An involutory Pascal matrix

Ashkan Ashrafi ${ }^{\text {a }}$, Peter M. Gibson ${ }^{\text {b,* }}$
${ }^{2}$ Department of Electrical and Computer Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, University of Alabama in Huntsville, 204 Madison Hall, Huntsville, AL 35899, USA

Received 21 October 2003; accepted 17 February 2004
Submitted by R.A. Brualdi

Abstract

An involutory upper triangular Pascal matrix U_{n} is investigated. Eigenvectors of U_{n} and of U_{n}^{T} are considered. A characterization of U_{n} is obtained, and it is shown how the results can be extended to matrices over a commutative ring with unity.
© 2004 Elsevier Inc. All rights reserved.
Keywords: Pascal matrices; Involutory matrices; Eigenvectors; Matrices over a ring

1. Introduction

Let $U_{n}=\left(u_{i j}\right)$ be the real upper triangular matrix of order n with

$$
u_{i j}=(-1)^{i-1}\binom{j-1}{i-1} \quad \text { for } 1 \leqslant i \leqslant j \leqslant n .
$$

For example,

$$
U_{5}=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & -1 & -2 & -3 & -4 \\
0 & 0 & 1 & 3 & 6 \\
0 & 0 & 0 & -1 & -4 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

[^0]Such Pascal matrices are found in the book by Klein [2]. Moreover, the MATLAB command $\operatorname{pascal}(n, 1)$ yields the lower triangular matrix U_{n}^{T}.

Klein mentioned that $U_{n}^{-1}=U_{n}$ (that is, U_{n} is involutory). In fact a somewhat more general result holds. Let p and q be integers with $1 \leqslant p \leqslant q \leqslant n$. Using the identity

$$
\delta_{n k}=\sum_{j=k}^{n}(-1)^{j+k}\binom{n}{j}\binom{j}{k},
$$

which can be found on page 44 of [3], it is not difficult to see that the principal submatrix of U_{n} that lies in rows and column $p, p+1, \ldots, q$ is involutory.

The matrix U_{n} is closely related to two other "Pascal matrices". Let $P_{n}=\left(p_{i j}\right)$ be the real lower triangular matrix of order n with

$$
p_{i j}=\binom{j-1}{i-1} \quad \text { for } 1 \leqslant i \leqslant j \leqslant n
$$

and let $S_{n}=\left(s_{i j}\right)$ be the real symmetric matrix of order n with

$$
s_{i j}=\binom{i+j-2}{j-1} \quad \text { for } i, j=1,2, \ldots, n
$$

Clearly $P_{n}=U_{n}^{\mathrm{T}} D_{n}$ for the $n \times n$ diagonal matrix $D_{n}=\left((-1)^{i-1} \delta_{i j}\right)$. Hence, it follows from the Cholesky factorization $S_{n}=P_{n} P_{n}^{\mathrm{T}}$ obtained by Brawer and Pirovino [1] that $S_{n}=\left(U_{n}^{\mathrm{T}} D_{n}\right)\left(U_{n}^{\mathrm{T}} D_{n}\right)^{\mathrm{T}}=U_{n}^{\mathrm{T}} U_{n}$. Thus, the involutory matrices U_{n}^{T} and U_{n} can be used to obtain an LU factorization for S_{n}.

Other properties of U_{n} are investigated in this paper. Eigenvectors of U_{n} and of U_{n}^{T} are considered in Section 2. A characterization of U_{n} is presented next, and then it is shown how the results can be extended to matrices over a commutative ring with unity.

2. Eigenvectors

It is easy to see that U_{n} is similar to the diagonal matrix $D_{n}=\left((-1)^{i-1} \delta_{i j}\right)$. We now consider eigenvectors of U_{n}. For each positive integer k, let

$$
x_{k}=\left[\begin{array}{c}
\binom{k}{0} \\
-\binom{k}{1} \\
\vdots \\
(-1)^{k-1}\binom{k}{k-1}
\end{array}\right]
$$

Lemma 2.1. For each positive integer k, x_{k} is an eigenvector of U_{k} corresponding to the eigenvalue $(-1)^{k-1}$.

Proof. Since

$$
U_{k+1}=\left[\begin{array}{cc}
U_{k} & x_{k} \\
0 & (-1)^{k}
\end{array}\right],
$$

we have

$$
I=U_{k+1}^{2}=\left[\begin{array}{cc}
I & U_{k} x_{k}+(-1)^{k} x_{k} \\
0 & 1
\end{array}\right]
$$

and thus $U_{k} x_{k}=(-1)^{k-1} x_{k}$.
For integers $1 \leqslant k \leqslant n$ we define the vector $y_{n k} \in \mathbb{R}^{n}$ by letting

$$
y_{n k}=\left[\begin{array}{c}
x_{k} \\
0
\end{array}\right] .
$$

Let $Y_{n 1}=\left\{y_{n k}: k\right.$ is odd $\}$ and $Y_{n 2}=\left\{y_{n k}: k\right.$ is even $\}$.
Theorem 2.2. The set $Y_{n 1}$ is a basis for the eigenspace of U_{n} corresponding to the eigenvalue 1, and $Y_{n 2}$ is a basis for the eigenspace of U_{n} corresponding to the eigenvalue $-1($ when $n \geqslant 2)$.

Proof. Lemma 2.1 implies that $y_{n n}=x_{n}$ is an eigenvector of U_{n} corresponding to the eigenvalue $(-1)^{n-1}$. Let $1 \leqslant k<n$. Partition U_{n} as

$$
U_{n}=\left[\begin{array}{cc}
U_{k} & A \\
0 & B
\end{array}\right] .
$$

Using Lemma 2.1, we see that

$$
U_{n} y_{n k}=\left[\begin{array}{cc}
U_{k} & A \\
0 & B
\end{array}\right]\left[\begin{array}{c}
x_{k} \\
0
\end{array}\right]=\left[\begin{array}{c}
(-1)^{k-1} x_{k} \\
0
\end{array}\right]=(-1)^{k-1} y_{n k} .
$$

Hence, for each $1 \leqslant k \leqslant n, y_{n k}$ is an eigenvector of U_{n} corresponding to the eigenvalue $(-1)^{k-1}$. Moreover, it is easy to see that $Y_{n 1}$ and $Y_{n 2}$ are linearly independent sets.

Let $H_{n}=\left(h_{i j}\right)$ be the upper triangular matrix with

$$
h_{i j}=(-1)^{i+j}\binom{j-1}{i-1} 2^{i-1} \quad \text { for } 1 \leqslant i \leqslant j \leqslant n,
$$

and let $M_{n}=\left(m_{i j}\right)$ be the lower triangular matrix with

$$
m_{i j}=\binom{i-1}{j-1} 2^{n-j} \quad \text { for } 1 \leqslant j \leqslant i \leqslant n
$$

For example,

$$
\begin{aligned}
H_{6} & =\left[\begin{array}{cccccc}
1 & -1 & 1 & -1 & 1 & -1 \\
0 & 2 & -4 & 6 & -8 & 10 \\
0 & 0 & 4 & -12 & 24 & -40 \\
0 & 0 & 0 & 8 & -32 & 80 \\
0 & 0 & 0 & 0 & 16 & -80 \\
0 & 0 & 0 & 0 & 0 & 32
\end{array}\right], \\
M_{6} & =\left[\begin{array}{cccccc}
32 & 0 & 0 & 0 & 0 & 0 \\
16 & 16 & 0 & 0 & 0 & 0 \\
8 & 16 & 8 & 0 & 0 & 0 \\
4 & 12 & 12 & 4 & 0 & 0 \\
2 & 8 & 12 & 8 & 2 & 0 \\
1 & 5 & 10 & 10 & 5 & 1
\end{array}\right] .
\end{aligned}
$$

It will be shown that the columns of H_{n} are eigenvectors of U_{n}, and that the columns of M_{n} are eigenvectors of U_{n}^{T}.

Lemma 2.3. For each positive integer $n, U_{n} H_{n}=H_{n} D_{n}$.
Proof. Clearly $U_{n} H_{n}=\left(a_{i j}\right)$ and $H_{n} D_{n}=\left(b_{i j}\right)$ are upper triangular. For $1 \leqslant i \leqslant$ $j \leqslant n$, we see that

$$
\begin{aligned}
a_{i j} & =\sum_{k=i}^{j}(-1)^{i-1}\binom{k-1}{i-1}(-1)^{k+j}\binom{j-1}{k-1} 2^{k-1} \\
& =(-1)^{i+1} \sum_{k=i-1}^{j-1}(-1)^{k+j-1}\binom{k}{i-1}\binom{j-1}{k} 2^{k} \\
& =(-1)^{i+2 j-1}\binom{j-1}{i-1} 2^{i-1} \\
& =b_{i j}
\end{aligned}
$$

where we used the identity

$$
\sum_{k=m}^{n}(-1)^{n+k}\binom{n}{k}\binom{k}{m} 2^{k-m}=\binom{n}{m}
$$

which can be found on page 32 of [3].
The columns of H_{n} yield different bases for the eigenspaces of U_{n} than those given in Theorem 2.2. Let $V_{n 1}=\left\{v_{n k}: k\right.$ is odd $\}$ and $V_{n 2}=\left\{v_{n k}: k\right.$ is even $\}$, where $v_{n k}$ is the k th column of H_{n}.

Theorem 2.4. The set $V_{n 1}$ is a basis for the eigenspace of U_{n} corresponding to the eigenvalue 1 , and $V_{n 2}$ is a basis for the eigenspace of U_{n} corresponding to the eigenvalue -1 .

Proof. Lemma 2.3 implies that $v_{n k}$ is an eigenvector of U_{n} corresponding to the eigenvalue $(-1)^{k-1}$. Moreover, $V_{n 1}$ and $V_{n 2}$ are linearly independent sets.

We now consider eigenvectors of U_{n}^{T}. Let $W_{n 1}=\left\{w_{n k}: k\right.$ is odd $\}$ and $W_{n 2}=$ $\left\{w_{n k}: k\right.$ is even $\}$, where $w_{n k}$ is the k th column of M_{n}. Define the diagonal matrices Q_{n} and R_{n} of order n by letting $Q_{n}=\left(2^{i-1} \delta_{i j}\right)$ and $R_{n}=\left(2^{n-i} \delta_{i j}\right)$.

Lemma 2.5. For each positive integer $n, M_{n}=2^{n-1}\left(H_{n}^{\mathrm{T}}\right)^{-1}$.
Proof. We see that $H_{n}=Q_{n} U_{n} D_{n}$ and $M_{n}=R_{n} U_{n}^{\mathrm{T}} D_{n}$. Hence, using $D_{n}^{2}=I=$ U_{n}^{2}, it follows that

$$
M_{n} H_{n}^{\mathrm{T}}=\left(R_{n} U_{n}^{\mathrm{T}} D_{n}\right)\left(D_{n} U_{n}^{\mathrm{T}} Q_{n}\right)=R_{n} Q_{n}=2^{n-1} I
$$

and thus $M_{n}=2^{n-1}\left(H_{n}^{\mathrm{T}}\right)^{-1}$.
Lemma 2.6. For each positive integer $n, U_{n}^{\mathrm{T}} M_{n}=M_{n} D_{n}$.
Proof. Using Lemma 2.3, we see that

$$
U_{n}^{\mathrm{T}}\left(H_{n}^{\mathrm{T}}\right)^{-1}=\left(\left(U_{n} H_{n}\right)^{\mathrm{T}}\right)^{-1}=\left(\left(H_{n} D_{n}\right)^{\mathrm{T}}\right)^{-1}=\left(H_{n}^{\mathrm{T}}\right)^{-1} D_{n}
$$

and it follows from Lemma 2.5 that $U_{n}^{\mathrm{T}} M_{n}=M_{n} D_{n}$.
Theorem 2.7. The set $W_{n 1}$ is a basis for the eigenspace of U_{n}^{T} corresponding to the eigenvalue 1 , and $W_{n 2}$ is a basis for the eigenspace of U_{n}^{T} corresponding to the eigenvalue -1 .

Proof. Lemma 2.6 implies that $w_{n k}$ is an eigenvector of U_{n}^{T} corresponding to the eigenvalue $(-1)^{k-1}$. Moreover, $W_{n 1}$ and $W_{n 2}$ are linearly independent.

3. A characterization of $\boldsymbol{U}_{\boldsymbol{n}}$

Let $K_{n}=\left(k_{i j}\right)$ be the $(0,1)$-matrix of order n with $k_{i j}=1$ if and only if $j=i+1$, and let $G_{n}=\left(g_{i j}\right)=U_{n}+\left(K_{n}^{\mathrm{T}} U_{n}-U_{n}\right) K_{n}$. An easy computation shows that G_{n} is a $(0,1)$-matrix with $g_{i j}=1$ if and only if $i=j=1$. Thus G_{n} is a symmetric matrix. We will show that such symmetry and the property that each leading principal submatrix is involutory characterizes $\pm U_{n}$ for $n \geqslant 4$. The following lemmas will be used.

Lemma 3.1. Let $X=\left(x_{i j}\right)$ be an involutory matrix of order 2 such that $x_{11}=1$, $X+\left(K_{2}^{\mathrm{T}} X-X\right) K_{2}$ is symmetric and $X \neq U_{2}$. Then

$$
X=\left[\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right]
$$

Proof. We see that

$$
X+\left(K_{2}^{\mathrm{T}} X-X\right) K_{2}=\left[\begin{array}{cc}
1 & x_{12}-1 \\
x_{21} & 1-x_{21}+x_{22}
\end{array}\right]
$$

Since this matrix is symmetric and $X^{2}=I$, it follows that

$$
X=\left[\begin{array}{cc}
1 & x_{12} \\
x_{12}-1 & -1
\end{array}\right]
$$

where $x_{12}=1$ or $x_{12}=0$.
Lemma 3.2. Let X be a matrix of order $n \geqslant 3$ and let Y be the leading principal submatrix of X of order $n-1$. If $X+\left(K_{n}^{\mathrm{T}} X-X\right) K_{n}$ is symmetric then $Y+$ $\left(K_{n-1}^{\mathrm{T}} Y-Y\right) K_{n-1}$ is symmetric.

Proof. Partition K_{n} and X as

$$
K_{n}=\left[\begin{array}{cc}
K_{n-1} & L \\
0 & 0
\end{array}\right], \quad X=\left[\begin{array}{ll}
Y & C \\
R & d
\end{array}\right]
$$

We see that

$$
X+\left(K_{n}^{\mathrm{T}} X-X\right) K_{n}=\left[\begin{array}{cc}
Y+\left(K_{n-1}^{\mathrm{T}} Y-Y\right) K_{n-1} & C+\left(K_{n-1}^{\mathrm{T}} Y-Y\right) L \\
R+\left(L^{\mathrm{T}} Y-R\right) K_{n-1} & d+\left(L^{\mathrm{T}} Y-R\right) L
\end{array}\right]
$$

Lemma 3.3. Let $X=\left(x_{i j}\right)$ be a matrix of order 3 such that each leading principal submatrix of X is involutory, $x_{11}=1, X+\left(K_{3}^{\mathrm{T}} X-X\right) K_{3}$ is symmetric and $X \neq U_{3}$. Then

$$
X=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & -1 & -2 \\
0 & 0 & 1
\end{array}\right]
$$

Proof. It follows from Lemmas 3.1 and 3.2 that $X=X_{1}$ or $X=X_{2}$ where

$$
X_{1}=\left[\begin{array}{ccc}
1 & 1 & x_{13} \\
0 & -1 & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right], \quad X_{2}=\left[\begin{array}{ccc}
1 & 0 & x_{13} \\
-1 & -1 & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right]
$$

In both cases, since $X^{2}=I$, we see that either $x_{13}=x_{23}=0$ or $x_{31}=x_{32}=0$. First suppose that $X=X_{1}$. It then follows that

$$
G=X+\left(K_{3}^{\mathrm{T}} X-X\right) K_{3}=\left[\begin{array}{ccc}
1 & 0 & x_{13}-1 \\
0 & 0 & x_{23}+2 \\
x_{31} & x_{32}-x_{31} & x_{33}-1-x_{32}
\end{array}\right]
$$

Since G is symmetric, if $x_{13}=x_{23}=0$, then $x_{31}=-1$ and $x_{32}=1$. However, this would imply that $X^{2} \neq I$. Hence, we must have $x_{31}=x_{32}=0$. Therefore, since G is symmetric, we see that $x_{13}=1$ and $x_{23}=-2$. It now follows that $X=U_{3}$. Thus we assume that $X=X_{2}$, and it follows that

$$
G=X+\left(K_{3}^{\mathrm{T}} X-X\right) K_{3}=\left[\begin{array}{ccc}
1 & -1 & x_{13} \\
-1 & 1 & x_{23}+1 \\
x_{31} & x_{32}-1-x_{31} & x_{33}-1-x_{32}
\end{array}\right]
$$

Since G is symmetric, if $x_{13}=x_{23}=0$, then $x_{31}=0$ and $x_{32}=2$. However, this would imply that $X^{2} \neq I$. Hence, we must have $x_{31}=x_{32}=0$. Therefore, since G is symmetric, we see that $x_{13}=0$ and $x_{23}=-2$. It now follows that

$$
X=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & -1 & -2 \\
0 & 0 & 1
\end{array}\right]
$$

Lemma 3.4. Let $X=\left(x_{i j}\right)$ be a matrix of order 4 such that each leading principal submatrix of X is involutory, $x_{11}=1$, and $X+\left(K_{4}^{\mathrm{T}} X-X\right) K_{4}$ is symmetric. Then $X=U_{4}$.

Proof. It follows from Lemmas 3.2 and 3.3 that $X=X_{1}$ or $X=X_{2}$ where

$$
X_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & x_{14} \\
-1 & -1 & -2 & x_{24} \\
0 & 0 & 1 & x_{34} \\
x_{41} & x_{42} & x_{43} & x_{44}
\end{array}\right], \quad X_{2}=\left[\begin{array}{cccc}
1 & 1 & 1 & x_{14} \\
0 & -1 & -2 & x_{24} \\
0 & 0 & 1 & x_{34} \\
x_{41} & x_{42} & x_{43} & x_{44}
\end{array}\right] .
$$

In both cases, since $X^{2}=I$, we see that either $x_{14}=x_{24}=x_{34}=0$ or $x_{41}=x_{42}=$ $x_{43}=0$. First suppose that $X=X_{1}$. It then follows that,

$$
G=X+\left(K_{4}^{\mathrm{T}} X-X\right) K_{4}=\left[\begin{array}{cccc}
1 & -1 & 0 & x_{14} \\
-1 & 1 & -1 & x_{24}+2 \\
0 & -1 & 0 & x_{34}-3 \\
x_{41} & x_{42}-x_{41} & x_{43}-x_{42} & x_{44}+1-x_{43}
\end{array}\right]
$$

Since G is symmetric, if $x_{14}=x_{24}=x_{34}=0$, then $x_{41}=0, x_{42}=2$ and $x_{43}=-1$. However, this would imply that $X^{2} \neq I$. Moreover, since G is symmetric, if $x_{41}=$ $x_{42}=x_{43}=0$, then $x_{14}=0, x_{24}=-2$ and $x_{34}=3$. However, this would imply that $X^{2} \neq I$. Thus we must have $X=X_{2}$, and it follows that

$$
G=X+\left(K_{4}^{\mathrm{T}} X-X\right) K_{4}=\left[\begin{array}{cccc}
1 & 0 & 0 & x_{14}-1 \\
0 & 0 & 0 & x_{24}+3 \\
0 & 0 & 0 & x_{34}-3 \\
x_{41} & x_{42}-x_{41} & x_{43}-x_{42} & x_{44}+1-x_{43}
\end{array}\right]
$$

Since G is symmetric, if $x_{14}=x_{24}=x_{34}=0$, then $x_{41}=-1$ and $x_{42}=2$. However, this would imply that $X^{2} \neq I$. Hence, we must have $x_{41}=x_{42}=x_{43}=0$. Therefore, since G is symmetric, we see that $x_{14}=1, x_{24}=-3$ and $x_{34}=3$. It now follows that $X=U_{4}$.

Lemma 3.5. Let $X=\left(x_{i j}\right)$ be a matrix of order $n \geqslant 4$ such that each leading principal submatrix of X is involutory, $x_{11}=1$, and $X+\left(K_{n}^{\mathrm{T}} X-X\right) K_{n}$ is symmetric. Then $X=U_{n}$.

Proof. We use induction on n. Lemma 3.4 implies that Lemma 3.5 holds for $n=4$. Let X be a matrix of order $n \geqslant 5$ that satisfies the hypotheses of Lemma 3.5 and suppose that this lemma holds for matrices of order $n-1$. Using Lemma 3.2, we see that

$$
X=\left[\begin{array}{cc}
U_{n-1} & C \\
R & x_{n n}
\end{array}\right]
$$

for some $1 \times(n-1)$ matrix R and $(n-1) \times 1$ matrix C. Since $X^{2}=I$, it follows that $x_{i n} x_{n j}=0$ for $i, j=1,2, \ldots, n-1$. This implies that either $C=0$ or $R=0$. Let $G=\left(g_{i j}\right)=X+\left(K_{n}^{\mathrm{T}} X-X\right) K_{n}$. It is not difficult to see that

$$
\begin{aligned}
& g_{n 1}=x_{n 1}, \\
& g_{n j}=x_{n j}-x_{n, j-1} \quad \text { for } j=2,3, \ldots, n-1, \\
& g_{i n}=x_{i n}-(-1)^{i-1}\binom{n-1}{i-1} \quad \text { for } i=1,2, \ldots, n-1 .
\end{aligned}
$$

Since G is symmetric, if $C=0$, then it follows that $x_{n 1}=-1$ and $x_{n 2}=n-2$. However, we see that now there is no value of $x_{n n}$ that will ensure that both the $(n, 1)$ and the $(n, 2)$ entries of X^{2} are zero. Thus $X^{2} \neq I$. Hence, we must have $R=0$. Therefore, since G is symmetric, we see that $g_{i n}=0$ for $i=1,2, \ldots, n-1$. Thus

$$
x_{i n}=(-1)^{i-1}\binom{n-1}{i-1} \quad \text { for } i=1,2, \ldots, n-1
$$

and it follows that $X=U_{n}$.
Theorem 3.6. Let X be a matrix of order $n \geqslant 4$. Then $X= \pm U_{n}$ if and only if $X+\left(K_{n}^{\mathrm{T}} X-X\right) K_{n}$ is symmetric and each leading principal submatrix of X is involutory.

Proof. Suppose that $X+\left(K_{n}^{\mathrm{T}} X-X\right) K_{n}$ is symmetric and that each leading principal submatrix of $X=\left(x_{i j}\right)$ is involutory. Then $x_{11}= \pm 1$. If $x_{11}=1$, then Lemma 3.5 implies that $X=U_{n}$. If $x_{11}=-1$, let $Y=\left(y_{i j}\right)=-X$. Then each leading principal submatrix of Y is involutory, $y_{11}=1$ and $Y+\left(K_{n}^{\mathrm{T}} Y-Y\right) K_{n}$ is symmetric. Hence, Lemma 3.5 implies that $X=-Y=-U_{n}$. Therefore, if $X+\left(K_{n}^{\mathrm{T}} X-X\right) K_{n}$
is symmetric and each leading principal submatrix of X is involutory, then $X=$ $\pm U_{n}$. As discussed earlier, it is easy to see that the converse also holds.

4. Extensions to matrices over a ring

Let A be a matrix of order n over a commutative ring R with unity e, let $\lambda \in R$, and let x be a nonzero column vector over R. We say that λ is an eigenvalue of A with corresponding eigenvector x if $A x=\lambda x$. Since U_{n} and the vectors in $Y_{n i}, V_{n i}$, and $W_{n i}$ have integer entries, we can obtain the corresponding matrices and vectors over R by replacing each entry k by $k e$. Thus we have the following.

Theorem 4.1. Let R be a commutative ring with unity e.
(a) Each vector in $Y_{n 1}\left(V_{n 1}\right)$ is an eigenvector of U_{n} corresponding to the eigenvalue e.
(b) Each vector in $Y_{n 2}\left(V_{n 2}\right)$ is an eigenvector of U_{n} corresponding to the eigenvalue $-e$.
(c) Each vector in $W_{n 1}$ is an eigenvector of U_{n}^{T} corresponding to the eigenvalue e.
(d) Each vector in $W_{n 2}$ is an eigenvector of U_{n}^{T} corresponding to the eigenvalue $-e$.

There are difficulties in attempting such an extension of our characterization of U_{n}. For example, Lemma 3.1 cannot be extended to general commutative rings with unity. To see this, let $k \geqslant 2$ be an integer, and let $m=k(k+1)$. Over the ring \mathbb{Z}_{m} of integers modulo m, the matrix

$$
X=\left[\begin{array}{cc}
1 & k+1 \\
k & m-1
\end{array}\right]
$$

is involutory with $X+\left(K_{2}^{\mathrm{T}} X-X\right) K_{2}$ symmetric. However, it is not difficult to obtain the following extension of Theorem 3.6.

Theorem 4.2. Let D be an integral domain, and let X be a matrix over D of order $n \geqslant 4$. Then $X= \pm U_{n}$ if and only if $X+\left(K_{n}^{\mathrm{T}} X-X\right) K_{n}$ is symmetric and each leading principal submatrix of X is involutory.

Acknowledgement

The authors wish to thank Dr. Reza Adhami, Professor and Chair of the Department of Electrical and Computer Engineering of the University of Alabama in Huntsville, for his support.

References

[1] R. Brawer, M. Pirovino, The linear algebra of the Pascal matrix, Linear Algebra Appl. 174 (1992) 13-23.
[2] W. Klein, Finite Systemtheorie, B.G. Teubner, Stuttgart, 1976
[3] J. Riordan, Combinatorial Identities, John Wiley \& Sons, New York, 1968.

[^0]: * Corresponding author.

 E-mail address: gibson@math.uah.edu (P.M. Gibson).

