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Abstract

A three term recurrence relation is found for

^ 0 k + d ) \ k + e ){ k+f

when a + d = b + c. This includes the recurrence relations of Apery associated with f(3), f(2) and
log 2 as special or limiting cases.

1980 Mathematics subject classification (Amer. Math. Soc.): 33 A 30, 10 A 35.

In the fall of 1978 A. van der Poorten gave lectures on Apery's proof of the
irrationality of f(3) at a number of North American universities. The lecture was
delightful. An approximation can be made by reading his published version of the
lecture [14], but the lecture was even more exciting. See Mendes-France [6] for
some comments similar to those van der Poorten left out of his published version.
As a result of these lectures many people became aware that Apery had shown
that

satisfies the three term recurrence relation

(2) n \ + (n- \fbn_2 = (34«3 - 51n2 + Tin - 5)bn_x

The work of the first author was supported in part by N.S.F. grant MCS 8101568.
© 1984 Australian Mathematical Society 0263-6115/84 $A2.00 + 0.00

267



268 Richard Askey and J. A. Wilson (2 ]

and that

satisfies

(4) n2cn - (n - \fcH_2 = (lln2 - Un + 3)cn_,.

The existence of one recurrence relation of this type could be an accident but the
existence of two suggested to a number of people that there should be more. We
received a few letters asking about the existence of three term recurrence relations
for a number of sequences. The most common example was

It is easy to see that dn satisfies a four term recurrence relation, and that

satisfies a five term one. It is also very likely that they do not satisfy a linear
recurrence relation of a lower order. This was not clear to the people we wrote to,
and to be honest it is not clear when the sequences are written in this form.
Fortunately, there is a much better way to write them, and in this other form it is
clear that (5) is a little more complicated than (3) and that (6) is much more
complicated than (1). The other form of writing these series is old, and has been
studied by Euler, Pfaff, Gauss, Kummer, Jacobi and many others, so it should not
be as unknown as it is. It is called hypergeometric series.

A generalized hypergeometric series, or better, a hypergeometric series, is a
series 1ck with ck+x/ck a rational function of k. This rational function is usually
factored, so

(7) Sill = (* + « i ) - " (* + «,)*
ck (k + bx) • • • (k + bq)(k + 1) '

and if c0 = 1 this gives

2 (at)t---(a.).xk

The shifted factorial (a)k is defined by

(9) (a)k : = a(a + 1) • • • (a + k - 1) = T{a + k)/T(a).

Gauss [4], defined two 2FX series to be contiguous if there is a change of 1 in one
of the parameters and the others do not change. If F denotes 2F)(a> b; c; x) then
F(a + ) will denote 2F,(a + 1, b; c, x), and obvious generalizations of this nota-
tion will be used in the following. Gauss showed that a 2F, and any two series
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that are contiguous to it are linearly related, and explicitly gave the (*) = 15
identities. Since 2^i(a> b\ c; x) is symmetric in a and b there are really nine
different identities. Gauss took one of his identities, set x — 1, and it reduced to a
two term recurrence relation. He iterated this and used it to prove that

The Gauss contiguous relations can be iterated, so 2Fx(a, b; c; x) and any two

2F, ' s whose parameters differ by integers from those of this 2FX are linearly
related. In particular if

(11) pn=2Fx(-n,n + a + b+l;a+\;t)

then

<>nPn+l+bnPn + Cnpn_x=O, 11=1,2,. . . ,

for some an,bn,cn, and they can be found explicitly. The above statements can be
made much stronger, and bounds on the degree of the coefficients in any of the
parameters can be given. Without this the results are obvious, since we could take
cn = 0, bn = -pn+\, an — pn, which is a triviality. For the fundamental relations of
Gauss the coefficients are linear in each parameter and in the variable x.

Since

~^2Fx(a, b; c, x) = ^2Fx{a + 1, b + 1; c + 1; x)

the relation connecting 2Fx{a, b; c, x), 2Fx(a + 1, ft + 1; c + 1; x) and
2Fl(a + 2, b + 2; c + 2; x) can be rewritten as a second order differential equa-
tion. It is well known that pFq(a],...,ap; bx,...,bq; x) satisfies a differential
equation of order q + 1 when/? < q + 1. The condition/? < q + 1 is necessary to
obtain convergence of the series (8). It is not quite as well known that such a
function and q + 1 of them that are contiguous to this function are linearly
related. See Rainville [8, Chapter 14]. Kummer [5] considered both 2F, and ,F, in
detail, and at the end of the second part of this paper he wrote that he had tried
to study

3F2(a,b,c; d,e; x)

but only when x = 1 had he been able to do much. He only stated one
transformation formula, but linear three term relations exist between a 3 / 2 and
any two series contiguous to it when the power series variable is one. Again these
can be iterated, and a few of these relations have been recorded in print. The
complete listing of these three term relations was only published in the late
1970's. One list is in Wilson [17], a second listing in very compact form is in
Raynal[10].

At the 4F3 level a function and any four functions contiguous to it are linearly
related. When x = 1 it is usually (or always, we have not checked thoroughly)
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true that a4f3 and three functions contiguous to it are linearly related. To find
cases when a function and two contiguous series are linearly related we ask, by
analogy with the 3F2, 2FX cases, if there are any 3F2's that can be summed. Being
able to sum a series that has a free parameter, or more, is usually an indication
that a two term recurrence relation exists between contiguous series in this family,
and what one hopes is that when new parameters are added the order of the
recurrence or contiguous relations will not increase very much. Pfaff [7] summed
the following series:

-n,a,b \ _
b+l-n-c' )

(c-a)n(c-b)n

{c)n{c-a-b)n-

This series was evaluated again by Saalschiitz, almost one hundred years after
Pfaff, and since Pfaff s work was not well known this identity was known as
Saalschiitz's until recently. The condition the parameters satisfy is

-n + a + b+l=c + a + b + l - n - c ,

or

(12) i + 2«, = 2>,-
If p = q + 1, if the series terminates, that is, if one of the a,'s is a negative
integer, if the power variable is one, and if (12) holds the series is called balanced.
The above analogy suggests that a balanced 4F3 and any two series contiguous to
it are likely related. This is not true, since a series contiguous to a balanced series
is not balanced. For the sum of the top parameters will be equal to the sum of the
bottom ones, or will be two more than the sum of the bottom ones. This suggests
redefining contiguous for balanced series. Change two parameters by one each in
such a way that the new series is still balanced. To see if this is reasonable,
observe that bn defined in (1) can be written as

u —• p[-n,-n,n+ \,n+ \ . ,\
°n ~4r3\ 1 1 1 ' l /•

\ 1 , 1 , 1 /

This is a balanced 4F3, as is bn+, and bn_,. cn from (3) is

04) c . = ,

and so is a 3F2 with power series variable equal to one. Thus both should satisfy
three term recurrence relations. The other two sequences

(15) dn=3

and

06) e"=
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do not satisfy the right type of restrictions. dn satisfies a four term recurrence
relation, and en satisfies a five term recurrence relation. One gets a three term
relation for

The heuristic argument given above leads to the right conclusion. A balanced
4F3 and any two balanced contiguous series to it are linearly related. These
relations were first treated in detail by the same two who listed the 3F2 relations.
Wilson [18] gave a complete list, and Raynal [11] gave a method for deriving them
and stated the fundamental ones. Wilson's list is more convenient to use, but it
takes more space to print.

To see how to generalize (1) and (2) consider

Jo k+f
We do not assume the parameters are integers, and define

=
(a-b)\b\ T(a-b+ \)T(b+ 1)

if a is not a negative integer. If a is a negative integer then the sum (19) can still
make sense if there is another gamma function that is in the denominator and
each pole of T(x) is cancelled by a zero of [T( _>>)]"'. One has to be careful in
taking limits, but this can usually be done. To avoid these problems assume they
do not arise. The series for gn can be rewritten as

-n,-n — a, n -r b -r e -r \,n -r ~ . j . . .

d+\,e+\,f+l ' I '

This 4F3 is balanced when b + c — a = d or a + d = b + c. Without a translation
it would be hard (or impossible) to see why this is a natural condition to assume.

The series in (21) will be denoted by

- n , - n - a , n + b + e + \ , n + c + f + \ \

If we show that

(23)

then

(24)
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with

(" + a+ Q(" + b + l)(w + c + 1)
A' = A

"(« + a + d+ l)(n + b + e+ l)(n + c+f+ 1 ) '

" " (n + a)(n + b)(n + c)

Note that Fn, Fn_, and Fn+l are balanced series related in the same way as are the
series F, F(a + , b + , c-, d-), and F(a-, ft-, c + , d + ) , where F is a balanced
series

a,b,c,d. A
e,f,8 ' / '

Note also that F(a + , c-) is a balanced series contiguous to F and F(a + ,
b + , c-, d-) and that F(b-, d + ) is contiguous to F and F(a-, ft-, c + , rf + ).
The contiguous relation

a(c — a + lj

from [18] gives a relation connecting F, F(a + , c-), and F(b-, d + ), another
relation connecting F, F(a + , Z»-), and F(a + , b + , c-, ^-) , and a third con-
necting F, F(fe-, J + ), and F(a-, fe-, c + , d + ). Eliminating F(a + , c-) and
F(&-, d + ) from these three gives the desired three term relation. In terms of Fn

it is formula (23) with

An = (n + d + l)(w + e + l)(n + / + l)(n + a + d + l)(/i + a + e + 1)

• (n + a + / + l)(n + 6 + e + 1)(« + c + / + 1 )//>,,

Cn = (n + c + / - d)(/i + c + / - e)(n + c)(« + ft + e - rf)(n + ft)

•(« + ft + e-f)n(n + a)/D2,

Bn = - ( " + a + ^ + l)(« + a + e+ 1)(« + a + / + 1)(« + ft + e + 1)

•(/I + C + / + l)[(n + rf+ \)(n + e+ l)(n +f+ 1)

+ (n + a + l)(2n + ft + e + 2)(2« + a + c +f+ 2)] • Z),"1

- ( n + ft + e - rf)(n + ft)(« + ft + e - f)(n + a)n

•[(« + c+f- d)(n + c + f - e)(n + c)

+ (2n + c + / ) (« + ft + e)(2/i + a + c +/)]£>2-'

-(2/i + a + ft + e + l)«(/i + c + / + 1),
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Z>, = (n + d+ 1)(« + e+ l ) ( n + / + 1)(« + b + e + 1)(2« + a + c + / + 2)
+ (n + c + / - r f + 1)(« + c + / - e+ l)(n + c+ l)(n + a + 1)

•(2n + b + e + 2) +(2/i + c + / + 2)(« + a + l)(2n + fc + e + 2)
•(n + fc + e + l)(2n + a + c + / + 2),

and
D2 = (n + d)(n + e)(n +/) (« + b + e)(2n + a + c + / )

+ (« + c+/-</)(n+ e + / - -e)(« + c)(« + a)(2« + fe + e)
+ (In + c+f)(n + a)(2n + b + e)(n + b + e)(2n + a + c + / ) .

To find a recurrence relation for cn, and more generally for

(26) h , , - 2 o ( k ) ( k + d )[ k + b

_ (n + a + d)( n + b + e\ F ( -n,-n - a, n + b + e
~ l d ) \ e hFA rf+l,*+l

divide (23) by/and let/ —* oo. This gives a recurrence relation for the 3F2 in (26),
and so also for hn. When this recurrence relation is written there is a c in it, but
not in the 3F2. Remove the c by using a + d = b + c.

If d -* oo in (22) with a + d = b + c and 6 and c fixed, the resulting series is

-n,n + b + e+\,n + c + f + \
;

b++f)\'=[c+y<)(b+r+f)

This gives a three term recurrence relation for the series defined in (17).
Similarly one can find a three term recurrence relation satisfied by

•ei / " i f 3n + Ac + 1 1 / _ , \ * _ p j -n,-n,-n,3n

ki0\k) I * r ' ~4 3\ l . i . i
and many other sequences which may have some arithmetic significance.

This is not the end of the three term recurrence relations. Van der Poorten [14]
mentioned that T. Cusick had found two more.

(27) «„ = j
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satisfies

(28) n3wn = 2(2n - l)(3w2 - 3n + l )« n _ , + (4/i - 3)(4w - 4)(4n - 5)un_2

and

(») -,= 2

satisfies

(30) n \ = {In1 -ln + 2)vn_x + 8(/i -

These do not fit directly into the above pattern, since

is not balanced and

(32) °»=

has the wrong power series variable.
However both series can be transformed to the appropriate type of series. To

transform (32) recall a transformation of Whipple [16]

( 3 3 )

f( a'b'c x)

_ n _ v r
a + l - b - c , a/2, (a + l)/2 . -Ax

When x = -1 this gives
(34)

(a+ 1 - 6 - c , a / 2 , ( f l +

a+l-b,a+l-c

The series on the left is said to be well poised, since the parameters can be paired,
top ones with bottom ones, so that the sum is constant. The n! in the denominator
is considered as (l)n . A well poised 3F2 at x — - 1 can be transformed to a 3F2 at
x — 1; and series whose parameters differ by integers correspond on the two
sides. Thus Cusick's recurrence relation for vn can be extended to a recurrence
relation for

(35)
— In + 2a\(n + 2b\ r I -n,-n - a,-n — b— I
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There is another way of pairing the terms to get a well poised series, so

(36) k±0
_ (n + c\in + c\ j , l -n,-n - c + a,-n- a
-[ a )\c-ahF2\ c-a+l,a+l ; ~

also satisfies a three term recurrence relation.
Cusick's other sequence is well poised, but it is most easily treated as a special

case of another class of well poised series, very well poised series. Whipple is also
responsible for this transformation. He showed [15] that

/ a,l+a/2,b,c,d,e,f
1 6\a/2, a+ l-b,a+l-c,a+l-d,a+l-e,a+l-f

_ T(a + 1 - d)T{a+ 1 - e)T(a + 1 - f)T(a + 1 - d - e - f)
~ T(a+ l ) r ( a + 1 -d-e)T(a+ 1 - d - f)T(a + 1 - e - f)

•4F3(a+ l-b-c,d,e,f; a + 1 - b, a + 1 - c, d+ e+f- a; l)

when the 4F3 terminates and the 7F6 series converges. The 7F6 is well poised, but
there is an added restriction. The factors

(a/2 + 1), = (In + a)

introduce a linear factor in the series. This can be removed by taking / = a/2 or
b = a/2. When this is done, say wi th / = a/2, the resulting identity is

pi a,b,c,d,e .A
5 *\a+ I- b, a+ l-c, a+ \ -d, a+l-e' I

_ T(g + 1 - d)T(a + 1 - e)T(a/2 + l)r(a/2 + 1 - d - e)
~ T(a + \)T(a +\-d- e)T(a/2 + 1 - d)F(a/2 + 1 - e)

I a+l-b-c,d,e,a/2 \
"4 3\ a + 1 - b, a + 1 - c, d + e - a/2 ' J '

The 4F3 is balanced, but shifting a by one does not lead to a series whose
parameters have been changed by one, because of the a/2. However take
e = (a + l)/2 to get

pi a,b,c,d .A
4 3\a+ 1 - b,a+ 1 - c,a+ I - d' I

_ r(a + 1 - d)T((a + l)/2)r(a/2 + l)r(l/2 - d)
~ T(a + l)r((a + l) /2 - d)T(a/2 + 1 - d)T(l/2)

ta+l-b-c,b,a/2,(a+\)/2 \
'4 3\ a+l-b,a+l-c,d+l/2 'J'
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and now shifting any of the parameters by one leads to a series whose parameters
have been shifted by one. Thus we can find the three term recurrence relation
satisfied by

y ( n\( n + 2a\i n + 2b\( n + 2c\
kr0\k!\ k + a ) \ k + b ) \ k + c )

- I n + 2a\[n + 2b\(n + 2c\ F I-n,n - a,-n - b,-n - c . A
\ a ) \ b ) \ c /4 3\ a+ \,b+ \,c+ 1 ' ) '

This is not the end of three term recurrence relations. Wilson [18] showed that
very well poised two balanced (sum of top +2 equals the sum of bottom) 9Fg's
satisfy three-term contiguity relations, where the definition of contiguous requires
that both very well poised and two balanced be preserved. There are also basic
hypergeometric series extensions of all these results. A series 2a t is a basic
hypergeometric series if ak+ l/ak is a rational function of qk for a fixed number q.
Only one of the balanced 4<p3 recurrence relations has been published so far. This
is one that comes from a set of orthogonal polynomials [2]. The rest have been
worked out by one of us (J.A.W.) and will be published in due course.

We were motivated to write this paper because of a note by Rieger [12]. He
found four sequences that satisfy three term recurrence relations and derived the
relations. The first two are special cases of the recurrence relation for Jacobi
polynomials [13, (4.5.1)]. These are the polynomials defined in (11). The other two
are special cases of the recurrence relation for hn defined in (26).

The main interest in many of these recurrence relations is because of orthogo-
nal polynomials. If pn(x) is a polynomial of degree n, {pn(x)}™=0 is a set of
orthogonal polynomials if

Pn(x)pm(x)da(x)=O, m¥=n,
0

for a positive measure da(x). Such a polynomial set satisfies a three term
recurrence relation

(38) xPn(x) = AnPn+i(x) + BnPn(x) + CnPn_x{x)

with An, Bn,Cn real and AnCn+, > 0, n = 0,1, Conversely a set of polynomials
that satisfies (38) with the appropriate positivity conditions is a set of orthogonal
polynomials. See Szego [13, Theorem 3.2.1]. At the 4F3 level Wilson [17,19] has
shown that

- 1, a + ix, a - ix
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satisfies

r(g + ix)T(b + ix)T(c + ix)T(d + ix) "f T(2ix) dx = Q,

m ¥= n, when a, b,c,d> 0. He also found their recurrence relation. It was the
existence of this relation that led to the complete list given in [18].

There are other applications of these recurrence relations. See [1] for an
application of a three term recurrence relation for a 3F2 with x = 1, and [3] for an
application of a three term recurrence relation for what at the time was thought to
be a messy double sum, but which in reality can be transformed into a two
balanced very well poised 9Fg. See [9].

References

[1] R. Askey and G. Gasper, ' Jacobi polynomial expansions of Jacobi polynomials with non-nega-
tive coefficients,' Proc. Cambridge Philos. Soc. 70 (1971), 243-255.

[2] R. Askey and J. Wilson, 'A set of orthogonal polynomials that generalize the Racah coefficients
or6 - j symboK SIAMJ. Math. Anal. 10(1979), 1008-1016.

[3] G. Gasper, 'Linearization of the product of Jacobi polynomials, II,' Canad. J. Math. 22 (1970),
582-593.

[4] C. F. Gauss, ' Disquisitiones generales circa seriem infinitam...,' Comment Gotting. 2 (1812),
1-46; Werke, 111(1868), 123-162.

[5] E. E. Rummer, 'Uber die hypergeometrische Reihe,' / . fur Math. 15 (1836), 39-83, 127-172;
Collected Papers, II, 75-166.

[6] M. Mendes-France, Roger Apery et I'irrationnel, (Le Recherche, No. 97).
[7] J. F. Pfaff, 'Observations analyticae ad L. Euler's Institutiones Calculi Integralis,' vol. IV,

Supplem. II et IV, Historte de 1793, Nova acta academiae scientiarum Petropolitanae, XI, 1797,
38-57. (Note, the history section is paged separately from the scientific section of this journal.)

[8] E. D. Rainville, Special functions (Macmillan, New York, 1960).
[9] M. Rahman, 'A non-negative representation of the linearization coefficients of the product of

Jacobi polynomials,' Canad. J. Math. 33 (1981), 915-928.
[10] J. Raynal, 'On the definition and properties of generalized 3 —j symbols,' / . Math. Phys. 19

(1978), 467-476.
[II] J. Raynal, 'On the definition annd properties of generalized 6 — j symbols,' / . Math. Phys. 20

(1979), 2398-2415.
[12] G. J. Rieger, 'Einige Rekursionsformeln fur Summen mit Binomialkoeffizienten,' Abh.

Braunschweig. Wiss. Gesellschil (1980), 137-143.
[13] G. Szego, Orthogonal polynomials, fourth edition (Amer. Math. Soc. Colloq. Publ. 23, Amer.

Math. Soc., Providence, R.I., 1975).
[14] A. van der Poorten, 'A proof that Euler missed.. .Apery's proof of the irrationality of f(3),'

Math. Intelligencer 1 (1979), 195-203.
[15] F. J. W. Whipple, 'On well-poised series, generalized hypergeometric series having parameters

in pairs, each pair with the same sum,' Proc. London Math. Soc. (2) 24 (1926), 247-263.
[16] F. J. W. Whipple, 'Some transformations of generalized hypergeometric series,' Proc. London

Math. Soc. (2) 26 (1927), 257-272.
[17] J. A. Wilson, 'Three-term contiguous relations and some new orthogonal polynomials,' Pade

and rational approximation, edited by E. B. Saff and R. S. Varga (Academic Press, New York,
1977,227-232).



278 Richard Askey and J. A. Wilson 112]

[18] J. A. Wilson, Hypergeometric series recurrence relations and some new orthogonal functions,
(Ph.D. thesis, Univ. of Wisconsin-Madison, Madison, 1978).

[19] J. A. Wilson,'Some hypergeometric orthogonal polynomials,' SI A M J. Math. Anal. 11 (1980),
690-701.

Department of Mathematics Department of Mathematics
University of Wisconsin-Madison Iowa State University
Van Vleck Hall Ames, Iowa 50011
Madison, Wisconsin 53706 U.S.A.
U.S.A.


