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THEOREMS ON GENOCCHI POLYNOMIALS OF HIGHER ORDER
ARISING FROM GENOCCHI BASIS

Serkan Araci, Erdoğan Şen and Mehmet Acikgoz

Abstract. Recently, Kim et al. [8] constructed a new method to obtain interesting
identities related to Euler polynomials of higher order arising from Euler basis.
In the present paper, we study to Genocchi polynomials of higher order arising
from Genocchi basis by using the method of Kim et al. We also derive many
interesting properties related to Genocchi polynomials of higher order.

1. INTRODUCTION

In the complex plane, the Genocchi polynomials are defined by the following con-
dition: ∞∑

n=0

Gn (x)
tn

n!
= etG(x) =

2t

et + 1
ext, (|t| < π)

with the usual convention of replacing (G (x))n := Gn (x), is used (see [3, 6, 10, 12,
13, 14, 17]).

As is well known, the Genocchi polynomials of order k are defined via the gener-
ating function to be

(1.1)
(

2t

et + 1

)k

ext = etG(k)(x) =
∞∑

n=0

G(k)
n (x)

tn

n!
(k ∈ Z+ = N ∪ {0}),

with the usual convention about replacing (G(k)(x))n by G
(k)
n (x) (see [14, 17]).

In the special case, x = 0, G
(k)
n (0) := G

(k)
n are called the Genocchi numbers of

order k.
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By (1.1), we easily get

(1.2)
G

(k)
n (x) =

n∑
l=0

(
n
l

)
G

(k)
l xn−l =

n∑
l=0

(
n
l

)
G

(k)
n−lx

l

=
∑

n=n1+···+nr

(
n

n1, · · · , nr

)
Gn1Gn2 · · ·Gnr−1x

nr .

From (1.1), we have
G(0)

n (x) = xn.

By (1.1), it is not difficult to show that

dG
(k)
n (x)
dx

= nG
(k)
n−1(x) and G(k)

n (x + 1) + G(k)
n (x) = 2nG

(k−1)
n−1 (x), (see [14, 17]) .

We now define two linear operators Λ and D on the space of real-valued differen-
tiable functions as follows: for n ∈ N

(1.3) Λfn(x) =
fn(x + 1) + fn(x)

n
and Dfn(x) =

dfn(x)
dx

.

We note that ΛD = DΛ. By (1.3), we have

Λ2fn (x) = Λ (Λfn (x)) =
1
n2

2∑
l=0

(
2
l

)
fn (x + l) .

Continuing this process, we get

Λkfn (x) =
1
nk

k∑
l=0

(
k

l

)
fn (x + l) .

Therefore, we acquire the following Lemma.

Lemma 1. Let fn be real valued function and k ∈ N, then we have

Λkf (x) =
1
nk

k∑
l=0

(
k

l

)
f (x + l) .

Obviously,

(1.4) Λkf (0) =
1
nk

k∑
l=0

(
k

l

)
f (l) .
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Let Tn = {qn(x) ∈ Q[x]| deg qn(x) ≤ n} be the (n + 1)-dimensional vec-
tor space over Q. Probably, {1, x, · · · , xn} is the most natural basis for Tn. But
{G(k)

k , G
(k)
k+1, · · · , G

(k)
n+k} is also a good basis for the space Tn for our objective of

arithmetical and combinatorial applications of the Genocchi polynomials of higher or-
der.

If qn(x) ∈ Tn, then qn(x) can be expressed by

qn(x) = bkG
(k)
k (x) + · · ·+ bn+kG

(k)
n+k(x) =

n+k∑
l=k

blG
(k)
l (x) .

In the present paper, we develop methods for computing bl from the information of
qn(x) and apply those results to arithmetically and combinatorially interesting identities
involving G

(k)
k , · · · , G

(k)
n+k .

2. SOME IDENTITIES ON THE GENOCCHI POLYNOMIALS OF HIGHER ORDER

By (1.3), we have

(2.1) ΛG(k)
n (x) =

G
(k)
n (x + 1) + G

(k)
n (x)

n
= 2G

(k−1)
n−1 (x) ,

and

(2.2) DG(k)
n (x) = nG

(k)
n−1(x) .

Let us suppose that qn(x) ∈ Tn. Then qn(x) can be generated by G
(k)
k (x), G(k)

k+1(x),

· · · , G
(k)
n+k(x) as follows:

(2.3) qn(x) =
n+k∑
l=k

blG
(k)
l (x).

Thus, by (2.3), we get

Λqn(x) =
n+k∑
l=k

blΛG
(k)
l (x) = 2

n+k∑
l=k

blG
(k−1)
l−1 (x) ,

and

Λ2qn(x) = 2
n+k∑
l=k

blΛG
(k−1)
l−1 (x) = 22

n+k∑
l=k

blG
(k−2)
l−2 (x) .

Continuing this process, we have
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(2.4) Λkqn(x) = 2k
n+k∑
l=k

blG
(0)
l−k(x) = 2k

n+k∑
l=k

blx
l−k .

Let us apply the operator Dj on (2.4). Then

(2.5)

DjΛkqn(x) = 2k
n+k∑

l=k+j

bl

j−1∏
a=0

(l − k − a) xl−k−j

= 2k
n+k∑

l=k+j

bl
(l − k)!

(l − k − j)!
xl−k−j

= 2k
n+k∑

l=k+j

blj!
(

l − k
j

)
xl−k−j .

Let us take x = 0 on (2.5). Then we get

(2.6) DjΛkqn(0) = 2kbk+jj! .

From (1.4) and (2.6), we have

bk+j =
1

2kj!
DjΛkqn(0) =

1
2kj!

ΛkDjqn(0)(2.7)

=
1

2kj!nk

k∑
m=0

(
k
m

)
Djqn(m).

Therefore, by (2.3) and (2.7), we procure the following theorem.

Theorem 1. For k, n ∈ Z+ and qn (x) ∈ Tn, then we have

qn(x) =
1

(2n)k

n+k∑
l=k

(
1

(l − k)!

k∑
m=0

(
k
m

)
Dl−kqn(m)

)
G

(k)
l (x).

Let us take qn (x) = xn ∈ Tn. Then we readily derive that Dkxn = n!
(n−k)!x

n−k .

Thus, by Theorem 1, we get

xn =
1

(2n)k

n+k∑
l=k

(
1

(l − k)!

k∑
m=0

(
k

m

)
n!

(n − l + k)!
mn−l+k

)
G

(k)
l (x)(2.8)

=
1

(2n)k

n+k∑
l=k

k∑
m=0

(
k

m

)(
n

l − k

)
mn−l+kG

(k)
l (x).

Therefore, by (2.8), we get the following corollary.
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Corollary 1. For k, j, n ∈ Z+, then we have

xn =
1

(2n)k

n+k∑
l=k

k∑
m=0

(
k
m

)(
n

l − k

)
mn−l+kG

(k)
l (x).

In [6, 18] and [20], Bernoulli polynomials of higher order are defined by the rule:
∞∑

n=0

B(k)
n (x)

tn

n!
=
(

t

et − 1

)k

ext, (|t| < 2π) .

Let qn (x) = B
(k)
n (x) ∈ Tn. Also, it is well known in [6] that

(2.9) Dl−kB(k)
n (x) =

n!
(n − l + k)!

B
(k)
n−l+k (x) .

By Theorem 1 and (2.9), we get

(2.10) B(k)
n (x) =

1

(2n)k

n+k∑
l=k

(
k∑

m=0

(
k
m

)(
n

l − k

)
B

(k)
n−l+k (m)

)
G

(k)
l (x).

Therefore, by (2.10), we discover the following theorem.

Theorem 2. For k, n ∈ Z+, then we have

B(k)
n (x) =

1

(2n)k

n+k∑
l=k

(
k∑

m=0

(
k
m

)(
n

l − k

)
B

(k)
n−l+k (m)

)
G

(k)
l (x).

In [5, 8, 9] and [14], it is well known that(
2

et + 1

)k

ext =
∞∑

n=0

E(k)
n (x)

tn

n!
, (|t| < π)

where E
(k)
n (x) are called Euler polynomials of higher order.

Let us consider qn (x) = E
(k)
n (x) ∈ Tn. Then we see that

(2.11) Dl−kE(k)
n (x) =

n!
(n − l + k)!

E
(k)
n−l+k (x) .

On account of Theorem 1 and (2.11), we get the following theorem.

Theorem 3. For k, n ∈ Z+, then we have

E(k)
n (x) =

1

(2n)k

n+k∑
l=k

(
k∑

m=0

(
k

m

)(
n

l − k

)
E

(k)
n−l+k (m)

)
G

(k)
l (x).
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Hansen [19] derived the following convolution formula:

m∑
k=0

(
m

k

)
Bk (x) Bm−k (y) = (1 − m)Bm (x + y) + (x + y − 1)mBm−1 (x + y) .

We want to note that the special case x = y = 0 of the last identity:

m−2∑
k=2

(
m

k

)
BkBm−k = − (m + 1)Bm

is originally constructed by Euler and Ramanujan (cf. [18]).
Let us now consider the following expression for a fixed y

(2.12) qn (x) =
n∑

k=0

(
n

k

)
Bk (x)Bn−k (y) ∈ Tn.

Therefore, we derive the following equality:

Djqn (x) = (1 − n)
n!

(n − j)!
Bn−j (x + y)(2.13)

+ (x + y − 1)
n!

(n − j − 1)!
Bn−j−1 (x + y) + j

n!
(n − j)!

Bn−j (x + y) .

From Theorem 1, (2.12) and (2.13), we obtain the following theorem.

Theorem 4. For k, n ∈ Z+ and a fixed y, then we have

n∑
k=0

(
n

k

)
Bk (x) Bn−k (y)

=
1

(2n)k

n+k∑
l=k

k∑
m=0

(
k
m

)
{(1 − n)

(
n

l − k

)
Bn−l+k (m + y)

+n (m + y − 1)
(

n − 1
l − k

)
Bn−l+k−1 (m + y)

+ (l − k)
(

n

l − k

)
Bn−l+k (m + y)}G

(k)
l (x).

For λ (�= 1) ∈ C, the Frobenius-Euler polynomials of order k are also known by
[1, 2, 15] and [21]

(2.14)
1 − λ

et − λ
· · · 1 − λ

et − λ︸ ︷︷ ︸
k-times

ext =
(

1 − λ

et − λ

)k

ext =
∞∑

n=0

H (k)
n (x | λ)

tn

n!
.
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Let qn (x) = H
(k)
n (x | λ) ∈ Tn. We readily derive that

(2.15) Dl−kH (k)
n (x | λ) =

n!
(n − l + k)!

H
(k)
n−l+k (x | λ) .

Therefore, by Theorem 1, (2.14) and (2.15), then we get the following theorem.

Theorem 5. The following identity holds true:

H (k)
n (x | λ) =

1

(2n)k

n+k∑
l=k

k∑
m=0

(
k

m

)(
n

l − k

)
H

(k)
n−l+k (x | λ) G

(k)
l (x).

Dilcher [18] derived the following both interesting and fascinating convolution
formula:

n∑
k=0

(
n

k

)
Ek (x) En−k (y) = 2 (1 − x − y)En (x + y) + 2En+1 (x + y) .

Thus, we easily see that
∑n

k=0

(n
k

)
Ek (x)En−k (y) ∈ Tn. So, we consider for a

fixed y

(2.16) qn (x) =
n∑

k=0

(
n

k

)
Ek (x) En−k (y) .

It is not difficult to see the following:

Djqn (x) = 2{ n!
(n − j)!

(1 − x − y)En−j (x + y) − j
n!

(n − j + 1)!

×En−j+1 (x + y) +
(n + 1)!

(n + 1− j)!
En+1−j (x + y)}.

As a result of the last identity and Theorem 1, the following theorem can be stated.

Theorem 6. For a fixed y, then we have

n∑
k=0

(
n

k

)
Ek (x)En−k (y)

=
2

(2n)k

n+k∑
l=k

k∑
m=0

(
k

m

)
{
(

n

l − k

)
En−l+k (m + y)

− l + k

n + 1

(
n + 1
l − k

)
En−l+k+1 (m + y) +

(
n + 1
l − k

)
En+1−l+k (m + y)}G(k)

l (x).
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In the complex plane, the Hermite polynomials, named after Charles Hermite, are
given by the exponential generating function:

(2.17)
∞∑

n=0

Hn (x)
tn

n!
= e2tx−t2 .

One can also derive the generating function of Hermite polynomials by using
Cauchy’s integral formula as

(2.18) Hn (x) = (−1)n ex2 dn

dxn
e−x2

= (−1)n ex2 n!
2πi

∫
C

ez2

(z − x)n+1 dz,

where C is a loop which starts at −∞, encircles the origin once in the positive direction,
and the returns −∞ (see [7]).

Let qn (x) = Hn (x) ∈ Tn. Thus, from (2.17), we have

(2.19) Dkqn (x) = 2k n!
(n − k)!

Hn−k (x) .

Therefore, by Theorem 1, (2.18) and (2.19), we arrive at the following theorem.

Theorem 7. The following identity holds true:

Hn (x) = (−1)n ex2 n!
2πi

∫
C

ez2

(z − x)n+1 dz

=
1

(4n)k

n+k∑
l=k

2l

(
k∑

m=0

(
k
m

)(
n

l − k

)
Hn−l+k (m)

)
G

(k)
l (x),

where C is a loop which starts at −∞, encircles the origin once in the positive
direction, and the returns −∞.

Remark 1. By using Theorem 1, we can discover many interesting identities related
to special polynomials in terms of Genocchi polynomials of higher order.
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14. S. Araci, M. Acikgoz and E. Şen, A note on the p-adic interpolation function for multiple
Generalized Genocchi numbers, Turkish Journal of Analysis and Number Theory, 1(1)
(2013), 17-22. doi: 10.12691/tjant-1-1-5.

15. S. Araci and M. Acikgoz, A note on the Frobenius-Euler numbers and polynomials
associated with Bernstein polynomials, Adv. Stud. in Contemp. Math., 22(3) (2012),
399-406.

16. M. Acikgoz and Y. Simsek, On multiple interpolation function of the Nörlund-type q-
Euler polynomials, Abst. Appl. Anal. 2009 (2009), Article ID 382574, 14 pages.

17. I. N. Cangul, V. Kurt, H. Ozden and Y. Simsek, On the higher-order w-q-Genocchi
numbers, Adv. Stud. Contemp. Math., 19(1) (2009), 39-57.
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