A FAMILY OF FIBONACCI-LIKE SEQUENCES

PETER R.J. ASVELD
Department of Computer Science, Twente University of Technology P.O. Box 217, 7500 AE Enschede, The Netherlands
(Submitted June 1985)
We consider the recurrence relation

$$
G_{n}=G_{n-1}+G_{n-2}+\sum_{j=0}^{k} \alpha_{j} n^{j},
$$

where $G_{0}=G_{1}=1$, and we express G_{n} in terms of the Fibonacci numbers F_{n} and F_{n-1}, and in the parameters $\alpha_{0}, \ldots, \alpha_{k}$.

For integer values of $k, \alpha_{0}, \ldots, \alpha_{k}$, the relation

$$
\begin{equation*}
G_{n}=G_{n-1}+G_{n-2}+\sum_{j=0}^{k} \alpha_{j} n^{j}, \tag{1}
\end{equation*}
$$

where $G_{0}=G_{1}=1$, forms a difference equation that can be solved by standard methods. In this note, we provide such a solution for equations of this type, in which we treat $\alpha_{0}, \ldots, \alpha_{k}$ as parameters.

First, the solution $G_{n}^{(h)}$ of the corresponding homogeneous equation equals

$$
G_{n}^{(h)}=C_{1} \phi_{1}^{n}+C_{2} \phi_{2}^{n},
$$

where $\phi_{1}=\frac{1}{2}(1+\sqrt{5})$ and $\phi_{2}=\frac{1}{2}(1-\sqrt{5})$; cf.e.g., [1] and [3].
Second, as a particular solution, we try

$$
G_{n}^{(p)}=\sum_{i=0}^{k} A_{i} n^{i},
$$

which yields

$$
\sum_{i=0}^{k} A_{i} n^{i}-\sum_{i=0}^{k} A_{i}(n-1)^{i}-\sum_{i=0}^{k} A_{i}(n-2)^{i}-\sum_{i=0}^{k} \alpha_{i} n^{i}=0
$$

or

$$
\sum_{i=0}^{k} A_{i} n^{i}-\sum_{i=0}^{k}\left(\sum_{\ell=0}^{i} A_{i}\binom{i}{\ell}(-1)^{i-\ell}\left(1+2^{i-\ell}\right) n^{\ell}\right)-\sum_{i=0}^{k} \alpha_{i} n^{i}=0
$$

For each $i(0 \leqslant i \leqslant k)$, we have

$$
\begin{equation*}
A_{i}-\sum_{m=i}^{k} \beta_{i m} A_{m}-\alpha_{i}=0, \tag{2}
\end{equation*}
$$

where, for $m \geqslant i$,

$$
\beta_{i m}=\binom{m}{i}(-1)^{m-i}\left(1+2^{m-i}\right)
$$

From the recurrence relation (2), A_{k}, \ldots, A_{0} can be computed (in that order): A_{i} is a linear combination of $\alpha_{i}, \ldots, \alpha_{k}$. However, a more explicit expression for A_{i} can be obtained by setting

A FAMILY OF FIBONACCI-LIKE SEQUENCES

$$
A_{i}=-\sum_{j=i}^{k} \alpha_{i j} \alpha_{j} .
$$

(The minus sign happens to be convenient in the sequel.) Then (2) implies

$$
-\sum_{j=i}^{k} a_{i j} \alpha_{j}+\sum_{m=i}^{k} \beta_{i m}\left(\sum_{\ell=m}^{k} a_{m \ell} \alpha_{\ell}\right)-\alpha_{i}=0
$$

Since $\beta_{i i}=2$, we have, for $0 \leqslant i \leqslant k$,

$$
\begin{aligned}
& a_{i i}=1 \\
& a_{i j}=-\sum_{m=i+1}^{j} \beta_{i m} a_{m j}, \text { if } j>i
\end{aligned}
$$

Hence,

$$
G_{n}^{(p)}=-\sum_{i=0}^{k} \sum_{j=i}^{k} \alpha_{i j} \alpha_{j} n^{i}=-\sum_{j=0}^{k} \alpha_{j}\left(\sum_{i=0}^{j} \alpha_{i j} n^{i}\right) .
$$

Finally, we ought to determine C_{1} and $C_{2}: G_{0}=G_{1}=1$ implies

$$
C_{1}+C_{2}=1-G_{0}^{(P)}, C_{1} \phi_{1}+C_{2} \phi_{2}=1-G_{1}^{(P)} .
$$

These equalities yield

$$
\begin{aligned}
C_{1} & =\left(\left(G_{0}^{(p)}-1\right) \phi_{2}+1-G_{1}^{(p)}\right)(\sqrt{5})^{-1} \\
& =\left(\left(1-G_{0}^{(p)}\right) \phi_{1}-G_{1}^{(p)}+G_{0}^{(p)}\right)(\sqrt{5})^{-1}, \\
C_{2} & =\left(\left(G_{0}^{(p)}-1\right) \phi_{1}+G_{1}^{(p)}-1\right)(\sqrt{5})^{-1} \\
& =-\left(\left(1-G_{0}^{(p)}\right) \phi_{2}-G_{1}^{(p)}+G_{0}^{(p)}\right)(\sqrt{5})^{-1}, \\
G_{n} & =\left(1-G_{0}^{(p)}\right) F_{n}+\left(-G_{1}^{(p)}+G_{0}^{(p)}\right) F_{n-1}+G_{n}^{(p)} .
\end{aligned}
$$

Summarizing, we have the following proposition.
Proposition: The solution of (1) can be expressed as

$$
G_{n}=\left(1+\Lambda_{k}\right) F_{n}+\lambda_{k} F_{n-1}-\sum_{j=0}^{k} \alpha_{j} p_{j}(n),
$$

where Λ_{k} is a linear combination of $\alpha_{0}, \ldots, \alpha_{k}, \lambda_{k}$ is a linear combination of $\alpha_{1}, \ldots, \alpha_{k}$, and for each $j(0 \leqslant j \leqslant k), p_{j}(n)$ is a polynomial of degree j :

$$
\Lambda_{k}=\sum_{j=0}^{k} a_{0 j} \alpha_{j}, \quad \lambda_{k}=\sum_{j=1}^{k}\left(\sum_{i=1}^{j} a_{i j}\right) \alpha_{j}, \quad p_{j}(n)=\sum_{i=0}^{j} a_{i j} n^{i} .
$$

Remarks:

(1) For $j=0,1, \ldots, 8$, the polynomials $p_{j}(n)$ are given in Table 1 .
(2) No assumptions on $\alpha_{0}, \ldots, \alpha_{k}$ have been made; thus, they may be rational on real numbers as well.
(3) Changing $G_{1}=1$ into $G_{1}=c$ only affects λ_{k}; it has to be increased with $c-1$.

Table 1

j	$p_{j}(n)$
0	$n+3$
1	1
2	$n^{2}+6 n+13$
3	$n^{5}+15 n^{4}+130 n^{3}+810 n^{2}+3365 n+6993$
4	$n^{4}+12 n^{3}+78 n^{2}+324 n+673$
5	$n^{6}+18 n^{5}+195 n^{4}+1620 n^{3}+10095 n^{2}+41958 n+87193$
6	$n^{7}+21 n^{6}+273 n^{5}+2835 n^{4}+23555 n^{3}+146853 n^{2}+610351 n+1268361$
7	$n^{8}+24 n^{7}+364 n^{6}+4536 n^{5}+47110 n^{4}+391608 n^{3}+2441404 n^{2}+10146888 n+21086113$
8	

(4) The coefficients of $\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots$ in Λ_{k} and of $\alpha_{1}, \alpha_{2}, \ldots$ in λ_{k} are independent of k. Thus, they give rise to two infinite sequences Λ and λ of natural numbers, as k tends to infinity, of which the first few elements are
$\Lambda: 1,3,13,81,673,6993,87193,1268361,21086113, \ldots$,
$\lambda: 1,7,49,415,4321,53887,783889,13031935, \ldots$.
Neither of these sequences is included in [2].

ACKNOWLEDGMENT

I am indebted to Hans van Hulzen for some useful discussions.

REFERENCES

1. C. L. Liu. Introduction to Combinatorial Mathematics. New York: McGrawHil1, 1968.
2. N. J. A. Sloane. A Handbook of Integer Sequences. New York: Academic Press, 1973.
3. N.N. Vorobyov. The Fibonacci Numbers. Boston, Mass.: Heath, 1963.
