
JOURNAL OF ALGEBRA 75, 546-573 (1982) 

Recursive Matrices and Umbra1 Calculus 

MARILENA BARNABEI, ANDREA BRINI, AND GIORGIO NICOLETTI 

Istituto di Geometria deN’lJniversitci di Bologna, 
Piazza di Porta S. Donato, 5, 40127 Bologna, Italy 

Communicated by D. Buchsbaum 

Received May 18, 1981 

1. hR0DucT10~ 

Two major objectives can be seen to guide much recent work in 
enumeration: (1) to single out a limited variety of recurrences for numerical 
sequences which will encompass counting problems of wide-enough type; (2) 
to recover from empirical data an underlying set-theoretic structure which 
would reveal the source of the given recursion. 

We are here concerned with the first of these objectives, though the 
eventual understanding of the second is tacitly present, if only as a goal. 

We noticed the coincidence of several computations which, similar as they 
are in retrospect, had failed to realize their kinship. On leafing through the 
unique assembly of recursively solvable combinatorial problems in Comtet’s 
and Sloane’s invaluable collections, one is struck by the repeated occurrence 
of one and the same kind of double recursion. More strikingly, the same 
recursion is seen to occur in the polynomial sequences of the Umbra1 
Calculus of Roman and Rota (see [25]). 

Everywhere, the Lagrange inversion formula for power series plays a 
pivotal role. Much work is nowadays going into the unraveling of the ever- 
deeper layers of combinatorial significance of this formula, both in the 
ordinary case and in its as yet partially worked out noncommutative and q- 

analogs (Andrews, Foata, Garsia, Gessel, Joni, Raney, Reiner, Schtitzen- 
berger, to name but a few). Whatever their origins, the identities abutting 
Lagrange inversion are expressed by integers alone. This suggests not only a 
hidden set-theoretic layer, but a characteristic-free generalization as well: this 
generalization is the central theme of our work. 

We define a monoid of infinite matrices-“recursive matrices” for short. 
The entries of these matrices give the sought-out recursion, for example, that 
for coefficients of binomial and Sheffer polynomials and factor sequences, as 
well as that of the special sequences recently introduced by Roman in [26]. 
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Sequences of polynomials p,(x) satisfying the identities 

without the requirement that p,(x) be of degree IZ have been studied by 
Reiner, Morris and others. These sequences were not covered in the Umbra1 
Calculus of Roman and Rota, nor has their classification been carried OUT, 
This problem is important, inasmuch as it is roughly equivalent to the 
problem of finding a complete set of conjugacy invariants for formal power 
series by a method which will hopefully extend to other formal groups. 

With these aims in mind, we place ourselves in a characteristic-free 
setting. Our most pleasing result (Theorem 3) is perhaps a recursive 
(characteristic-free) matrix equivalent of the Lagrange Inversion Formula, 
here displayed as being nothing but the operation of pivoting a recursive 
matrix along the secondary diagonal. From this involutory interpretation of 
Lagrange inversion, it is an easy step to generalize the crucial Transfer 
Formula (see, e.g., [25, 26, 321) to a characteristic-free setting. Thus, we 
submit that functional composition in arbitrary characteristic is most effec- 
tively and easily computed by recursive matrices in conjunction with the 
characteristic-free generalization of the Transfer Formula. 

Applications and special functions are left to a subsequent work. In 
particular, we expect to show that new sequences of binomial and allied 
types in characteristic p > 0 exist in profusion and relate to computations in 
formal groups, notably Witt vectors. By way of application, we conclude 
with a generalization of Roman’s sequences to a characteristic-free setting, 
dropping to boot the requirement that f, be of degree IZ. 

This work follows our previous study of polynomial sequences of integral 
type (see [ 11). There, we showed that the Umbra1 Calculus should be 
cogently sharpened by techniques which keep ail coefficients integral 
throughout. The present paper can be read independently of previous work, 
though some items listed in the bibliography may aid the reader in search of 
motivation. 

2. PRELIMINARIES AND NOTATIONS 

In the following, the letter Z will denote the ring of integers, and N1 Z‘, 
Z- will denote the set of nonnegative, positive and negative integers, respec- 
tively. Moreover, A will be a commutative integral domain, with unity, of 
characteristic p > 0. U will denote the group of the units of A. 

A sequence u := (a,) with i E Z, ai E A, is said to be a Laurent sequence 
whenever there exists an integer n such that, for every k < n, ak = 0. 



548 BARNABEI, BRINI, AND NICOLE-ITI 

Clearly, the zero-sequence, which will be denoted by c, is a Laurent 
sequence. For every nonzero sequence GI :=. (a,), the degree of OL will be the 
least integer y1 such that a, # 0. We will denote the degree of a by deg(cl). 
Moreover, we will say that the zero sequence has degree +co. 

We will denote by L+ the set of all Laurent sequences, and, for every 
IZ E Z, LT shall be the set of all Laurent sequences whose degree is not less 
than n. Then, for every n E Z, we have 

Lt is structured as a Z-graded A-algebra under the natural sum and 
scalar product and the following product: if c1 := (a,) and /I := (bi) are 
Laurent sequences, we set 

with 

c@ := (Ci) 

ci := c a,b,-,. 
k 

The zero element of L + is the zero-sequence [, and the identity of L + is the 
sequence 

u := (So,), 

where 6, is the Kronecker symbol. 
Given two Laurent sequences a, ,8 such that a/? = u, we will say that p is 

the reciprocal sequence of a, and we write 

u -1 ._ .- P- 

Clearly, a given sequence (r := (aJ E Lt of degree n has (unique) 
reciprocal sequence if and oly if a,, E U. In this case, if we denote by 
/3 := (bi) the reciprocal sequence of a, then deg(j?) = -n and b-, = a;‘. 

The set of all Laurent sequences which admit reciprocal sequence will be 
indicated by R ‘. 

Moreover, L + becomes a complete topological A-algebra when 
Pi ; n E Z) is chosen as a basis of neighbourhoods of c. We say that a 
given sequence of Laurent sequences (Dli), with i E Z, converges to a E L ’ if 
limi,z+ cli = (r. Again, if /3 := (ii) is a Laurent sequence, and (ai), i E Z is a 
sequence of Laurent sequences, we say that the series CiEz biai converges to 
aEL+, and we will write 

v b.a.=a L 1 I 
ieZ 
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if the sequence (o,), with n E Z, and 

o,, = E biai 
i<n 

converges to a. Note that if (a,), i E Z is a sequence of Laurent sequences 
convergent to [, and if ,8 := (bi), i E Z is a Laurent sequence, then the series 
CiEz biai always converges. 

Recall that a pseudobasis of L + is a sequence (a,), with oL, E L + , n E Z, 
convergent to [. and such that every y E L * can be written in a unique way 
as y=~nEZb,un, with (b,)EL’. 

It is easily seen that the sequence 

cd, iE Z, 

of all integer powers of a sequence CY E R ’ converges to I; if and only if (r 
has positive degree. The set of all Laurent sequences in Rt with positive 
degree will be denoted by Ct. Moreover, the sequence (ai) is a pseudobasis 
if and only if cz is in C+ and its degree is exactly one. Such a series will be 
called a generator of L ‘. Obviously, the Laurent sequence 

T := (S,,), i E Z, 

is a generator of L ’ and 

5” = (S,,), n EZ. 

It follows that, if a := (ai) E L + , then 

a = C air’; 
I 

hence, r will be called the canonical generator. 
Given /b E C’, it is possible to define an operator C,% : L + --) L + as 

follows: if i2 EL +, a = xi ai ri, we set 

C,1(a) = c aJ’. I 
It can be shown that the semigroup of all operators defined above is 
precisely the semigroup End(L+) of all continuous endomorphisms of L +. In 
the sequel, we will write-as is usually done- 

a 0 A := C,(a). 

If a and p are in Cf, and 

Cfop=r, 
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/3 will be said the inverse of u, and we will write 

ci! :=p. 

It is immediate that a has (unique) inverse if and only if it is a generator of 
L ‘; we will denote by If the set of all generators of L ‘. 

We recall that the formal derivative of a Laurent sequence a = Ciezairi 
is the Laurent sequence 

Da := r iaiti-‘. 
ZZ 

As is well known, the chain rule holds for formal derivative; that is, for 
everyaEL+ andpEC+, 

D(a 0 P) = ((Da) 0 PI DP- 

Furthermore, if a E It 

Res(a-‘Da) = 1 

and for every n # -1 

Res(a”Da) = 0, 

where-as usual-if a = xi airi, 

Res(a) = a _, . 

Similarly, a sequence a := (a,), with i E Z, a, E A, is said to be an inverse 
Laurent sequence whenever there exists an integer n, such that, for every 
k> n, 

ak = 0. 

Clearly, the zero-sequence is also an inverse Laurent sequence. For every 
nonzero inverse Laurent sequence a := (a,) we define the degree of a to be 
the largest n E Z such that a, # 0. We will denote the degree of. a by 
degg(a) in order to distinguish it from deg(a) when a is both a Laurent and 
an inverse Laurent sequence. Moreover, we will say that the zero sequence [ 
has degree -co in L-, i.e., deg-([) = --co. 

We will denote by L - the set of all inverse Laurent sequences and, for 
every n E Z, L; shall be the set of all inverse Laurent sequences whose 
degree is not greater than n. Then 5 E L- for every n E Z. 

L - is structured as a Z-graded A-algebra under the natural sum, scalar 
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product and the following product: if a := (a,) and p := (bi) are inverse 
Laurent sequences, we set 

with 

Ci = r a,bi-,. 
k 

The zero element and the identity of L - are, respectively, 5 and u. 
As for L’, an inverse Laurent sequence a = (a,) of degree n admits a 

(unique) reciprocal sequence if and only if a, E U. The set of all inverse 
Laurent sequences which admit reciprocal sequence will be indicated by K -. 

L - becomes a complete topological A-algebra when {L; ; n E Z ) is 
chosen as a basis of neighbourhoods of [. We will say that a given sequence 
of inverse Laurent sequences (ai), with i E Z, converges to a E L - if 
limiGz- cli = a. 

Again, if /I := (bi) in an inverse Laurent sequence and (a,), i E Z, is a 
sequence of inverse Laurent sequences, we say that the series CiEZbiai 
converges to u E L -, and we will write 

2 biui=a 
icZ 

if the sequence (on) = (CiGn biai), with n E Z, converges to a. 
Also in this case, if (ai), i E Z, is a sequence of inverse Laurent sequences 

convergent to c, and if ,f3 := (bi) is an inverse Laurent sequence, then the 
series Ci~z biai always converges. 

Pseudobases in L - are defined as in L ‘. The sequence (a’) of all integer 
powers of a given a E R - converges to 5 if and only if a has positive degree. 

The set of all inverse Laurent sequences of positive degree will be denoted 
by C-. Analogously the notion of generator is given, and it can be shown 
that the generators of L - are precisely the inverse Laurent sequences of 
degree one which are in R -; the set of all generators of L - will be indicated 
by I-. 

In particular, the sequence t previously defined is also a generator of L - 
and, if a = (a,) is an inverse Laurent sequence, we have 

u = C airi. 
icz 

,41so in this case, if a = (a,) E L- and A E C-, we set 

a 0 iz = z czili. 
iEZ 
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An inverse Laurent sequence GI is a generator if and only if there exists a 
unique Cu E C- such that 

Cfoii=t. 

For any sequence 01 := (a,), n E Z, a, E A, we set 

01’ := (b,) 

with b, = a-,, for every n E Z. 
The correspondence now defined is obviously an involutory bijection. It is 

easily seen that it maps L ’ onto L - and vice versa, and induces a 
continuous isomorphism between these topological A-algebras. 

In the sequel, accordingly with the current terminology, the elements of 
L ’ and the elements of L - will be called Laurent series and inverse Laurent 
series, respectively. 

Given a matrix M := (mij) with i, j E Z and mij E A, its kth row- 
generating function shall be the sequence 

M(k) := (nzti), with jE Z. 

Similarly, the hth column generating function of M shall be the sequence 

M [h] := (mih), with iE Z. 

A matrix M will be called a Laurent matrix (inverse Laurent matrh) 
whenever all its row (column) generating functions are Laurent sequences 
(inverse Laurent sequences). Moreover, a matrix M := (mij), with i, j E Z 
and mti E A will be called diagonally finite whenever, for every (h, k) E Z 2, 
there exists only a finite set of ordered pairs (i, j) E Z2 such that 

mij # 0, i>h, j,<k. 

Obviously, a diagonally finite matrix is both a Laurent and an inverse 
Laurent matrix, while the converse is false. In the A-module D of all 
diagonally finite matrices the usual matrix product is defined; under this 
product, D becomes a (noncommutative) A-algebra. 

We define now two linear operators F and G over the A-module of all 
matrices M: Z x Z + A as follows: if M := (m,), we set 

FM := (pii) 

with 

Pij = mi-l,j, i,jEZ, 
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and 

GM := (qij) 

with 

9jj = mi,j- L 3 i,j E 2. 

We remark that, if M is a Laurent matrix, then 

FM(i) = M(i - 1) 

and 

GM@) = tM(i); 

similarly, if M is an inverse Laurent matrix, then 

FM [j] = rM [j] 

and 

GM[j] = M[j- 11. 

Given a Laurent series 

a = C airi # < 
iEZ 

the linear operator 

a(G) := s aiG’ 
ieZ 

is well defined over the A-module of all Laurent matrices. 
Analogously, given an inverse Laurent series 

y= -T C$‘#[ 
iTz 

the linear operator 

y(F) := {TZ c,F’ 

is well defined over the A-module of all inverse Laurent matrices. 
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3. REPRESENTATION OF THE UMBRAL SEMIGROUP 

We define a semigroup over the set of all ordered pairs (cr,/3) where 
a E C + and p E L +, p # [, by means of the operation 

This semigroup will be called the umbra1 semigroup otrer A and will be 
denoted by US(A). This structure turns out to be a monoid, (r, o) being its 
unity. 

We single out three subgroups of US(A), namely, the umbra1 group 
UG(A), the homogeneous group HG(A) and the Appell group AG(A), defined 
as 

G(A):= {(a,P);uEIt,pERt}, 

HG(A) := {(a, u); a E I+ 1, 

AG(A) := {(z, ,8); ,8 E R + }. 

By the way we note that US(A) contains the homogeneous semigroup 

HS(A) := {(a, o); a E C’ ), 

which is canonically isomorphic to the compositional semigroup of Laurent 
series over A, and the Appell semigroup 

AS(A) := ((T,@;/~EL+,~# cl, 

which is canonically isomorphic to the multiplicative semigroup of L +. 
Our next goal will be to exhibit a faithful representation of the semigroup 

US(A) by means of a class of diagonally finite matrices. 
First of all, we are interested in Laurent matrices M satisfying a linear 

problem of the kind 

(For(G) - I) M = 0, 

M(i) =p. 
(“1 

with aERt andpELf. 
It is immediate, by construction, that for any given a E R + and ,!I E L t 

the linear problem (*) has a unique solution in the A-module of all Laurent 
matrices. 

We immediately get the following result: 
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3.1. PROPOSITION. Let Q E R +, ,ll E L + and i E Z; then the Laurent 
matrh M is the unique solution of problem (*) z$ and only if 

M(k) = d-‘/i 

-for every k E Z. 

Proof. First of ail we remark that 

(a(G) M)(k) = aM(k) 

for every k E Z. Let now M be the solution problem (*); by assumption we 
have 

M(i) = p; 

by induction, suppose that 
M(k) = ok-i/I 

for some k E Z; then 

M(k + 1) = (F-‘M)(k) = (a(G) M)(k) = aM(k) = ~?+‘-~p 

and analogously 

M(k - 1) = ak-‘-ja. 

The converse is immediate. I 

By the preceding result, we can consider-without loss of generality-only 
problems of the kind 

(l%(G) - I) M = 0, 

M(O)=b. 

with CL E R + , p E L + . The unique solution M of problem (* *) will be said 
the (a,&)-recursive matrix. The series 01 and /3 will be called the recurrence 
rule and the boundary value, respectively. Hence, we are led to define an 
application R from the set R + x L ’ to the set of all Laurent matrices which 
maps the pair (a,/3) into the (a,&ecursive matrix. 

Note that R(a, j3) = R(y, 6) if and only if 

whenever /I # <, while 

for every a, yE R’. 

a = y, P = 6, 

R(a, 5) = WY, 5) = 0 
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If char(A) =p > 0, the entries of any recursive matrix can be computed 
directly by means of coefficients of the boundary value and of the first p - 1 
powers of the recurrence rule and of its reciprocal series. In fact, we have: 

3.2. PROPOSUION. Suppose char(A) =p > 0. Let a E R +, /I EL+, with 
/I = xi biTi, and set ai = cj aijzj for every i E Z. Let (mij) = R(a,/?). For 
every i, j E Z, with i = Xi=0 i, ph (i, f 0), where 0 < i, <p - 1 if i > 0 and 
l-p<i,,<Oifp<O,wehave 

where k = x:=0 khph. 

Proof. It is straightforward consequence of Proposition 3.1. 1 

In particular, we get: 

3.3. COROLLARY. Let char(A) =p > 0, and let M= (mij) be a recursive 
matrix with boundary value v. For every i, j E Z, with i = CiZo ih ph, where 
O,<i,,<p-1 ifi>O,and l-p<i,<Ozifi<O, wehave 

mij = c fi m;f.k,, 
(k,)Zn s=O 

where the sum above is extended to all n-tuples (kS) such that C:=o k, ps = j. 

The preceding result yields a generalization of the so-called Lucas 
factorization formula for p-binomial coefficients. 

3.4. PROPOSITION. The Laurent matrix R(a,,8) is a diagonally finite 
matrix if and only if a E C’ . 

Proox Immediate by Proposition 3.1. 1 

We are now interested in studying the column-generating functions of a 
diagonally finite recursive matrix. We have: 

3.5. PROPOSITION. The diagonally finite matrix M is the (a, &recursive 
matrix if and only if 

M(O) =P 

and 

M[j] =z c aiM[j-ii] 
icZ 

for every j E Z. 
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Proof. Let M = R(a, p), with a E C+ and /I E L + : then we have 
M (0) = p; furthermore 

M[j] = T(F-‘M)[j] = r(a(G) M)[j] = c taiM[j - i], 
icZ 

Analogously we have the converse. I 

A recursive matrix with boundary value u will be called a homogeneous 
matrix, and a recursive matrix with recurrence rule t will be called an Appeil 
matrix. The identity matrix is the unique Appell homogeneous matrix. The 
row-generating functions law (Proposition 3.1) leads us to note that the sum 
of two recursive matrices with the same recurrence ruie a is the recursive 
matrix with recurrence rule a and whose boundary value is the sum of the 
boundary values. Furthermore, we have: 

3.6. PROPOSITION. Let a E R +, /I E L ‘, /3 := (bij; then 

R(a, p) = x b,R(a, z’). 
ieZ 

By Proposition 3.2, it follows that the product of two recursive matrices 

R(a,P) and R(Y,@ is well defined whenever the series y belongs to C+; 
furthermore, we have 

THEOREM 1. The map R induces a semigroup monomorphism from the 
umbra1 semigroup US(A) to the semigroup D of diagonally Jnite matrices, 
Precisely3 we have 

R(a,Bj x R(y, 6) = Wa 0 Y, t'@ 0 y) 6) 

foreverya,yEC+,/?,6EL+,/?#~#+. 

Proof: Set 

and 

R&b’) = P= (P,i), 

R(Y, 6) = Q = (qni)? 

P x Q = M = (m,J. 

We have 

M(n) = c c pniqj$ = Fp, QW 
1 j 

= C p,jy’ 6 = (P(n) o r)s 

= i((an@ 0 y) = (a 0 y)“tJ 0 y) 6. 
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By Proposition 3.1, we get 

M=R(uoy,Gg.y)d). i 

As an immediate consequence, we succeed in splitting in a unique way 
any given recursive nonzero matrix into the product of a homogeneous 
matrix and an Appell matrix. 

3.7. COROLLARY. LetaER+,pEL’,,l?#[; then 

R(u,p)=R(a,u)xR(r,p). 

The diagonally finite recursive matrices which admit two-sided inverse are 
those whose recurrence rule and boundary value are in I+ and R + , respec- 
tively. Hence: 

3.8. PROPOSITION. The largest subgroup of the semigroup of diagonally 
finite recursive matrices is the image under R of the umbra1 group UG(A). 

Note that the terminology settled for special substructures of US(A) and 
special subsets of recursive matrices is consistent, that is, R maps the 
homogeneous semigroup HS(A) into the semigroup of all homogeneous 
recursive matrices and the Appell semigroup AS(A) into the semigroup of all 
nonzero Appell matrices. 

Finally, we remark that the set of all Appell matrices is a commutative 
subalgebra of the (noncommutative) algebra of all diagonally finite matrices. 
This subalgebra A (A) is canonically isomorphic to L +, since 

R(t,a)+R(r,p)=R(5,a+p), 

R(T, a) x R(r,P) = R(L ~$1 

for every a,pEL+. 
Moreover: 

3.9. PROPOSITION. Every A-algebra of recursive matrices with unity 
element is a subalgebra of the algebra A(A) of Appell matrices. 

ProoJ Let M be an A-algebra of recursive (diagonally finite) matrices 
with unity element, and let, for M E M, 

M = R(a, /?) 

with aE C+; then the matrix M + I must also belong to M, that is, 

M + I = R(y, 6) 
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for some y E Ct and 6 E L ‘. By Proposition 3.1, we get 

($p + 7i = yf 6 

for every i E Z; in particular, for i = 0, we obtain 

p+o=s 

and, for i= 1, -1, 

That is, 

which implies 

cY=y=r; 

hence M is an Appell matrix. m 

The canonical isomorphism between L + and A(A) allows us to regard the 
latter as a (complete) topological algebra; the recursive matrix 

D = R(t, t) 

turns out to be a generator of A(A). Now, it is possible to give a charac- 
terization of Appell matrices which recalls some results of the classical 
umbra1 calculus: 

3.10. PROPOSITION. A Laurent matrix M is an Appeli matrix ifand only 
if 

MxD-DxM=O. 

Proof. It is easily seen that 

MxD=GM 

and 

DxM=F-‘M; 

hence, the statement follows. 1 
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4. GENERALLAGRANGE INVERSION 

In this section we will consider a further class of infinite matrices which 
arise from linear problems of the kind 

(Ga(F) -Z) M = 0, 

MM =P 
c*> 

with aER- andpEL-. 
It is immediate, by construction, that, for any given a E R- and p E L-, 

the linear problem (*) has a unique solution in the A-module of all inverse 
Laurent matrices. 

4.1. PROPOSITION. Let a E R -, ,8 E L - and j E Z; then the inverse 
Laurent matrix M is the unique solution of the problem (*) if and only if 

M [k] = a”-$ 

for every k E Z. 

ProojI It is in close analogy with that given for Proposition 3.1. 1 

This result allows us to consider-without loss of generality-only 
problems of the kind 

(Ga(F) -Z) M = 0, 

MI01 =P 
(**I 

with a E R -, p E L -. The unique solution M of problem (* *) will be called 
the (inverse) [a,P]-recursive matrix, and will be indicated as M = C(a, /I); 
the series a and ,L? will be called the recurrence rule ad the boundary value, 
respectively. 

Note that C(a, p) = C(y, 6) if and only if 

a = Y, P = 6, 

whenever p # [ f 6, while 

W, 0 = C(y, C) = 0 

for every a, yE R-. 

4.2. PROPOSITION. The inverse Laurent matrix C(a,p) is a diagonally 
Jinite matrix if and only if a has positive degree. 
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Proof. Follows immediately by Proposition 4. I. I 

In the sequel, an inverse recursive matrix will be called an inverse 
homogeneous matrix if its boundary series is u. 

Note that an inverse recursive matrix with recurrence rule r is also a 
recursive matrix; furthermore 

for everypEL-. 
We have: 

4.3. PROPOSITION. Let a E R -, p E L -, ,f3 := (hi); then 

C(Ci, p) = C biC(a, ?‘>* 
ieZ 

We now define a linear operator T on the A-module of all matrices 

M:ZxZ+A; 

if M = (m,), then 

TM := (m-j,-i). 

T is an involution, maps Laurent matrices into inverse Laurent matrices and 
leaves the submodule of all diagonally finite matrices fixed. Moreover, if the 
product M X N is defined, then 

T(MxN)=TNxTM. 

A first link between recursivity and inverse recursiviiy is given by the 
following result, whose proof is straightforward: 

4.4. PROPOSITION. Let a E R - and /? E L -; then, we have 

TC(a, P) = R((a - *)-I 8). 

The proof of the following proposition becomes very easy by means of the 
preceding result: 

4.5. PROPOSITION. LetaEC-,p,6EL-and1lER-;tken 

C(a, P> X C(Y, 4 = C(Y 0 a, (8 0 a> P) 
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Proof. We have 

T(C(G P) x C(Y, 6)) = WY, 4 x TC(a, P) 

=R((y-I)‘, 8) x R((a-‘)‘J) 

=R((y-1)’ 0 (a-‘)., (6’ 0 (a-‘)‘)p’) 

=R((y’ 0 (a-I)‘)-1, (6 0 a)*P’) 

=R((b o WY, ((6 o a)rR)‘) 
= TC(y 0 a, (6 0 a)/3). I 

4.6. COROLLARY. Let a E R -, p E L -; then, we have 

C(a, P) = CC? P) x C(a, 0). 

It is now clear that the study of inverse recursive matrices can be reduced 
to that of recursive matrices by means of the linear operator T. The goal is 
now to find whenever an inverse recursive matrix is a recursive matrix. First 
of all, we have to investigate conditions under which the equations 

and 

(l%(G) - I) M = 0, aER+, 

(Gy(F) - I) M = 0, YER-, 

have common solutions. 
We have: 

THEOREM 2. Let a E R ‘, y E R -; then the equations 

@‘a(G) -I) M = 0, 

(Gy(F) - I) M = 0 

have a nontrivial common solution in the A-algebra of all diagonally finite 
matrices if and only if a E If, y E I- and y = (~7’)‘. If that is the case, the 
A-modules of solutions coincide. 

ProoJ: Let a E If and y = (C’)‘; the following equations are equivalent: 

(Fa(G) -I) M = 0, 

a(G) M = F-‘M, 

GM = &(F-‘) M, 

GM = Z(F) M, 
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(c?‘)-‘(F) GM = M, 

(Gy(F) - I) M = 0. 

Hence the A-modules of all solutions of the given equations coincide. a 

4.7. PROPOSITION. Let a E I+; then 

R(a, Da) = C((P)‘, (ZIP)‘). 

ProoJ Let M := R(a, Da); by Theorem 2, M is an inverse recursive 
matrix with recurrence rule (&-‘y and, by previous remarks, 

M[-l] = r-1. I 

Finally, we come to our main result: 

THEOREM 3. Let u E I+ and /? E L + ; then 

R&/l) = C((i-I)‘, (I-E-‘@ 0 ii) DC)‘). 

ProoJ We have 

R(q p) = R(T, @a-‘) 0 ii) x R(a, Da) 

= C(z, ((par-‘) 0 CT)‘) x C((P)‘, (rir’y) 

= C((C’)-, (tE- ‘)‘(@la - ‘) 0 CT>‘) 

= C((?‘)‘, (X-’ (J 0 cs)((Du - ‘) 0 C)>‘) 

= C((P)‘, (rC’ (/3 0 cr’)((Du) 0 ii-‘)‘) 

= C((E-I)-, (r&-1@ 0 iqlxi)‘). I 

As an immediate consequence of Theorem 3 we get a generalization of the 
classical Lagrange-Bi.irmann inversion formula: 

4.8. PROPOSITION. For every ct E I+ arzd p E L ‘, we have 

c Res(a”,8) r” = (t(j? 0 E) IX?. 
IlEZ 

5. AN EXTENSION OF ROMAN'S THEORY OF SPECIAL SEQUENCES 

As stated in the Introduction, the results we have developed thus far are 
meant to incorporate and generalize much of the work of the last decade 
relating to special sequences of polynomials. Our point of view has been that 
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of taking the matrices defined by the coefficients of these polynomials and 
treating them algebraically. Some advantages of this method are, besides 
achieving a characteristic-free approach, the recasting of a number of 
phenomena, such as the Lagrange inversion formula, in an algebraic light, 
thus best lending them to further extension. 

It is, however, of relevance to show that the analytic methods used by 
previous authors can be recovered in full, indeed greatly extended by simple 
applications of our results. 

It hardly needs be recalled that a great variety of polynomial sequences 
arising in classical analysis, combinatorics, probability and sundry other 
sources obey the recursion we have studied. While a detailed examination of 
classical special cases will have to wait for a later publication, we only 
mention by way of typical examples the Stirling polq’nomials: 

S,(x) = c SnvLXk. 
k=O 

The coefficients of these polynomials, the Stirling numbers of the second 
kind, satisfy the well-known recursion 

n.h+k 

and thus the matrix S := (sii), whose entries are 

i! 
sij := - sj,i, 

j! 

is one of our recursive matrices. Similarly, the coefficients of the Laguerre 
polynomials, 

L,(x) = i L,,kXk 
k=O 

with 

L,,,:=(--1)X$ ;I; ) 
.i ) 

satisfy the same recursion: 
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The Hermite polynomials 
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k H! n-2k 

k!(n - 2k)I x 

satisfy the recursion 

k=O 

which again falls under our theory. 
These examples taken at random hint to the further development we have 

in mind. 
Not long ago S. Roman discovered the remarkable fact that these 

sequences of polynomials could be obtined by Wiener-Hopf truncation of 
inverse Laurent series. For example, he could associate to the Hermite 
polynomials H,(x) a family of inverse Laurent series 

where coefficients ci are those introduced in [27] and the index n ranges 
over positive and negative integers alike. For IE positive, the ordinary 
Hermite polynomials are obtained by removing terms of negative degree. 
Amazingly, all identities relating to Hermite polynomials [and the same 
happens for all Sheffer sequences of polynomials) are still valid. This 
phenomenon indicates that formal properties of special polynomials can 
perhaps be understood in the light of this double extension. 

In closing, we briefly show that Roman’s results can be obtained as an 
application of our methods, with a further generalization, not considered by 
Roman, to Laurent sequences not restricted to change by one degree at each 
step. 

In this section, for sake of readability and accordingly with Roman’s 
notation, we will denote Laurent and inverse Laurent series in functional 
form, that is, 

a(x) := x a,xi. 
ieZ 

A sequence of inverse Laurent series (#,Z), with n E Z and 
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is said to be a homogeneous sequence whenever 

0) deg-(h,J < deg-kL+,) 

for some integer m, and 

(ii) c h+k,n = c. Ch,jCk.n-.i 

for every integer h, k and n. 

Condition (i) ensures finiteness of the sum in condition (ii). 
We explicitely note that no more conditions are given on degrees of the 

inverse Laurent series 4,. 
If (@,J is a sequence of inverse Laurent series, with n E Z and 

h(x> = c Ck,nXk, 
k 

the matrix 

c := (Ckn) 

will be said the canonical matrix of the sequence (4,). 
The next statement shows the natural link between homogeneous 

sequences and homogeneous recursive matrices. 

5.1. PROPOSITION. A sequence (4,) of inverse Laurent series, with n E Z 
and 

hix) = T  Ck,nXk, 

is a homogeneous sequence if and onb if its canonical matrix is (a, v)- 
recursive, with u E C +. Moreover, 

a(x) = 2 qjxi. 

ProoJ: Follows immediately by Proposition 3.1. 1 

The degrees of a homogeneous sequence are nondecreasing. Precisely, we 
have 

5.2. COROLLARY. If (4,) is a homogeneous sequence and C := R(a, v) is 
its canonical matrix, then, for every integer n, 

deg-(#,h+i)=n, i = 0, 1, 2 ,..., h - 1, 

with h = deg(a). 
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For every Laurent series 
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a(x) := y aixi 
Zi 

and for every inverse Laurent series 

set, as usual, 

q%(x) := lz CiXi, 

(a(d) := r aici. 
if; 

Homogeneous sequences yield Roman’s special sequences as a special case. 
In fact, we have: 

5.3. PROPOSITION. A sequence (4,) of inverse Laurent series, with n E Z 
and 

deO#,) < deg-(h+ d 

for some integer m, is a homogeneous sequence if and only if 

for every a, /? C$ L + , 

Proof. Let #&) = Cj ck,$; the assertion follows from the identities: 

(Xi+' j$nj=Ci+I,n=CCi,jC*,n-j=r (Xil~,)(x/~n-j)~ I 
i j 

A sequence of inverse Laurent series (d,), with 

d,(x) = ; Ck,“XkV n E Z, 

is said to be a Sheffer sequence whenever there exists a (unique) 
homogeneous sequence (w,), 

t//,(x) = c d, ,,xk 
T- ’ 

such that 

(iii) c h+k.n= z Chjdk,n-j 

for all integers h, k and n. 
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The homogeneous sequence (I,u,) will be said the allied sequence of (4,). 
The following generalizations of Proposition 5.1 and 5.2 are 

straightforward: 

5.4. PROPOS~ION. A sequence (0,) of inverse Laurent series, with n E Z 

and i,(x) = Ck ck,,,xk7 is a Sheffer sequence if and only if its canonical 
matrix is (a,P)-recursive, with u E C+; moreover, 

P(x) = c c,,jd j 
and 

u(x) =p-‘(x)X c,&. 

5.5. PROPOSITION. A sequence (4,) in L -, with n E Z, is a Sheffer 
sequence if and only if there exists a homogeneous sequence (w,) such that 
the identities 

hold for every a, p E L + and for every integer n. 

From the preceding results it follows that a Sheffer sequence is a spanning 
set for L - if and only if the boundary value of its canonical matrix is in R +. 
Furthermore, a Sheffer sequence which is a spanning set is a basis for L- 
whenever the recurrence rule of its canonical matrix is in I+. Such sequences 
will be called recursive bases for L-. 

As usual, given any series a E C+, its conjugate sequence (4,) is the 
(unique) sequence in L - defined by 

t),(x) = T (ak ( x”) xk. 

As an immediate consequence of Proposition 3.1, we have 

5.6. PROPOWTION. A sequence (4,) f 0 inverse Laurent sequences is a 
homogeneous sequence ifand only ifit is the conjugate sequence of a Laurent 
series a E C’. Furthermore, a is the recurrence rule of the canonical matrix 

of VJ- 

The preceding result can be generalized to the Sheffer case as follows: 
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given an ordered pair (a, /3), with a E C+ and p # 5, its conjugate sequence 

UJ is th e uni ue se ( q > q uence in L - defined by 

Q,(x) = T (ak/? / x’) xk. 

We have: 

5.7. PROPOSITION. A sequence (4,) in L ~ is a Sheffer sequence if and 
only if it is the conjugate sequence of an ordered pair (a, /3), with a E C ‘- 
and /3 E L ‘, ,8 # <. Furtherore, a and p are the recurrence rule and the 
boundary value of its canonical matrix, respective&. 

Another classical notion is that of associated sequence of a series: a 
Laurent series a E C+ and a sequence (4,) in L .- will be called associated 
whenever the identities 

hold for every integer n and k. 

5.8. PROPOSITION. 

basis if and only if 
Moreover, 

A sequence ($,) in L - is a homogeneous recursive 
it is the associated sequence for a series a in I &. 

C(x) = c (x I qbk) xk, 
k 

ProoJ: We remark that, if C is the canonical matrix of the sequence (@,!) 
and N is the (u, o)-recursive matrix, then identities (*) can be re-written as 

NxC=I; 
by Theorem 1 we have tha assertion. 1 

As a consequence of Proposition 5.8 we have the following expansion 
formulas: 

5.9. PROPOSITION. Let (4,) be the associated sequence for a E I+; therz, 
for every CI E L -, we have 

5.10 PROPOSITION. Let (4,) be the associated sequencefor a E I’ ; then, 
for every y E L ‘, we have 

vtx! = c (7 / $k> akiX)v 
k 
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Given any Laurent series a, we define a continuous linear operator 

by setting 

a@(x) := a*(x) 4(x) 

for every $ EL-. 
In particular, being 7(x) = X, by this definition T is the linear operator such 

that TX” = xn-’ for every integer n, and hence it is nothing but Roman’s 
derivative D introduced in [26]. 

As usual, we are interested in characterizing the matrix of a given operator 
a, with aEL+, with respect to the canonical pseudobasis (xi) of L -. 

5.11. PROPOSITION. For every a E L +, the matrix of the linear operator 
a is the Appell matrix R(7, a). Conversely, given any continuous linear 
operator 

EL--L- 

whose matrix is (t, a)-recursive, we have 

T= a. 

ProoJ: Let M := (mij) be the canonical matrix of the operator a. By 
assumption, we have, for every j E Z, 

a’(x) x’ = Y mijxi, 
i’;i 

that is, M = C(7, a’) = R(r, a). 1 

Hence, the algebra Z of operators a, with a E L +, is topologically 
isomorphic to the algebra A(A) of Appell matrices. This allows us to expand 
any a E Z as 

a = a(T). 

A well-known result on shift-invariant operators of the classical umbra1 
calculus can be read in the present theory as follows: 

5.12. PROPOSITION. A continuous linear operator 

EL--+L- 

is in C if and only ifit commutes with T. 
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Given any Laurent series a of positive degree a sequence (4,) in L - wili 
be called related to a whenever 

for every integer 12. 
The following result is nothing but the classical Transfer Formula, without 

boundary conditions. 

5.13. PROPOSITION. The sequence (4,) is related to a E C’ iJ” and only, 
if the canonical matrix of (4,) is an inverse recursive matrix with recurrence 
r&e (a-‘)‘. 

ProoJ Conditions (**) can be read as: 

and this gives the assertion. I 

5.14. PROPOSITION. Let a E Ct, deg(a) = h > 0, ar?d let (4,) be a 
sequence related to a; then 

de-@,) = nh + deg-khd 

for every integer n. Hence, (4,) is a basis for L - if and only if a E I+ a?zd 
#“ER-. 

Theorem 2 leads us to prove the following results: 

5.15. PROPOSITION. A sequence (4,) related to a E C+ is a Shefier 
sequence $ and only if a E I+. 

5.16. PROPOSITION. If a sequence (4,) is associated to a E I’, then (Qn) 
is related to a. 

5.17. PROPOSITION (Transfer Formula). A sequence (4,) related to 
a E If is the sequence associated to a if and only if 

Qi’ 1 (x) = xDcu(x). 

Proof. Follows immediately by Theorem 3. I 

Needless to add, the group of classical Sheffer and umbra1 operators is 
faithfully represented by the group of all invertible recursive matrices. 
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