𝑘 + 1
) .

(10)

The following decomposition makes this clear:

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

1 1 0 0 0 0 ⋅ ⋅ ⋅

1 2 1 0 0 0 ⋅ ⋅ ⋅

1 3 3 1 0 0 ⋅ ⋅ ⋅

1 4 6 4 1 0 ⋅ ⋅ ⋅

1 5 10 10 5 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

. (11)

Thematrices𝐴 and𝐵 are the coefficient arrays of theMorgan-
Voyce polynomials 𝑏

𝑛
(𝑥) and 𝐵

𝑛
(𝑥), respectively.

Example 2. We take the Riordan array

𝑅 = (𝑐 (𝑥) , 𝑥𝑐 (𝑥)) , (12)

where

𝑐 (𝑥) =
1 − √1 − 4𝑥

2𝑥
. (13)

Then we find that

𝐴 = (𝑐 (𝑥) , 𝑥𝑐(𝑥)
2

) , 𝐵 = (𝑐(𝑥)
2

, 𝑥𝑐(𝑥)
2

) . (14)

The matrix 𝑅 begins with

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

1 1 0 0 0 0 ⋅ ⋅ ⋅

2 2 1 0 0 0 ⋅ ⋅ ⋅

5 5 3 1 0 0 ⋅ ⋅ ⋅

14 14 9 4 1 0 ⋅ ⋅ ⋅

42 42 28 14 5 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

. (15)

We note that the matrix 𝐴 = (𝑐(𝑥), 𝑥𝑐(𝑥)2) is the moment
array for the family of orthogonal polynomials with coeffi-
cient array given by

𝐴
−1

= (𝑐 (𝑥) , 𝑥𝑐(𝑥)
2

)
−1

= (
1

1 + 𝑥
,
𝑥

(1 + 𝑥)
2
) . (16)

Denoting this family by 𝑃
𝑛
(𝑥), we have

𝑃
𝑛
(𝑥) = (𝑥 − 2) 𝑃

𝑛−1
(𝑥) − 𝑃

𝑛−2
(𝑥) , (17)

with 𝑃
0
(𝑥) = 1 and 𝑃

1
(𝑥) = 𝑥 − 1. Similarly the matrix

𝐵 = (𝑐(𝑥)
2

, 𝑥𝑐(𝑥)
2

) is the moment array for the family of
orthogonal polynomials with coefficient array given by

𝐵
−1

= (
1

(1 + 𝑥)
2
,
𝑥

(1 + 𝑥)
2
) . (18)

Denoting this family by 𝑄
𝑛
(𝑥), we have

𝑄
𝑛
(𝑥) = (𝑥 − 2)𝑄

𝑛−1
(𝑥) − 𝑄

𝑛−2
(𝑥) , (19)

with 𝑄
0
(𝑥) = 1 and 𝑄

1
(𝑥) = 𝑥 − 2.

The inverse matrix 𝑅−1 is given by

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

−1 1 0 0 0 0 ⋅ ⋅ ⋅

0 −2 1 0 0 0 ⋅ ⋅ ⋅

0 1 −3 1 0 0 ⋅ ⋅ ⋅

0 0 3 −4 1 0 ⋅ ⋅ ⋅

0 0 −1 6 −5 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

, (20)

which is the Riordan array (1 − 𝑥, 𝑥(1 − 𝑥)). In it we see the
elements of 𝐴−1 and 𝐵−1 in staggered fashion.
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3. A Counter Example

It is natural to ask the question: is a matrix that contains two
embedded Riordan arrays as above itself a Riordan array?The
following example shows that this is not a sufficient condition
on an array to be Riordan.

Example 3. We will construct an invertible integer lower-
triangular matrix which has two embedded Riordan arrays
in the fashion above, but which is not itself a Riordan array.
We start with the essentially two-period sequence (𝑎

𝑛
)
𝑛≥0

1, 2, 3, 2, 3, 2, 3, . . . . (21)

We form the matrix

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

−2 1 0 0 0 0 ⋅ ⋅ ⋅

0 −3 1 0 0 0 ⋅ ⋅ ⋅

0 0 −2 1 0 0 ⋅ ⋅ ⋅

0 0 0 −3 1 0 ⋅ ⋅ ⋅

0 0 0 0 −2 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

. (22)

The inverse of this matrix begins with

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

2 1 0 0 0 0 ⋅ ⋅ ⋅

6 3 1 0 0 0 ⋅ ⋅ ⋅

12 6 2 1 0 0 ⋅ ⋅ ⋅

36 18 6 3 1 0 ⋅ ⋅ ⋅

72 36 12 6 2 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

, (23)

where we note an alternating pattern of constant columns
(with generating functions (1+2𝑥)/(1−6𝑥2) and (1+3𝑥)/(1−
6𝑥2), resp.). Removing the first row of this matrix provides
us with a production matrix, which is not of the form that
produces a Riordan array (after the first column, subsequent
columns would be shifted versions of the second column
[14, 15]).Thus the resultingmatrix will not be a Riordan array.
This resulting matrix begins with

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

2 1 0 0 0 0 ⋅ ⋅ ⋅

10 5 1 0 0 0 ⋅ ⋅ ⋅

62 31 7 1 0 0 ⋅ ⋅ ⋅

430 215 51 10 1 0 ⋅ ⋅ ⋅

3194 1597 389 87 12 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

. (24)

We now observe that for this matrix, we have

𝐴 = (
1

1 + 2𝑥
,
𝑥

1 + 5𝑥 + 6𝑥2
)
−1

,

𝐵 = (
1

1 + 5𝑥 + 6𝑥2
,
𝑥

1 + 5𝑥 + 6𝑥2
)
−1

.

(25)

We notice that the sequence

1, 2, 10, 62, 430, 3194, . . . (26)

has generating function given by the continued fraction

1

1 −
2𝑥

1 −
3𝑥

1 −
2𝑥

1 − ⋅ ⋅ ⋅

,

(27)

and secondly that

1 + 5𝑥 + 6𝑥
2

= 1 + (2 + 3) 𝑥 + 2.3𝑥
2

= (1 + 2𝑥) (1 + 3𝑥) .

(28)

This construction is easily generalized.

4. Embedding a Riordan Array

Another natural question to ask is: if we are given a Riordan
array𝐴, is it possible to embed it as above into a Riordan array
𝑅? For this, we let

𝐴 = (𝑢, V) , (29)

and seek to determine

𝑅 = (𝑔, 𝑓) (30)

such that 𝐴 embeds into 𝑅. For this, we need

𝑢 = 𝑔, V =
𝑓2

𝑥
. (31)

Thus we require that

𝑓 = √𝑥V = 𝑥√
V
𝑥
. (32)

Since we are working in the context of integer valued Riordan
arrays, we require that √V/𝑥 generates an integer sequence.
We can state our result as follows.

Proposition 4. The Riordan array

𝐴 = (𝑢, V) (33)

can be embedded in the Riordan array

𝑅 = (𝑔, 𝑥√
V
𝑥
) (34)

on condition that√V/𝑥 is the generating function of an integer
sequence.

Example 5. The Riordan array

𝐴 = (
1

√1 − 4𝑥
,
𝑥

1 − 4𝑥
) (35)
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can be embedded in the Riordan array

𝑅 = (
1

√1 − 4𝑥
,
𝑥

√1 − 4𝑥
) . (36)

For this example, the matrix 𝐴 begins with

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

2 1 0 0 0 0 ⋅ ⋅ ⋅

6 6 1 0 0 0 ⋅ ⋅ ⋅

20 30 10 1 0 0 ⋅ ⋅ ⋅

70 140 70 14 1 0 ⋅ ⋅ ⋅

252 630 420 126 18 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

, (37)

while 𝑅 begins with

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

2 1 0 0 0 0 ⋅ ⋅ ⋅

6 4 1 0 0 0 ⋅ ⋅ ⋅

20 16 6 1 0 0 ⋅ ⋅ ⋅

70 64 30 8 1 0 ⋅ ⋅ ⋅

252 256 140 48 10 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

. (38)

5. A Cascading Decomposition

We note that we can “cascade” this embedding process, in the
sense that, given a Riordan array 𝑅, with embedded Riordan
arrays 𝐴 and 𝐵, we can consider decomposing 𝐴 and 𝐵 in
their turns and then continue this process. For instance, we
can decompose

𝐴 = (𝑔,
𝑓
2

𝑥
) (39)

into the two matrices

𝐴
𝐴
= (𝑔,
𝑓
4

𝑥3
) , 𝐵

𝐴
= (𝑔
𝑓
2

𝑥2
,
𝑓
4

𝑥3
) . (40)

In their turn 𝐴
𝐴
and 𝐵

𝐴
can be decomposed and so on.

6. Embedding and Orthogonal Polynomials

The phenomenon of embedding as described above is not
confined toRiordan arrays, as the continued fraction example
above shows. To further amplify this point, we give another
example involving a continued fraction. Although we take a
particular case, the general case can be inferred easily from it.
Thus we take the particular case of the continued fraction

1

1 −
2𝑥

1 −
3𝑥

1 −
5𝑥

1 −
2𝑥

1 −
3𝑥

1 −
5𝑥

1 − ⋅ ⋅ ⋅

.

(41)

This continued fraction is equal to

1

1−2𝑥−
6𝑥2

1−8𝑥−
10𝑥2

1−5𝑥 −
15𝑥2

1−7𝑥−
6𝑥2

1−8𝑥 −
10𝑥2

1−5𝑥−⋅ ⋅ ⋅

.

(42)

By the theory of orthogonal polynomials, the power series
expressed by both continued fractions is the generating
function for themoment sequence of the family of orthogonal
polynomials whose moment matrix (the inverse of the coef-
ficient array of the orthogonal polynomials) has production
matrix given by

(
(
(
(

(

2 1 0 0 0 0 ⋅ ⋅ ⋅

6 8 1 0 0 0 ⋅ ⋅ ⋅

0 10 5 1 0 0 ⋅ ⋅ ⋅

0 0 15 7 1 0 ⋅ ⋅ ⋅

0 0 0 6 8 1 ⋅ ⋅ ⋅

0 0 0 0 10 5 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

. (43)

This production matrix generates the moment matrix 𝐴 that
begins with

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

2 1 0 0 0 0 ⋅ ⋅ ⋅

10 10 1 0 0 0 ⋅ ⋅ ⋅

80 100 15 1 0 0 ⋅ ⋅ ⋅

760 1030 190 22 1 0 ⋅ ⋅ ⋅

7700 10900 2310 350 30 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

. (44)

In order to produce an embedding for thismatrix, we proceed
as follows. We form the matrix

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

−2 1 0 0 0 0 ⋅ ⋅ ⋅

0 −3 1 0 0 0 ⋅ ⋅ ⋅

0 0 −5 1 0 0 ⋅ ⋅ ⋅

0 0 0 −2 1 0 ⋅ ⋅ ⋅

0 0 0 0 −3 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

. (45)

We invert this matrix, remove the first row of the resulting
matrix, and use this new matrix as a production matrix. The
generated matrix 𝑅 then begins with

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

2 1 0 0 0 0 ⋅ ⋅ ⋅

10 5 1 0 0 0 ⋅ ⋅ ⋅

80 40 10 1 0 0 ⋅ ⋅ ⋅

760 380 100 12 1 0 ⋅ ⋅ ⋅

7700 3850 1030 130 15 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

. (46)
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The moment matrix 𝐴 is evidently embedded in the matrix
𝑅. We can show that the corresponding matrix 𝐵 is the
moment matrix for the family of orthogonal polynomials
whose moments have generating function given by

1

1 − 5𝑥 −
15𝑥2

1 − 7𝑥 −
6𝑥2

1 − 8𝑥 −
10𝑥2

1 − 5𝑥 − ⋅ ⋅ ⋅

.

(47)

The matrix 𝐵 begins with

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

5 1 0 0 0 0 ⋅ ⋅ ⋅

40 12 1 0 0 0 ⋅ ⋅ ⋅

380 130 20 1 0 0 ⋅ ⋅ ⋅

3850 1410 300 25 1 0 ⋅ ⋅ ⋅

40400 15520 4060 440 32 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

, (48)

and it has production matrix

(
(
(
(

(

5 1 0 0 0 0 ⋅ ⋅ ⋅

15 7 1 0 0 0 ⋅ ⋅ ⋅

0 6 8 1 0 0 ⋅ ⋅ ⋅

0 0 10 5 1 0 ⋅ ⋅ ⋅

0 0 0 15 7 1 ⋅ ⋅ ⋅

0 0 0 0 6 8 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

. (49)

Thematrix𝑅−1 cannowbe characterized as the coefficient
array of a family of polynomials 𝑅

𝑛
(𝑥) defined as follows.

We let 𝑃
𝑛
(𝑥) be the family of orthogonal polynomials with

coefficient array 𝐴−1, and we let 𝑄
𝑛
(𝑥) be the family of

orthogonal polynomials with coefficient 𝐵−1. Then we have

𝑅
𝑛
(𝑥) = {

𝑄
𝑛/2
(𝑥) 𝑥
𝑛/2, if 𝑛 is even;

𝑃
⌈𝑛/2⌉
(𝑥) 𝑥
⌊𝑛/2⌋, otherwise.

(50)

In the general case of a moment sequence generated by
the continued fraction

1

1 −
𝛼𝑥

1 −
𝛽𝑥

1 −
𝛾𝑥

1 −
𝛼𝑥

1 − ⋅ ⋅ ⋅

,

(51)

the matrix 𝐴 will be generated by the production matrix

(
(
(
(

(

𝛼 1 0 0 0 0 ⋅ ⋅ ⋅

𝛼𝛽 𝛽 + 𝛾 1 0 0 0 ⋅ ⋅ ⋅

0 𝛼𝛾 𝛼 + 𝛽 1 0 0 ⋅ ⋅ ⋅

0 0 𝛽𝛾 𝛼 + 𝛾 1 0 ⋅ ⋅ ⋅

0 0 0 𝛼𝛽 𝛽 + 𝛾 1 ⋅ ⋅ ⋅

0 0 0 0 𝛼𝛾 𝛼 + 𝛽 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

, (52)

while the matrix 𝐵 is generated by the production matrix

(
(
(
(

(

𝛼+ 𝛽 1 0 0 0 0 ⋅ ⋅ ⋅

𝛽𝛾 𝛼 + 𝛾 1 0 0 0 ⋅ ⋅ ⋅

0 𝛼𝛽 𝛽 + 𝛾 1 0 0 ⋅ ⋅ ⋅

0 0 𝛼𝛾 𝛼 + 𝛽 1 0 ⋅ ⋅ ⋅

0 0 0 𝛽𝛾 𝛼 + 𝛾 1 ⋅ ⋅ ⋅

0 0 0 0 𝛼𝛽 𝛽 + 𝛾 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

. (53)

7. Embedding, Orthogonal Polynomials,
and Riordan Arrays

In this section, we consider the case of two related families of
orthogonal polynomials 𝑃

𝑛
(𝑥) and 𝑄

𝑛
(𝑥) defined by

𝑃
𝑛
(𝑥) = (𝑥 − 7) 𝑃

𝑛−1
(𝑥) − 12𝑃

𝑛−2
, (54)

with 𝑃
0
(𝑥) = 1, 𝑃

1
(𝑥) = 𝑥 − 3, and

𝑄
𝑛
(𝑥) = (𝑥 − 7)𝑄

𝑛−1
(𝑥) − 12𝑄

𝑛−2
, (55)

with 𝑄
0
(𝑥) = 1, 𝑄

1
(𝑥) = 𝑥 − 7. We note that

(1 + 3𝑥) (1 + 4𝑥) = 1 + 7𝑥 + 12𝑥
2

. (56)

The coefficient array of the polynomials 𝑃
𝑛
(𝑥) is then given

by the Riordan array

𝐴
−1

= (
1

1 + 3𝑥
,
𝑥

1 + 7𝑥 + 12𝑥2
) , (57)

while that of 𝑄
𝑛
(𝑥) is given by

𝐵
−1

= (
1

1 + 7𝑥 + 12𝑥2
,
𝑥

1 + 7𝑥 + 12𝑥2
) . (58)

The moment matrix 𝐴 begins with

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

3 1 0 0 0 0 ⋅ ⋅ ⋅

21 10 1 0 0 0 ⋅ ⋅ ⋅

183 103 17 1 0 0 ⋅ ⋅ ⋅

1785 1108 234 24 1 0 ⋅ ⋅ ⋅

18651 12349 3034 414 31 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

, (59)

while the moment matrix 𝐵 starts with

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

7 1 0 0 0 0 ⋅ ⋅ ⋅

61 14 1 0 0 0 ⋅ ⋅ ⋅

595 171 21 1 0 0 ⋅ ⋅ ⋅

6217 2044 330 28 1 0 ⋅ ⋅ ⋅

68047 24485 4690 538 35 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

. (60)

Letting

𝑅
𝑛
(𝑥) = {

𝑄
𝑛/2
(𝑥) 𝑥

𝑛/2, if 𝑛 is even;
𝑃
(𝑛+1)/2
(𝑥) 𝑥
⌊𝑛/2⌋, otherwise,

(61)
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we find that the inverse 𝑅 of the coefficient array of the family
𝑅
𝑛
(𝑥) is given by

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

3 1 0 0 0 0 ⋅ ⋅ ⋅

21 7 1 0 0 0 ⋅ ⋅ ⋅

183 61 10 1 0 0 ⋅ ⋅ ⋅

1785 595 103 14 1 0 ⋅ ⋅ ⋅

18651 6217 1108 171 17 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

. (62)

Thus the two Riordan arrays 𝐴 and 𝐵, which are the moment
arrays of the two families of orthogonal polynomials 𝑃

𝑛
(𝑥)

and 𝑄
𝑛
(𝑥), respectively, embed into the generalized moment

array 𝑅 for the family of polynomials 𝑅
𝑛
(𝑥). Now the

production matrix of 𝑅 begins with

(
(
(
(

(

3 1 0 0 0 0 ⋅ ⋅ ⋅

12 4 1 0 0 0 ⋅ ⋅ ⋅

36 12 3 1 0 0 ⋅ ⋅ ⋅

144 48 12 4 1 0 ⋅ ⋅ ⋅

432 144 36 12 3 1 ⋅ ⋅ ⋅

1728 576 144 48 12 4 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

, (63)

where the columns have generating functions (1 + 4𝑥)/(1 −
12𝑥
2), (1 + 3)/(1 − 12𝑥2), respectively. We now observe that

this production matrix is obtained by removing the first row
of the inverse of the matrix

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

−3 1 0 0 0 0 ⋅ ⋅ ⋅

0 −4 1 0 0 0 ⋅ ⋅ ⋅

0 0 −3 1 0 0 ⋅ ⋅ ⋅

0 0 0 −4 1 0 ⋅ ⋅ ⋅

0 0 0 0 −3 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

. (64)

We note finally that the sequence

1, 3, 21, 183, 1785, 18651, 204141, . . . (65)

has generating function given by

𝑔 (𝑥) =
1

1 −
3𝑥

1 −
4𝑥

1 −
3𝑥

1 − ⋅ ⋅ ⋅

.

(66)

We have in fact that

𝑔 (𝑥) =
1

𝑥
Rev𝑥 (1 − 4𝑥)
1 − 𝑥

. (67)

On the other hand, if we let

𝑃
𝑛
(𝑥) = (𝑥 − 7) 𝑃

𝑛−1
(𝑥) − 12𝑃

𝑛−2
(𝑥) , (68)

but this time take 𝑃
0
(𝑥) = 1 and 𝑃

1
(𝑥) = 𝑥 − 4, then the

matrix 𝐴 becomes

𝐴 = (
1

1 + 4𝑥
,
𝑥

1 + 7𝑥 + 12𝑥2
)
−1

. (69)

The matrix 𝐴 then begins with

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

4 1 0 0 0 0 ⋅ ⋅ ⋅

28 11 1 0 0 0 ⋅ ⋅ ⋅

244 117 18 1 0 0 ⋅ ⋅ ⋅

2380 1279 255 25 1 0 ⋅ ⋅ ⋅

24868 14393 3364 442 32 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

, (70)

where the moment sequence

1, 4, 28, 244, 2380, . . . (71)

has generating function

1

1 −
4𝑥

1 −
3𝑥

1 −
4𝑥

1 − ⋅ ⋅ ⋅

,

(72)

or equivalently

1

1 − 4𝑥 −
12𝑥2

1 − 7𝑥 −
12𝑥2

1 − 7𝑥 − ⋅ ⋅ ⋅

.

(73)

In this case, the matrix 𝑅 begins with

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

4 1 0 0 0 0 ⋅ ⋅ ⋅

28 7 1 0 0 0 ⋅ ⋅ ⋅

244 61 11 1 0 0 ⋅ ⋅ ⋅

2380 595 117 14 1 0 ⋅ ⋅ ⋅

24868 6217 1279 171 18 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

. (74)

This matrix is then associated with the matrix

(
(
(
(

(

1 0 0 0 0 0 ⋅ ⋅ ⋅

−4 1 0 0 0 0 ⋅ ⋅ ⋅

0 −3 1 0 0 0 ⋅ ⋅ ⋅

0 0 −4 1 0 0 ⋅ ⋅ ⋅

0 0 0 −3 1 0 ⋅ ⋅ ⋅

0 0 0 0 −4 1 ⋅ ⋅ ⋅
...

...
...

...
...

... d

)
)
)
)

)

. (75)
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