

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 387 (2004) 277-286

www.elsevier.com/locate/laa

An involutory Pascal matrix

Ashkan Ashrafi ^a, Peter M. Gibson ^{b,*}

^aDepartment of Electrical and Computer Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA ^bDepartment of Mathematical Sciences, University of Alabama in Huntsville, 204 Madison Hall, Huntsville, AL 35899, USA Received 21 October 2003; accepted 17 February 2004

Submitted by R.A. Brualdi

Abstract

An involutory upper triangular Pascal matrix U_n is investigated. Eigenvectors of U_n and of U_n^{T} are considered. A characterization of U_n is obtained, and it is shown how the results can be extended to matrices over a commutative ring with unity. © 2004 Elsevier Inc. All rights reserved.

Keywords: Pascal matrices; Involutory matrices; Eigenvectors; Matrices over a ring

1. Introduction

Let $U_n = (u_{ij})$ be the real upper triangular matrix of order *n* with

$$u_{ij} = (-1)^{i-1} \binom{j-1}{i-1} \quad \text{for } 1 \leq i \leq j \leq n.$$

For example,

	[1	1	1	1	1]	
	0	-1	-2	-3	-4	
$U_{5} =$	0	0	1	3	6 4	
	0	0	0	-1	-4	
$U_{5} =$	0	0	0	0	1	

^{*} Corresponding author.

E-mail address: gibson@math.uah.edu (P.M. Gibson).

^{0024-3795/\$ -} see front matter $_{\odot}$ 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2004.02.027

Such Pascal matrices are found in the book by Klein [2]. Moreover, the MATLAB command pascal(n, 1) yields the lower triangular matrix U_n^{T} .

Klein mentioned that $U_n^{-1} = U_n$ (that is, U_n is involutory). In fact a somewhat more general result holds. Let p and q be integers with $1 \le p \le q \le n$. Using the identity

$$\delta_{nk} = \sum_{j=k}^{n} (-1)^{j+k} \binom{n}{j} \binom{j}{k},$$

which can be found on page 44 of [3], it is not difficult to see that the principal submatrix of U_n that lies in rows and column p, p + 1, ..., q is involutory.

The matrix U_n is closely related to two other "Pascal matrices". Let $P_n = (p_{ij})$ be the real lower triangular matrix of order *n* with

$$p_{ij} = \begin{pmatrix} j-1\\ i-1 \end{pmatrix}$$
 for $1 \leq i \leq j \leq n$

and let $S_n = (s_{ij})$ be the real symmetric matrix of order *n* with

$$s_{ij} = {i+j-2 \choose j-1}$$
 for $i, j = 1, 2, ..., n$.

Clearly $P_n = U_n^T D_n$ for the $n \times n$ diagonal matrix $D_n = ((-1)^{i-1} \delta_{ij})$. Hence, it follows from the Cholesky factorization $S_n = P_n P_n^T$ obtained by Brawer and Pirovino [1] that $S_n = (U_n^T D_n)(U_n^T D_n)^T = U_n^T U_n$. Thus, the involutory matrices U_n^T and U_n can be used to obtain an LU factorization for S_n .

Other properties of U_n are investigated in this paper. Eigenvectors of U_n and of U_n^{T} are considered in Section 2. A characterization of U_n is presented next, and then it is shown how the results can be extended to matrices over a commutative ring with unity.

2. Eigenvectors

It is easy to see that U_n is similar to the diagonal matrix $D_n = ((-1)^{i-1}\delta_{ij})$. We now consider eigenvectors of U_n . For each positive integer k, let

$$x_{k} = \begin{bmatrix} \binom{k}{0} \\ -\binom{k}{1} \\ \vdots \\ (-1)^{k-1} \binom{k}{k-1} \end{bmatrix}$$

Lemma 2.1. For each positive integer k, x_k is an eigenvector of U_k corresponding to the eigenvalue $(-1)^{k-1}$.

Proof. Since

$$U_{k+1} = \begin{bmatrix} U_k & x_k \\ 0 & (-1)^k \end{bmatrix},$$

we have

$$I = U_{k+1}^{2} = \begin{bmatrix} I & U_{k}x_{k} + (-1)^{k}x_{k} \\ 0 & 1 \end{bmatrix}$$

and thus $U_k x_k = (-1)^{k-1} x_k$. \Box

For integers $1 \leq k \leq n$ we define the vector $y_{nk} \in \mathbb{R}^n$ by letting

$$y_{nk} = \begin{bmatrix} x_k \\ 0 \end{bmatrix}.$$

Let $Y_{n1} = \{y_{nk} : k \text{ is odd}\}$ and $Y_{n2} = \{y_{nk} : k \text{ is even}\}$.

Theorem 2.2. The set Y_{n1} is a basis for the eigenspace of U_n corresponding to the eigenvalue 1, and Y_{n2} is a basis for the eigenspace of U_n corresponding to the eigenvalue -1 (when $n \ge 2$).

Proof. Lemma 2.1 implies that $y_{nn} = x_n$ is an eigenvector of U_n corresponding to the eigenvalue $(-1)^{n-1}$. Let $1 \le k < n$. Partition U_n as

$$U_n = \begin{bmatrix} U_k & A \\ 0 & B \end{bmatrix}.$$

Using Lemma 2.1, we see that

$$U_n y_{nk} = \begin{bmatrix} U_k & A \\ 0 & B \end{bmatrix} \begin{bmatrix} x_k \\ 0 \end{bmatrix} = \begin{bmatrix} (-1)^{k-1} x_k \\ 0 \end{bmatrix} = (-1)^{k-1} y_{nk}.$$

Hence, for each $1 \le k \le n$, y_{nk} is an eigenvector of U_n corresponding to the eigenvalue $(-1)^{k-1}$. Moreover, it is easy to see that Y_{n1} and Y_{n2} are linearly independent sets. \Box

Let $H_n = (h_{ij})$ be the upper triangular matrix with

$$h_{ij} = (-1)^{i+j} \begin{pmatrix} j-1\\ i-1 \end{pmatrix} 2^{i-1} \quad \text{for } 1 \leq i \leq j \leq n,$$

and let $M_n = (m_{ij})$ be the lower triangular matrix with

$$m_{ij} = \binom{i-1}{j-1} 2^{n-j} \quad \text{for } 1 \leq j \leq i \leq n.$$

For example,

280

$$H_{6} = \begin{bmatrix} 1 & -1 & 1 & -1 & 1 & -1 \\ 0 & 2 & -4 & 6 & -8 & 10 \\ 0 & 0 & 4 & -12 & 24 & -40 \\ 0 & 0 & 0 & 8 & -32 & 80 \\ 0 & 0 & 0 & 0 & 16 & -80 \\ 0 & 0 & 0 & 0 & 0 & 32 \end{bmatrix}$$
$$M_{6} = \begin{bmatrix} 32 & 0 & 0 & 0 & 0 & 0 \\ 16 & 16 & 0 & 0 & 0 & 0 \\ 16 & 16 & 8 & 0 & 0 & 0 \\ 8 & 16 & 8 & 0 & 0 & 0 \\ 4 & 12 & 12 & 4 & 0 & 0 \\ 2 & 8 & 12 & 8 & 2 & 0 \\ 1 & 5 & 10 & 10 & 5 & 1 \end{bmatrix}.$$

It will be shown that the columns of H_n are eigenvectors of U_n , and that the columns of M_n are eigenvectors of U_n^{T} .

Lemma 2.3. For each positive integer n, $U_n H_n = H_n D_n$.

Proof. Clearly $U_n H_n = (a_{ij})$ and $H_n D_n = (b_{ij})$ are upper triangular. For $1 \le i \le j \le n$, we see that

$$a_{ij} = \sum_{k=i}^{j} (-1)^{i-1} {\binom{k-1}{i-1}} (-1)^{k+j} {\binom{j-1}{k-1}} 2^{k-1}$$
$$= (-1)^{i+1} \sum_{k=i-1}^{j-1} (-1)^{k+j-1} {\binom{k}{i-1}} {\binom{j-1}{k}} 2^k$$
$$= (-1)^{i+2j-1} {\binom{j-1}{i-1}} 2^{i-1}$$
$$= b_{ij},$$

where we used the identity

$$\sum_{k=m}^{n} (-1)^{n+k} \binom{n}{k} \binom{k}{m} 2^{k-m} = \binom{n}{m},$$

which can be found on page 32 of [3]. \Box

The columns of H_n yield different bases for the eigenspaces of U_n than those given in Theorem 2.2. Let $V_{n1} = \{v_{nk} : k \text{ is odd}\}$ and $V_{n2} = \{v_{nk} : k \text{ is even}\}$, where v_{nk} is the *k*th column of H_n .

Theorem 2.4. The set V_{n1} is a basis for the eigenspace of U_n corresponding to the eigenvalue 1, and V_{n2} is a basis for the eigenspace of U_n corresponding to the eigenvalue -1.

Proof. Lemma 2.3 implies that v_{nk} is an eigenvector of U_n corresponding to the eigenvalue $(-1)^{k-1}$. Moreover, V_{n1} and V_{n2} are linearly independent sets. \Box

We now consider eigenvectors of U_n^{T} . Let $W_{n1} = \{w_{nk} : k \text{ is odd}\}$ and $W_{n2} = \{w_{nk} : k \text{ is even}\}$, where w_{nk} is the *k*th column of M_n . Define the diagonal matrices Q_n and R_n of order *n* by letting $Q_n = (2^{i-1}\delta_{ij})$ and $R_n = (2^{n-i}\delta_{ij})$.

Lemma 2.5. For each positive integer n, $M_n = 2^{n-1} (H_n^T)^{-1}$.

Proof. We see that $H_n = Q_n U_n D_n$ and $M_n = R_n U_n^T D_n$. Hence, using $D_n^2 = I = U_n^2$, it follows that

 $M_n H_n^{\mathrm{T}} = (R_n U_n^{\mathrm{T}} D_n) (D_n U_n^{\mathrm{T}} Q_n) = R_n Q_n = 2^{n-1} I,$

and thus $M_n = 2^{n-1} (H_n^{\rm T})^{-1}$. \Box

Lemma 2.6. For each positive integer n, $U_n^T M_n = M_n D_n$.

Proof. Using Lemma 2.3, we see that

$$U_n^{\rm T}(H_n^{\rm T})^{-1} = ((U_n H_n)^{\rm T})^{-1} = ((H_n D_n)^{\rm T})^{-1} = (H_n^{\rm T})^{-1} D_n,$$

and it follows from Lemma 2.5 that $U_n^{\mathrm{T}} M_n = M_n D_n$. \Box

Theorem 2.7. The set W_{n1} is a basis for the eigenspace of U_n^T corresponding to the eigenvalue 1, and W_{n2} is a basis for the eigenspace of U_n^T corresponding to the eigenvalue -1.

Proof. Lemma 2.6 implies that w_{nk} is an eigenvector of U_n^{T} corresponding to the eigenvalue $(-1)^{k-1}$. Moreover, W_{n1} and W_{n2} are linearly independent. \Box

3. A characterization of U_n

Let $K_n = (k_{ij})$ be the (0,1)-matrix of order n with $k_{ij} = 1$ if and only if j = i + 1, and let $G_n = (g_{ij}) = U_n + (K_n^T U_n - U_n) K_n$. An easy computation shows that G_n is a (0,1)-matrix with $g_{ij} = 1$ if and only if i = j = 1. Thus G_n is a symmetric matrix. We will show that such symmetry and the property that each leading principal submatrix is involutory characterizes $\pm U_n$ for $n \ge 4$. The following lemmas will be used.

Lemma 3.1. Let $X = (x_{ij})$ be an involutory matrix of order 2 such that $x_{11} = 1$, $X + (K_2^T X - X)K_2$ is symmetric and $X \neq U_2$. Then

$$X = \begin{bmatrix} 1 & 0 \\ -1 & -1 \end{bmatrix}.$$

Proof. We see that

$$X + (K_2^{\mathrm{T}} X - X) K_2 = \begin{bmatrix} 1 & x_{12} - 1 \\ x_{21} & 1 - x_{21} + x_{22} \end{bmatrix}.$$

Since this matrix is symmetric and $X^2 = I$, it follows that

$$X = \begin{bmatrix} 1 & x_{12} \\ x_{12} - 1 & -1 \end{bmatrix},$$

where $x_{12} = 1$ or $x_{12} = 0$. \Box

Lemma 3.2. Let X be a matrix of order $n \ge 3$ and let Y be the leading principal submatrix of X of order n - 1. If $X + (K_n^T X - X)K_n$ is symmetric then $Y + (K_{n-1}^T Y - Y)K_{n-1}$ is symmetric.

Proof. Partition K_n and X as

$$K_n = \begin{bmatrix} K_{n-1} & L \\ 0 & 0 \end{bmatrix}, \quad X = \begin{bmatrix} Y & C \\ R & d \end{bmatrix}.$$

We see that

$$X + (K_n^{\mathrm{T}} X - X) K_n = \begin{bmatrix} Y + (K_{n-1}^{\mathrm{T}} Y - Y) K_{n-1} & C + (K_{n-1}^{\mathrm{T}} Y - Y) L \\ R + (L^{\mathrm{T}} Y - R) K_{n-1} & d + (L^{\mathrm{T}} Y - R) L \end{bmatrix}.$$

Lemma 3.3. Let $X = (x_{ij})$ be a matrix of order 3 such that each leading principal submatrix of X is involutory, $x_{11} = 1$, $X + (K_3^T X - X)K_3$ is symmetric and $X \neq U_3$. Then

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & -1 & -2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Proof. It follows from Lemmas 3.1 and 3.2 that $X = X_1$ or $X = X_2$ where

$$X_1 = \begin{bmatrix} 1 & 1 & x_{13} \\ 0 & -1 & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix}, \quad X_2 = \begin{bmatrix} 1 & 0 & x_{13} \\ -1 & -1 & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix}.$$

In both cases, since $X^2 = I$, we see that either $x_{13} = x_{23} = 0$ or $x_{31} = x_{32} = 0$. First suppose that $X = X_1$. It then follows that

$$G = X + (K_3^{\mathrm{T}}X - X)K_3 = \begin{bmatrix} 1 & 0 & x_{13} - 1 \\ 0 & 0 & x_{23} + 2 \\ x_{31} & x_{32} - x_{31} & x_{33} - 1 - x_{32} \end{bmatrix}.$$

Since *G* is symmetric, if $x_{13} = x_{23} = 0$, then $x_{31} = -1$ and $x_{32} = 1$. However, this would imply that $X^2 \neq I$. Hence, we must have $x_{31} = x_{32} = 0$. Therefore, since *G* is symmetric, we see that $x_{13} = 1$ and $x_{23} = -2$. It now follows that $X = U_3$. Thus we assume that $X = X_2$, and it follows that

$$G = X + (K_3^{\mathrm{T}}X - X)K_3 = \begin{bmatrix} 1 & -1 & x_{13} \\ -1 & 1 & x_{23} + 1 \\ x_{31} & x_{32} - 1 - x_{31} & x_{33} - 1 - x_{32} \end{bmatrix}.$$

Since *G* is symmetric, if $x_{13} = x_{23} = 0$, then $x_{31} = 0$ and $x_{32} = 2$. However, this would imply that $X^2 \neq I$. Hence, we must have $x_{31} = x_{32} = 0$. Therefore, since *G* is symmetric, we see that $x_{13} = 0$ and $x_{23} = -2$. It now follows that

$$X = \begin{bmatrix} 1 & 0 & 0 \\ -1 & -1 & -2 \\ 0 & 0 & 1 \end{bmatrix}. \qquad \Box$$

Lemma 3.4. Let $X = (x_{ij})$ be a matrix of order 4 such that each leading principal submatrix of X is involutory, $x_{11} = 1$, and $X + (K_4^T X - X)K_4$ is symmetric. Then $X = U_4$.

Proof. It follows from Lemmas 3.2 and 3.3 that $X = X_1$ or $X = X_2$ where

$X_1 =$	[1]	0	0	<i>x</i> ₁₄			[1]	1	1	x_{14}	
	-1	-1	-2	<i>x</i> ₂₄		V	0	-1	-2	<i>x</i> ₂₄	
	0	0	1	<i>x</i> ₃₄	,	$X_2 =$	0	0	1	<i>x</i> ₃₄	·
	x_{41}	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>x</i> ₄₄			x_{41}	<i>x</i> ₄₂	<i>x</i> ₄₃	<i>x</i> ₄₄	

In both cases, since $X^2 = I$, we see that either $x_{14} = x_{24} = x_{34} = 0$ or $x_{41} = x_{42} = x_{43} = 0$. First suppose that $X = X_1$. It then follows that,

$$G = X + (K_4^{\mathrm{T}}X - X)K_4 = \begin{bmatrix} 1 & -1 & 0 & x_{14} \\ -1 & 1 & -1 & x_{24} + 2 \\ 0 & -1 & 0 & x_{34} - 3 \\ x_{41} & x_{42} - x_{41} & x_{43} - x_{42} & x_{44} + 1 - x_{43} \end{bmatrix}.$$

Since *G* is symmetric, if $x_{14} = x_{24} = x_{34} = 0$, then $x_{41} = 0$, $x_{42} = 2$ and $x_{43} = -1$. However, this would imply that $X^2 \neq I$. Moreover, since *G* is symmetric, if $x_{41} = x_{42} = x_{43} = 0$, then $x_{14} = 0$, $x_{24} = -2$ and $x_{34} = 3$. However, this would imply that $X^2 \neq I$. Thus we must have $X = X_2$, and it follows that

$$G = X + (K_4^{\mathrm{T}}X - X)K_4 = \begin{bmatrix} 1 & 0 & 0 & x_{14} - 1 \\ 0 & 0 & 0 & x_{24} + 3 \\ 0 & 0 & 0 & x_{34} - 3 \\ x_{41} & x_{42} - x_{41} & x_{43} - x_{42} & x_{44} + 1 - x_{43} \end{bmatrix}$$

283

Since *G* is symmetric, if $x_{14} = x_{24} = x_{34} = 0$, then $x_{41} = -1$ and $x_{42} = 2$. However, this would imply that $X^2 \neq I$. Hence, we must have $x_{41} = x_{42} = x_{43} = 0$. Therefore, since *G* is symmetric, we see that $x_{14} = 1$, $x_{24} = -3$ and $x_{34} = 3$. It now follows that $X = U_4$. \Box

Lemma 3.5. Let $X = (x_{ij})$ be a matrix of order $n \ge 4$ such that each leading principal submatrix of X is involutory, $x_{11} = 1$, and $X + (K_n^T X - X)K_n$ is symmetric. Then $X = U_n$.

Proof. We use induction on *n*. Lemma 3.4 implies that Lemma 3.5 holds for n = 4. Let *X* be a matrix of order $n \ge 5$ that satisfies the hypotheses of Lemma 3.5 and suppose that this lemma holds for matrices of order n - 1. Using Lemma 3.2, we see that

$$X = \begin{bmatrix} U_{n-1} & C \\ R & x_{nn} \end{bmatrix}$$

for some $1 \times (n-1)$ matrix R and $(n-1) \times 1$ matrix C. Since $X^2 = I$, it follows that $x_{in}x_{nj} = 0$ for i, j = 1, 2, ..., n-1. This implies that either C = 0 or R = 0. Let $G = (g_{ij}) = X + (K_n^T X - X)K_n$. It is not difficult to see that

$$g_{n1} = x_{n1},$$

$$g_{nj} = x_{nj} - x_{n,j-1} \quad \text{for } j = 2, 3, \dots, n-1,$$

$$g_{in} = x_{in} - (-1)^{i-1} \binom{n-1}{i-1} \quad \text{for } i = 1, 2, \dots, n-1$$

Since *G* is symmetric, if C = 0, then it follows that $x_{n1} = -1$ and $x_{n2} = n - 2$. However, we see that now there is no value of x_{nn} that will ensure that both the (n, 1) and the (n, 2) entries of X^2 are zero. Thus $X^2 \neq I$. Hence, we must have R = 0. Therefore, since *G* is symmetric, we see that $g_{in} = 0$ for i = 1, 2, ..., n - 1. Thus

$$x_{in} = (-1)^{i-1} \binom{n-1}{i-1}$$
 for $i = 1, 2, \dots, n-1$,

and it follows that $X = U_n$. \Box

Theorem 3.6. Let X be a matrix of order $n \ge 4$. Then $X = \pm U_n$ if and only if $X + (K_n^T X - X)K_n$ is symmetric and each leading principal submatrix of X is involutory.

Proof. Suppose that $X + (K_n^T X - X)K_n$ is symmetric and that each leading principal submatrix of $X = (x_{ij})$ is involutory. Then $x_{11} = \pm 1$. If $x_{11} = 1$, then Lemma 3.5 implies that $X = U_n$. If $x_{11} = -1$, let $Y = (y_{ij}) = -X$. Then each leading principal submatrix of Y is involutory, $y_{11} = 1$ and $Y + (K_n^T Y - Y)K_n$ is symmetric. Hence, Lemma 3.5 implies that $X = -Y = -U_n$. Therefore, if $X + (K_n^T X - X)K_n$

is symmetric and each leading principal submatrix of X is involutory, then X = $\pm U_n$. As discussed earlier, it is easy to see that the converse also holds. \Box

4. Extensions to matrices over a ring

Let A be a matrix of order n over a commutative ring R with unity e, let $\lambda \in R$, and let x be a nonzero column vector over R. We say that λ is an eigenvalue of A with corresponding eigenvector x if $Ax = \lambda x$. Since U_n and the vectors in Y_{ni} , V_{ni} , and W_{ni} have integer entries, we can obtain the corresponding matrices and vectors over R by replacing each entry k by ke. Thus we have the following.

Theorem 4.1. Let *R* be a commutative ring with unity *e*.

- (a) Each vector in $Y_{n1}(V_{n1})$ is an eigenvector of U_n corresponding to the eigenvalue e.
- (b) Each vector in $Y_{n2}(V_{n2})$ is an eigenvector of U_n corresponding to the eigenvalue -e.
- (c) Each vector in W_{n1} is an eigenvector of U_n^T corresponding to the eigenvalue e. (d) Each vector in W_{n2} is an eigenvector of U_n^T corresponding to the eigenvalue -e.

There are difficulties in attempting such an extension of our characterization of U_n . For example, Lemma 3.1 cannot be extended to general commutative rings with unity. To see this, let $k \ge 2$ be an integer, and let m = k(k + 1). Over the ring \mathbb{Z}_m of integers modulo m, the matrix

$$X = \begin{bmatrix} 1 & k+1 \\ k & m-1 \end{bmatrix}$$

is involutory with $X + (K_2^T X - X)K_2$ symmetric. However, it is not difficult to obtain the following extension of Theorem 3.6.

Theorem 4.2. Let D be an integral domain, and let X be a matrix over D of order $n \ge 4$. Then $X = \pm U_n$ if and only if $X + (K_n^T X - X)K_n$ is symmetric and each leading principal submatrix of X is involutory.

Acknowledgement

The authors wish to thank Dr. Reza Adhami, Professor and Chair of the Department of Electrical and Computer Engineering of the University of Alabama in Huntsville, for his support.

References

- [1] R. Brawer, M. Pirovino, The linear algebra of the Pascal matrix, Linear Algebra Appl. 174 (1992) 13–23.
- [2] W. Klein, Finite Systemtheorie, B.G. Teubner, Stuttgart, 1976.[3] J. Riordan, Combinatorial Identities, John Wiley & Sons, New York, 1968.