
World Applied Sciences Journal 32 (7): 1226-1234, 2014
ISSN 1818-4952
© IDOSI Publications, 2014
DOI: 10.5829/idosi.wasj.2014.32.07.21861

Corresponding Author: R. Athilakshm, Computer Applications Department, Sri Krishna College of Engineering and Technology,
Coimbatore, TN, India. 

1226

Improving Object Classification Using Zernike Moment, Radial Cheybyshev
Moment Based on Square Transform Features: A Comparative Study

R. Athilakshm and Amitabh Wahi1 2

Computer Applications Department,1

Sri Krishna College of Engineering and Technology, Coimbatore, TN, India
Information Technology Department,2

Bannari Amman Institute of Technology, Sathyamangalam, TN, India

Abstract: In many applications, different kinds of moments have been utilized to classify images and object
shapes. Moments are important features used in recognition of different types of images. In this paper, three
kinds of moments: Structure Moments, Radial cheybyshev moments, Radial cheybyshev moments computation
on square Transform have been evaluated for classifying object images using Back propagation classifier.
Experiments are conducted using MIT, PASCAL VOC and ORL database which contains car, bicycle, Trucks
and face images. The main objective is to make hybrid descriptor which combines structure moment with
Zernike moments and Radial Cheybyshev Moments to capture shape and boundary information. In this paper
the effect of Zernike moments, Radial Cheyshev moments on new density function in recognition rate
improvement are studied. The test results are carried out and a comparative study with two of the existing
techniques are included to show the effectiveness of the proposed technique.

Key words: Radial Cheybyshev moment  Zernike Moment  Radial Cheybyshev moment on Square
Transform  Zernike Moments on Square Transform  Unit Circle  Rotation Invariance  Area
of the Object  Center of Mass

INTRODUCTION originate from 1D OG polynomials whose 2D versions

Image moments constitute an important feature The main advantage of the moments orthogonal on a
extraction method (FEM) which generates high rectangle is that they preserve the orthogonality even on
discriminative features, able to capture the particular the sampled image. The popular orthogonal moments
characteristics of the described pattern, which distinguish defined on rectangle are Legendre moments and
it among similar or totally different objects. Among the Cheybyshev moments They can be made scale-invariant
several moment families introduced in the past, the but creating rotation invariants from them is very
orthogonal moments are the most popular moments complicated. The polynomials orthogonal on a disk are
widely used in many applications, owing to their intrinsically 2D functions. They are constructed as
orthogonality property that comes from the nature of the products of a radial factor (usually a 1D OG polynomial)
polynomials used as kernel functions, which they and angular factor which is usually a kind of harmonic
constitute an orthogonal base. As a result, the orthogonal function. When implementing these moments, an image
moments have minimum information redundancy meaning must be mapped into a disk of orthogonality which
that different moment orders describe different parts of creates certain re-sampling problems. On the other hand,
the image. The most well known orthogonal moment moments orthogonal on a disk can easily be used for
families on unit disc in the continuous space are: Zernike, construction of rotation invariants because they change
Pseudo-Zernike, Orthogonal Fourier-Mellin, chebyshev under rotation in a simple way. The most well known
Fourier. The polynomials orthogonal on a rectangle orthogonal moment families are: Zernike, Pseudo-Zernike,

were created as products of 1D polynomials in x and y.
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Legendre, Fourier-Mellin, Tchebichef, Krawtchouk, with Computing Zernike moments also requires mapping of
the last two ones belonging to the discrete type moments radial distances to the range [-1, 1] and numerical
since they are defined directly to the image coordinate approximation of the continuous moment integrals [16].
space, while the first ones are defined in the continuous Mukundan et al. [17] has suggested the use of discrete
space. orthogonal moments to eliminate the problems associated

A regular moment has the form of projection of (x, y) with the continuous orthogonal moments. They
onto the monomial introduced Chebyshev moments based on the discrete

Chebyshev moments are superior to geometric, Zernike

The basis set X  and Y  is not orthogonal. The capability. However, this first formulation of Chebyshevp q

moments contain redundant information. As X  and Y moments did not have rotational invariance. Recently,p q

increases rapidly as order increases, high computational Mukundan [18] introduced Radial Chebyshev moments
precision is needed. Image reconstruction is very which possess rotational invariance property. In this
difficult.Where Kernal  (.) corresponds to the moments section we present a brief overview of the radialnm

kernel consisting of specific polynomials of order n and Chebyshev moments (RCM).
repetition m, which constitute the orthogonal basis and The paper [19] introduces structure moment
NF is normalization factor. Moments have the ability to invariants based on the geometric moment invariants from
carry information of an image with minimum redundancy, transforming the density in geometric moments into a
while they are capable to enclose distinctive information square density. To support our proposed approach,an
that uniquely describes the image content. Due to these algorithm for object shape analysis is designed and
properties once finite number of moments upto a specific experiments based on square transform are
order n  is computed, the original image can be conducted[19].Experiments give an encouraging highmax

reconstructed by applying a simple formula, inverse to recognition  rate by using the structure moment
(1),of the following form invariants.

various sorts of databases for its robustness and

Related Work: Geometric moments were used to generate Radial Cheybyshev moment proves better results for
a set of invariants that were then widely used in pattern Facial expression recognition, Hand Gesture classification.
recognition [1], ship identification [2], aircraft RCM are mostly employed for character recognition
identification [3], scene matching [4], image analysis [5], because of the improved image reconstruction ability. 
object representation [6], edge  detection  [7]  and  texture So we proposed a new approach that combines the
analysis [8].Shape is one of the fundamental visual features of structure moment and RCM. The new square
features in the Content-based Image Retrieval (CBIR) density function introduced in the RCM, increasing the
paradigm. These can be broadly categorized as region possibilities for correct recognition for all images. After a
based and contour-based descriptors. Contour-based successful recognition, the matched features are inserted
shape descriptors make use of only the boundary into the detected match database model, enhancing the
information, ignoring the shape interior content. Examples views for a model and further improving recognition
to contour-based shape descriptors include Fourier robustness. We proposed hybrid descriptor which is
descriptors [9,10], Wavelet descriptors [11,12], curvature suitable for all kinds of objects to capture shape and
scale space descriptor [13]. boundary information and method proves significant

Zernike moments, which are proven to have very improvement for all object categories. 
good image feature representation capabilities, are based The five object classes that have been selected are
on the orthogonal Zernike radial polynomials [14] They car, bicycle, face, truck and Caltech 101 different object
are effectively used in pattern recognition since their category. The training database consisted of 150 images
rotational invariants can be easily constructed. The from each category. The testing dataset is constructed
primary advantages Zernike moments have over other from 50 different images containing the car with different
types of moments are their orthogonality and robustness angle in each. The test dataset is used to classify using
[15]. Zernike polynomials are orthogonal only in the both the method. All images are scaled to size 64x64 pixels
continuous domain of the interior of a unit circle. gray images for 

orthogonal Chebyshev polynomial. They showed that

and Legendre moments in terms of image reconstruction

The objective is to evaluate system performance for

scalability. Several research in the recent past shows that
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Fig. 1:  Some examples of  objects from MIT ,VOC2007,ORL face,Caltech101  Object Database

Background Study Based on normalized central moments, Hu[20]
Geometric Moments: The properties of Geometric introduced seven nonlinear functions which are invariant
moments has the form of projection of i(x,y) function on with respect to object's translation, scale and rotation.
to the monomial x y . Properties of Geometric moment are The basis set (x ,y ) is not orthogonal. The momentsp q

as follows.For a 2D continuous function i(x,y), the contain redundant information. As (x ,y ) increases
moment of order(p+q) is defined as rapidly as order increases, high computational precision

(1)

M = Area of the object Zernike moments to overcome the shortcomings of0,0

(M ,M ) = Center of mass  for p,q=0,1,2,3..... information redundancy present in the popular geometric0,1 1,0

A unique theorem[7] states that if i(x,y) is piecewise moments and have been shown effective in terms of image
continous and has non zero values only in finite part of representation. Zernike moments are rotation invariant
the xy plane,moment of all orders exist and the moment and can be easily constructed to an arbitrary order.
sequence m  is uniquly determined by i(x,y).Conversely Although higher order moments carry more fine details ofpq

m  is uniquly determines by i(x,y).the central moments an image, they are also more susceptible to noise.pq

can be expressed by Therefore we have experimented with different orders of
Zernike moments to determine the optimal order for our

= (x-x) (y-y) i(x, y) (2) problem. Zernike moments require lower computationalpq
p q

Where regular moments.

x= m /m  and y=m /m orthogonal polynomials defined over the interior of a unit10 00 01 00

Normalized Central Moments: The normalized central
moments are defined as (13)

 w= +1 (3)

The resulting moment functions which are taken as
representative features of the image are invariant with
respect to translation, rotation and scale change (Hu1962)

Centralized moments invariant to translation
Normalized central moments invariant to translation
and scale.
Hu invariant moments invariant to translation, scale
and rotation.

p q

p q

is needed. Image reconstruction is very difficult. 

Zernike Moments: Teague [21] first introduced the use of

moments. Zernike moments are a class of orthogonal

precision to represent images to the same accuracy as

The Zernike polynomials are a set of complex,

circle x  + y  = 1 [14,15]2 2

where n is a non-negative integer, 0<=|m|<=n, j= ,
= ,

Projecting the image function onto the basis set, the
Zernike moment of order n with repetition m is: 

(14)
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It has been shown in [8] that the Zernike moments on
a rotated image differ from those of the original un rotated
image in phase shifts, but not in magnitudes. Therefore

can be used as a rotation invariant feature of the
image function. Since = and therefore,
we will use  for features. Since  are the same

for all of the normalized symbols, they will not be used in
the feature set. Therefore the extracted features of the
order n start from the second order moments up to the nth
order moments Structure Moment In information optics,
which provide the analytical method to the structure
complexity of the 2-D objects in paper[11]. The degree of
abundant structure of the 2-D object is consistent with
the integral as follows

 = (15)

For this reason, in order to achieve the goal of
recognition, we mapped the object function f(x) to another
transformation space, then we got a new moment and we
called it structure moment invariant: 

dx (16)

According to [22], if f (x, y ) is a limitary two-
dimensional function, F(f£©=f and the basis function is2

a non-ortho-normal basis, then moment of order (p + q )
can be defined as

 (p,q=0,1,2,…) (17)

Zernike Moment Computation on  Square  Transform:
To compute the Zernike moment of a digital image using
structure moment, we just need to change f(x,y) in the
following equation 

 F(f)=f2

According to (22), if f (x, y ) is a limitary two-
dimensional function, F(f)=f and the basis function is a2

set of complex, orthogonal polynomials, then moment of
order (n +m ) can be defined as follows

In our implementation of Zernike moments, we use
grayscale images with spatial resolution of 64×64.  All  of

(a) (b) (c)
a)  Original Image
b) Compute the Unit Disk
c) Computational range
Fig. 2: The computation process of the unit disk mapping

for Zernike Moments Computation

these grayscale images are normalized into a unit circle
with fixed radius of 32 pixels. Overview of proposed
method is described in Figure 2. 

The following steps are necessary to extract features
of any image using Zernike moments.

First of all convert color image to gray-scale image 
Perform Translation and Scale Normalization
Convert Cartesian to Polar coordinate transformation.
Extract the Zernike Moment, Radial Cheybyshev
Moment Features
Extract the Zernike Moment, Radial Cheybyshev
Moment based on square Transform
Compare New density function of Zernike with radial
Cheybyshev Moment

The translation normalization is achieved by moving
the image center to the image centroid. The scale
normalization is achieved by set the image's 0th order
regular moment m00 to a predetermined value .

 Translation Normalization: A translation of  in the x
dimension and in the y dimension of an image, f (x, y),
results in a new image, f  (x, y ), defined by

 f (x, y ) f (x˜ , y˜ )

The transformed moment values { } are expressed

in terms of the original moment values {m } of f (x, y) aspq

 f(x,y) =
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where ,

Scale Normalization: A scale change of in the x
dimension and in the y dimension of an image, f (x, y ),
results in a new image, f (x, y ), defined by

f (x, y )  f (x˜ , y˜ )

The transformed moment values {m´ } are expressedpq

in terms of the original moment values {m  } of f (x, y ) aspq

Unit Circle Mapping: The center of the image and disk
must be same. Where x1,x2 are X-axis dimensions and y1,
y2 are Y axis dimensions of the pixel rectangle. is the

center  of  the  unit  disk,   is  polar  value  and   is
polar angle   [22].  Now  the  image is mapped into polar
co-ordinates and onto unit circle as: Compute the distance
d as in equation (11) 

(11)

Compute the distance vector  and angle  as in
equation (5) for any (x,y) pixel in f(x,y) in polar coordinates
as

, = (12)

This step maps pixel coordinate (x1,x2) to (-1,+1 ) and
(y1,y2) to (-1,+1) in polar. In this way almost all the pixels
in image bound box as given in Fig. 3 are inside unit circle
except some foreground pixels.

Radial Cheybyshev Moments: The computation of
orthogonal moments of  images  pose  two  major
problems indicated by Mukundan & Ramakrishna [16, 23].
The image coordinate space must be normalized to the
range (typically, -1 to +1) where the orthogonal
polynomial definitions are valid. The continuous integrals
in the computation of ZM must be approximated by
discrete summations without losing the essential
properties associated with orthogonality. Chebyshev
moments completely eliminate the two problems referred
above and preserve all the theoretical properties, since
their implementation does not involve any kind of
approximation.

Fig. 3: Block Diagram of Feature Extraction

The scaled orthogonal Chebyshev polynomials for
an image of size N x N are defined according to the
following recursive relation:

t (x)=1o

 t  (x)=(2x-N+1)/N1

,p>1

and the squared-norm  ( p, N) is given by

p=0,1,…,N-1

The radial Chebyshev moment of order p and repetition q
is defined as:

where m denotes (N/2)+1. In the above equation, both r
and  take integer values. The mapping between (r,) and
image coordinates (x, y) is given by:

Radial Cheybyshev Moment Computation on Square
Transform: To compute the Cheybyshev moment of a
digital image using structure moment, we just need to
change f(x, y) in the equation. 
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The radial Chebyshev moment of order p and In the implementation of Radial Cheybyshev, we use
repetition q is defined as: gray scale images with spatial resolution of 64×64. The

image is subdivided into four sub blocks each of which is
mapped into 8x8 sub pixels. For Pmax=10, we obtain 72

F(f) =f2

According to (14), if f (x, y ) is a limitary two-
dimensional function, F(f)=f and the basis function is a2

set of complex, orthogonal polynomials, then moment of
order (n +m ) can be defined as follows

(21)

MATERIALS AND METHODS

In     the   implementation   of   Zernike  moments,
we use  gray  scale images with spatial resolution of
64×64. All of these images are normalized into a unit circle
with fixed radius  of  32  pixels.  The  utilization of
moments up to a higher order generally leads to a better
image  representation power. For selecting the appropriate
number  of  features,  we  perform   experiments at
various maximum orders of moments p =6 for ZMs.max

Standard gray level images are displayed in Fig. 1 are used
where the full set of Zernike and Structure moments are
computed by using traditional methods. The results of
feature extraction include the calculation of ZM and
structure moment of the loaded images of 16x16 spatial
resolutions. The image is subdivided into four  sub blocks
each of which is mapped into 8x8 sub pixels. For p =10,max

we obtain 72 features per block. Feature descriptor
contains  288  features  for  all  the four sub blocks.
Several image examples based on Zernike of different
orders are given and analyzed. The similar  experiments
are performed for Zernike moment based on square
density.

features per block. Feature descriptor contains 288
features for all the four sub blocks. Several image
examples based on RCM of different orders are given and
analyzed. The similar experiments are performed for RCM
based on square transform. The absolute values of RCM
are given in Table 1 and for RCM using Square transform
given in Table 2. 

The back propagation algorithm is used to train the
multi layer perceptron with different choices for the
number of hidden layer nodes and is fixed to be 1 as being
a simple network resulting with small error and found to
perform well. The number of input layer nodes is equal to
the dimension of the feature space obtained from features.
The number of output nodes is usually determined by the
application, which is 1 (either “Yes/No”) where a
threshold value nearer to 1 represents “Yes” and a value
nearer to 0 represents “No”. For measuring the retrieval
accuracy of the moments, we consider the precision and
recall performance measure. The time taken for the
computation of ZMs for p =10, is 0.036s, respectively.max

The retrieval accuracy and CPU time performance for
Structure moment based Zernike is 0.021s respectively. 

The similar experiments are performed for RCM based
on square transform. The absolute values of RCM are
given in Table 2 and for RCM using Square transform
given in Table 3. The retrieval accuracy and CPU time
performance for Radial Cheybyshev moment based on
square transform is 11.7292 sec respectively. The average
classification performance is depicted in Table 4 and in
Figure 4.

Thus, a comparative study of three most popular
moments feature extraction methods (structure, Zernike
and  Radial  cheybyshev)  to  recognize the images of 2D

Fig. 4:  The correct classification rate for Car, Bicycle, Truck and face database using  Moment based approaches
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Table 1: Related Work Summary 

Orthogonal Moments Computational load(p  order) normalization factor Type Coordinate systemth

Zernike Mukundan,1998 (p+1)*(p+2)/2 Continuous Unit Disc polar coordinates

Pseudo-Zernike Mukundan,1998 (P+1) Continuous Unit Disc polar coordinates2

Legendre Mukundan,1998 (P+1) Continuous [-1,1]2

Cheybyshev Mukundan,2001 (P+1) F(n,N)*F(m,N)2

Where F(n,N)= discrete Image dimensions

Radial Cheybyshev Mukundan (P+1) discrete Image dimensions2

Table 2: Absolute values of Radial Cheybyshev moments & Their Mean values 

No. of Features 2nd Order (4x1) 3rd order (6x1) 4th order (9x1) 5th order (12x1) 6th order (16x1)

1 0.7568 0.71 0.6746 0.6632 0.6473
2 0.0565 0.053 0.0503 0.0495 0.0483
3 0.6063 0.5689 0.5405 0.5314 0.5186
4 0.0124 0.0117 0.0111 0.0109 0.0106
5 0.0436 0.0414 0.0407 0.0397
6 0.71 0.6746 0.6632 0.6473
7 0.0503 0.0495 0.0483
8 0.5405 0.5314 0.5186
9 0.0111 0.0109 0.0106
10 0.0407 0.0397
11 0.6632 0.6473
12 0.0495 0.0483
13 0.5186
14 0.0106
15 0.0397
16 0.6473

Mean 0.0266 0.1277 0.016489 0.059892 0.050075

Table 3: Absolute values of RCM moments on Square Transform function & Their Mean values

No. of Features 2nd Order (4x1) 3rd order (6x1) 4th order (9x1) 5th order (12x1) 6th order (16x1)

1 0.7574 0.7192 0.6864 0.68 0.6786
2 0.0622 0.0589 0.0562 0.0557 0.0556
3 0.6048 0.5743 0.5481 0.543 0.5419
4 0.0209 0.0198 0.0189 0.0188 0.0187
5 0.0137 0.0131 0.013 0.0129
6 0.0048 0.0046 0.0045 0.0045
7 0.1683 0.1667 0.1664
8 0.0086 0.0085 0.0085
9 0.2451 0.2428 0.2423
10 0.0631 0.0629
11 0.04 0.0399
12 0.0534 0.0533
13 0.0307
14 0.0011
15 0.0454
16 0.0286

Mean 0.027875 0.01455 0.03763 0.01491 0.01086
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Table 4: Recognition Accuracies of Three methods on Five kinds of Images using Back Propagation Classifier
Recognition rate (%)
------------------------------------------------------------------------------------------------------------------------------------
Structure Zernike Zernike moment RCM RCM using
Moment Moment Method using Square Moment Square Transform

Data set p =5 (p =6) Transform ( p =6) (p =10) (p =10) Averagemax max max max max

MIT Car 92 92 95 95 98 94.4
VOC2007 bicycle 91 90 95 94 97 93.4
ORL face 93 94 96 97 97 95.4
Caltech 101 Object category 90 90 93 91 95 91
VOC2007 Truck 93 91 94 94 96 93.6

Table 5: Classifier Completion time
Method ZM ZM on ST RCM RCM on ST
Starting Time 19.8433 76.2845 5.9242 50.5376
Completion Time 38.0174 137.9205 17.6534 87.7932
Total Training Time in Sec 18.1741 61.6360 11.7292 37.2556

objects using backprapagation classifier are presented in
Table 4. The experimental results showed that the
recognition rate of backprapagation classifier based on
Radial cheybyshev moments on square transform[24] is
higher than the recognition rate of structure and zernike
moments. We assess the three moment based methods on
two aspects: (i) recognition accuracy, (ii) Classifier
completion time.

The  power  of  discrete  orthogonal  moments    lies
in their capability to represent image shape features,
without the need for using approximation techniques as
in the case of Legendre and Zernike moments. From the
illustrations, we can see that for the five kinds of images
ZM and radial Cheybyshev moments  on  square
transform outperform other methods significantly.
Furthermore, the average classification accuracy of the
face and car dataset are higher than bicycle, truck and
caltech datasets. The retrieval accuracy of RCM on ST for
all the image categories was higher than the  other
moment based approaches. The classifier completion time
for all the feature extraction method are recorded in the
Table  5. The training time of RCM based on square
transform was also less than the Zernike moment based
approaches.

CONCLUSION

In this study, the performance of conventional ZMs
and structure moment based approaches is compared to
that of the proposed ZM on square transform approaches.
ZMs on Square Transform combined with BPN Network
perform better than that of the approaches analyzed in
this study. However, on MIT car, ORL face database the
performance ZM on ST combined with BPN is also better.

The idea of implementing Radial Cheybyshev moments is
that they posses useful rotation invariance property. This
paper developed the moment invariants method from a
new perspective. The structure moments through
transforming the original density functions to the new
ones are invariant with respect to translation, scale and
orientation and can describe the form of the complicated
structure 2-D objects. In order to verify the method, we
compared the results of the test of Radial Cheybyshev
moments with Radial Cheybyshev features based on
square transform, from which we can see that RCM based
on structure moments are distinctively better than RCM.
In short, a careful selection of highly discriminative
features may result in significant improvement in the
recognition performance as is evident from the
improvement of approximately 2-3% is noticed in this
analysis.
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