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Abstract

An involutory upper triangular Pascal matrix Un is investigated. Eigenvectors of Un and
of UT

n are considered. A characterization of Un is obtained, and it is shown how the results
can be extended to matrices over a commutative ring with unity.
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1. Introduction

Let Un = (uij ) be the real upper triangular matrix of order n with

uij = (−1)i−1
(

j − 1
i − 1

)
for 1 � i � j � n.

For example,

U5 =




1 1 1 1 1
0 −1 −2 −3 −4
0 0 1 3 6
0 0 0 −1 −4
0 0 0 0 1


 .

∗ Corresponding author.
E-mail address: gibson@math.uah.edu (P.M. Gibson).

0024-3795/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2004.02.027



278 A. Ashrafi, P.M. Gibson / Linear Algebra and its Applications 387 (2004) 277–286

Such Pascal matrices are found in the book by Klein [2]. Moreover, the MATLAB
command pascal(n, 1) yields the lower triangular matrix UT

n .
Klein mentioned that U−1

n = Un (that is, Un is involutory). In fact a somewhat
more general result holds. Let p and q be integers with 1 � p � q � n. Using the
identity

δnk =
n∑

j=k

(−1)j+k

(
n

j

)(
j

k

)
,

which can be found on page 44 of [3], it is not difficult to see that the principal
submatrix of Un that lies in rows and column p, p + 1, . . . , q is involutory.

The matrix Un is closely related to two other “Pascal matrices”. Let Pn = (pij )

be the real lower triangular matrix of order n with

pij =
(

j − 1
i − 1

)
for 1 � i � j � n,

and let Sn = (sij ) be the real symmetric matrix of order n with

sij =
(

i + j − 2
j − 1

)
for i, j = 1, 2, . . . , n.

Clearly Pn = UT
n Dn for the n × n diagonal matrix Dn = ((−1)i−1δij ). Hence, it fol-

lows from the Cholesky factorization Sn = PnP
T
n obtained by Brawer and Pirovino

[1] that Sn = (UT
n Dn)(U

T
n Dn)

T = UT
n Un. Thus, the involutory matrices UT

n and Un

can be used to obtain an LU factorization for Sn.
Other properties of Un are investigated in this paper. Eigenvectors of Un and of

UT
n are considered in Section 2. A characterization of Un is presented next, and then

it is shown how the results can be extended to matrices over a commutative ring with
unity.

2. Eigenvectors

It is easy to see that Un is similar to the diagonal matrix Dn = ((−1)i−1δij ). We
now consider eigenvectors of Un. For each positive integer k, let

xk =




(
k

0

)

−
(

k

1

)
...

(−1)k−1
(

k

k − 1

)




.

Lemma 2.1. For each positive integer k, xk is an eigenvector of Uk corresponding
to the eigenvalue (−1)k−1.
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Proof. Since

Uk+1 =
[
Uk xk

0 (−1)k

]
,

we have

I = U2
k+1 =

[
I Ukxk + (−1)kxk

0 1

]

and thus Ukxk = (−1)k−1xk. �

For integers 1 � k � n we define the vector ynk ∈ Rn by letting

ynk =
[
xk

0

]
.

Let Yn1 = {ynk : k is odd} and Yn2 = {ynk : k is even}.

Theorem 2.2. The set Yn1 is a basis for the eigenspace of Un corresponding to
the eigenvalue 1, and Yn2 is a basis for the eigenspace of Un corresponding to the
eigenvalue −1 (when n � 2).

Proof. Lemma 2.1 implies that ynn = xn is an eigenvector of Un corresponding to
the eigenvalue (−1)n−1. Let 1 � k < n. Partition Un as

Un =
[
Uk A

0 B

]
.

Using Lemma 2.1, we see that

Unynk =
[
Uk A

0 B

] [
xk

0

]
=

[
(−1)k−1xk

0

]
= (−1)k−1ynk.

Hence, for each 1 � k � n, ynk is an eigenvector of Un corresponding to the eigen-
value (−1)k−1. Moreover, it is easy to see that Yn1 and Yn2 are linearly independent
sets. �

Let Hn = (hij ) be the upper triangular matrix with

hij = (−1)i+j

(
j − 1
i − 1

)
2i−1 for 1 � i � j � n,

and let Mn = (mij ) be the lower triangular matrix with

mij =
(

i − 1
j − 1

)
2n−j for 1 � j � i � n.
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For example,

H6 =




1 −1 1 −1 1 −1
0 2 −4 6 −8 10
0 0 4 −12 24 −40
0 0 0 8 −32 80
0 0 0 0 16 −80
0 0 0 0 0 32




,

M6 =




32 0 0 0 0 0
16 16 0 0 0 0
8 16 8 0 0 0
4 12 12 4 0 0
2 8 12 8 2 0
1 5 10 10 5 1




.

It will be shown that the columns of Hn are eigenvectors of Un, and that the columns
of Mn are eigenvectors of UT

n .

Lemma 2.3. For each positive integer n, UnHn = HnDn.

Proof. Clearly UnHn = (aij ) and HnDn = (bij ) are upper triangular. For 1 � i �
j � n, we see that

aij =
j∑

k=i

(−1)i−1
(

k − 1
i − 1

)
(−1)k+j

(
j − 1
k − 1

)
2k−1

= (−1)i+1
j−1∑

k=i−1

(−1)k+j−1
(

k

i − 1

) (
j − 1

k

)
2k

= (−1)i+2j−1
(

j − 1
i − 1

)
2i−1

= bij ,

where we used the identity

n∑
k=m

(−1)n+k

(
n

k

) (
k

m

)
2k−m =

(
n

m

)
,

which can be found on page 32 of [3]. �

The columns of Hn yield different bases for the eigenspaces of Un than those
given in Theorem 2.2. Let Vn1 = {vnk : k is odd} and Vn2 = {vnk : k is even}, where
vnk is the kth column of Hn.
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Theorem 2.4. The set Vn1 is a basis for the eigenspace of Un corresponding to
the eigenvalue 1, and Vn2 is a basis for the eigenspace of Un corresponding to the
eigenvalue −1.

Proof. Lemma 2.3 implies that vnk is an eigenvector of Un corresponding to the
eigenvalue (−1)k−1. Moreover, Vn1 and Vn2 are linearly independent sets. �

We now consider eigenvectors of UT
n . Let Wn1 = {wnk : k is odd} and Wn2 =

{wnk : k is even}, where wnk is the kth column of Mn. Define the diagonal matrices
Qn and Rn of order n by letting Qn = (2i−1δij ) and Rn = (2n−iδij ).

Lemma 2.5. For each positive integer n, Mn = 2n−1(HT
n )−1.

Proof. We see that Hn = QnUnDn and Mn = RnU
T
n Dn. Hence, using D2

n = I =
U2

n , it follows that

MnH
T
n = (RnU

T
n Dn)(DnU

T
n Qn) = RnQn = 2n−1I,

and thus Mn = 2n−1(HT
n )−1. �

Lemma 2.6. For each positive integer n, UT
n Mn = MnDn.

Proof. Using Lemma 2.3, we see that

UT
n (HT

n )−1 = ((UnHn)
T)−1 = ((HnDn)

T)−1 = (HT
n )−1Dn,

and it follows from Lemma 2.5 that UT
n Mn = MnDn. �

Theorem 2.7. The set Wn1 is a basis for the eigenspace of UT
n corresponding to

the eigenvalue 1, and Wn2 is a basis for the eigenspace of UT
n corresponding to the

eigenvalue −1.

Proof. Lemma 2.6 implies that wnk is an eigenvector of UT
n corresponding to the

eigenvalue (−1)k−1. Moreover, Wn1 and Wn2 are linearly independent. �

3. A characterization of Un

Let Kn = (kij ) be the (0,1)-matrix of order n with kij = 1 if and only if j = i + 1,
and let Gn = (gij ) = Un + (KT

n Un − Un)Kn. An easy computation shows that Gn

is a (0,1)-matrix with gij = 1 if and only if i = j = 1. Thus Gn is a symmetric
matrix. We will show that such symmetry and the property that each leading principal
submatrix is involutory characterizes ±Un for n � 4. The following lemmas will be
used.
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Lemma 3.1. Let X = (xij ) be an involutory matrix of order 2 such that x11 = 1,

X + (KT
2 X − X)K2 is symmetric and X /= U2. Then

X =
[

1 0
−1 −1

]
.

Proof. We see that

X + (KT
2 X − X)K2 =

[
1 x12 − 1

x21 1 − x21 + x22

]
.

Since this matrix is symmetric and X2 = I , it follows that

X =
[

1 x12
x12 − 1 −1

]
,

where x12 = 1 or x12 = 0. �

Lemma 3.2. Let X be a matrix of order n � 3 and let Y be the leading princi-
pal submatrix of X of order n − 1. If X + (KT

n X − X)Kn is symmetric then Y +
(KT

n−1Y − Y )Kn−1 is symmetric.

Proof. Partition Kn and X as

Kn =
[
Kn−1 L

0 0

]
, X =

[
Y C

R d

]
.

We see that

X + (KT
n X − X)Kn =

[
Y + (KT

n−1Y − Y )Kn−1 C + (KT
n−1Y − Y )L

R + (LTY − R)Kn−1 d + (LTY − R)L

]
.

�

Lemma 3.3. Let X = (xij ) be a matrix of order 3 such that each leading princi-
pal submatrix of X is involutory, x11 = 1, X + (KT

3 X − X)K3 is symmetric and
X /= U3. Then

X =

 1 0 0

−1 −1 −2
0 0 1


 .

Proof. It follows from Lemmas 3.1 and 3.2 that X = X1 or X = X2 where

X1 =

 1 1 x13

0 −1 x23
x31 x32 x33


 , X2 =


 1 0 x13

−1 −1 x23
x31 x32 x33


 .

In both cases, since X2 = I , we see that either x13 = x23 = 0 or x31 = x32 = 0. First
suppose that X = X1. It then follows that
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G = X + (KT
3 X − X)K3 =


 1 0 x13 − 1

0 0 x23 + 2
x31 x32 − x31 x33 − 1 − x32


 .

Since G is symmetric, if x13 = x23 = 0, then x31 = −1 and x32 = 1. However, this
would imply that X2 /= I . Hence, we must have x31 = x32 = 0. Therefore, since G

is symmetric, we see that x13 = 1 and x23 = −2. It now follows that X = U3. Thus
we assume that X = X2, and it follows that

G = X + (KT
3 X − X)K3 =


 1 −1 x13

−1 1 x23 + 1
x31 x32 − 1 − x31 x33 − 1 − x32


 .

Since G is symmetric, if x13 = x23 = 0, then x31 = 0 and x32 = 2. However, this
would imply that X2 /= I . Hence, we must have x31 = x32 = 0. Therefore, since G

is symmetric, we see that x13 = 0 and x23 = −2. It now follows that

X =

 1 0 0

−1 −1 −2
0 0 1


 . �

Lemma 3.4. Let X = (xij ) be a matrix of order 4 such that each leading principal
submatrix of X is involutory, x11 = 1, and X + (KT

4 X − X)K4 is symmetric. Then
X = U4.

Proof. It follows from Lemmas 3.2 and 3.3 that X = X1 or X = X2 where

X1 =




1 0 0 x14
−1 −1 −2 x24
0 0 1 x34

x41 x42 x43 x44


 , X2 =




1 1 1 x14
0 −1 −2 x24
0 0 1 x34

x41 x42 x43 x44


 .

In both cases, since X2 = I , we see that either x14 = x24 = x34 = 0 or x41 = x42 =
x43 = 0. First suppose that X = X1. It then follows that,

G=X + (KT
4 X − X)K4 =




1 −1 0 x14
−1 1 −1 x24 + 2
0 −1 0 x34 − 3

x41 x42 − x41 x43 − x42 x44 + 1 − x43


 .

Since G is symmetric, if x14 = x24 = x34 = 0, then x41 = 0, x42 = 2 and x43 = −1.
However, this would imply that X2 /= I . Moreover, since G is symmetric, if x41 =
x42 = x43 = 0, then x14 = 0, x24 = −2 and x34 = 3. However, this would imply that
X2 /= I . Thus we must have X = X2, and it follows that

G=X + (KT
4 X − X)K4 =




1 0 0 x14 − 1
0 0 0 x24 + 3
0 0 0 x34 − 3

x41 x42 − x41 x43 − x42 x44 + 1 − x43


 .
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Since G is symmetric, if x14 = x24 = x34 = 0, then x41 = −1 and x42 = 2. How-
ever, this would imply that X2 /= I . Hence, we must have x41 = x42 = x43 = 0.
Therefore, since G is symmetric, we see that x14 = 1, x24 = −3 and x34 = 3. It
now follows that X = U4. �

Lemma 3.5. Let X = (xij ) be a matrix of order n � 4 such that each leading prin-
cipal submatrix of X is involutory, x11 = 1, and X + (KT

n X − X)Kn is symmetric.
Then X = Un.

Proof. We use induction on n. Lemma 3.4 implies that Lemma 3.5 holds for n = 4.
Let X be a matrix of order n � 5 that satisfies the hypotheses of Lemma 3.5 and
suppose that this lemma holds for matrices of order n − 1. Using Lemma 3.2, we see
that

X =
[
Un−1 C

R xnn

]

for some 1 × (n − 1) matrix R and (n − 1) × 1 matrix C. Since X2 = I, it follows
that xinxnj = 0 for i, j = 1, 2, . . . , n − 1. This implies that either C = 0 or R = 0.

Let G = (gij ) = X + (KT
n X − X)Kn. It is not difficult to see that

gn1 = xn1,

gnj = xnj − xn,j−1 for j = 2, 3, . . . , n − 1,

gin = xin − (−1)i−1
(

n − 1
i − 1

)
for i = 1, 2, . . . , n − 1.

Since G is symmetric, if C = 0, then it follows that xn1 = −1 and xn2 = n − 2.
However, we see that now there is no value of xnn that will ensure that both the
(n, 1) and the (n, 2) entries of X2 are zero. Thus X2 /= I . Hence, we must have
R = 0. Therefore, since G is symmetric, we see that gin = 0 for i = 1, 2, . . . , n − 1.
Thus

xin = (−1)i−1
(

n − 1
i − 1

)
for i = 1, 2, . . . , n − 1,

and it follows that X = Un. �

Theorem 3.6. Let X be a matrix of order n � 4. Then X = ±Un if and only if
X + (KT

n X − X)Kn is symmetric and each leading principal submatrix of X is in-
volutory.

Proof. Suppose that X + (KT
n X − X)Kn is symmetric and that each leading prin-

cipal submatrix of X = (xij ) is involutory. Then x11 = ±1. If x11 = 1, then Lemma
3.5 implies that X = Un. If x11 = −1, let Y = (yij ) = −X. Then each leading prin-
cipal submatrix of Y is involutory, y11 = 1 and Y + (KT

n Y − Y )Kn is symmetric.
Hence, Lemma 3.5 implies that X = −Y = −Un. Therefore, if X + (KT

n X − X)Kn
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is symmetric and each leading principal submatrix of X is involutory, then X =
±Un. As discussed earlier, it is easy to see that the converse also holds. �

4. Extensions to matrices over a ring

Let A be a matrix of order n over a commutative ring R with unity e, let λ ∈ R,
and let x be a nonzero column vector over R. We say that λ is an eigenvalue of A

with corresponding eigenvector x if Ax = λx. Since Un and the vectors in Yni , Vni ,
and Wni have integer entries, we can obtain the corresponding matrices and vectors
over R by replacing each entry k by ke. Thus we have the following.

Theorem 4.1. Let R be a commutative ring with unity e.

(a) Each vector in Yn1(Vn1) is an eigenvector of Un corresponding to the eigenvalue
e.

(b) Each vector in Yn2(Vn2) is an eigenvector of Un corresponding to the eigenvalue
−e.

(c) Each vector in Wn1 is an eigenvector of UT
n corresponding to the eigenvalue e.

(d) Each vector in Wn2 is an eigenvector of UT
n corresponding to the eigenvalue −e.

There are difficulties in attempting such an extension of our characterization of
Un. For example, Lemma 3.1 cannot be extended to general commutative rings with
unity. To see this, let k � 2 be an integer, and let m = k(k + 1). Over the ring Zm

of integers modulo m, the matrix

X =
[

1 k + 1
k m − 1

]

is involutory with X + (KT
2 X − X)K2 symmetric. However, it is not difficult to

obtain the following extension of Theorem 3.6.

Theorem 4.2. Let D be an integral domain, and let X be a matrix over D of order
n � 4. Then X = ±Un if and only if X + (KT

n X − X)Kn is symmetric and each
leading principal submatrix of X is involutory.
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