ON THE q-GENOCCHI NUMBERS AND POLYNOMIALS WITH WEIGHT ZERO AND THEIR APPLICATIONS

Serkan Araci ${ }^{1}$, Mehmet Acikgoz ${ }^{2}$ and Feng Qi ${ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Science and Arts University of Gaziantep, 27310 Gaziantep, Turkey
e-mail: mtsrkn@hotmail.com
${ }^{2}$ Department of Mathematics, Faculty of Science and Arts University of Gaziantep, 27310 Gaziantep, Turkey
e-mail: acikgoz@gantep.edu.tr
${ }^{3}$ Department of Mathematics, School of Science, Tianjin Polytechnic University Tianjin City, 300387, China;
School of Mathematics and Informatics, Henan Polytechnic University Jiaozuo City, Henan Province, 454010, China
e-mail: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com

Abstract

In the paper, the authors discuss properties of the q-Genocchi numbers and polynomials with weight zero. They discover some interesting relations via the p-adic q integral on \mathbb{Z}_{p} and familiar basis Bernstein polynomials and show that the p-adic log gamma functions are associated with the q-Genocchi numbers and polynomials with weight zero.

1. Preliminaries

Let p be an odd prime number. Denote the ring of the p-adic integers by \mathbb{Z}_{p}, the field of rational numbers by \mathbb{Q}, the field of the p-adic rational numbers by \mathbb{Q}_{p}, and the completion of algebraic closure of \mathbb{Q}_{p} by \mathbb{C}_{p}, respectively. Let \mathbb{N} be the set of positive integers and $\mathbb{N}^{*}=\{0\} \cup \mathbb{N}$ the set of all non-negative integers. Let $|\cdot|_{p}$ be the p-adic norm on \mathbb{Q} with $|p|_{p}=p^{-1}$.

When one talks of a q-extension, q can be variously considered as an indeterminate, a complex number $q \in \mathbb{C}$, or a p-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$, one normally assumes $|q|<1$. If $q \in \mathbb{C}_{p}$, one normally assumes $|1-q|_{p}<1$.

[^0]We use the notation $[x]_{q}=\frac{1-q^{x}}{1-q}$. Hence $\lim _{q \rightarrow 1}[x]_{q}=x$ for any $x \in \mathbb{C}$ in the complex case and any x with $|x|_{p} \leq 1$ in the present p-adic case. This is the hallmark of a q-analog: The limit as $q \rightarrow 1$ recovers the classical object.

A function f is said to be uniformly differentiable at a point $a \in \mathbb{Z}_{p}$ if the divided difference

$$
F_{f}(x, y)=\frac{f(x)-f(y)}{x-y}
$$

converges to $f^{\prime}(a)$ as $(x, y) \rightarrow(a, a)$. The class of all the uniformly differentiable functions is denoted by $U D\left(\mathbb{Z}_{p}\right)$.

For $f \in U D\left(\mathbb{Z}_{p}\right)$, the p-adic q-analogue of Riemann sum for f is defined by

$$
\begin{equation*}
\frac{1}{\left[p^{n}\right]_{q}} \sum_{0 \leq \xi<p^{n}} f(\xi) q^{\xi}=\sum_{0 \leq \xi<p^{n}} f(\xi) \mu_{q}\left(\xi+p^{n} \mathbb{Z}_{p}\right) \tag{1.1}
\end{equation*}
$$

in $[7,9]$, where $n \in \mathbb{N}$. The integral of f on \mathbb{Z}_{p} is defined as the limit of (1.1) as n tends to ∞, if it exists, and represented by

$$
\begin{equation*}
I_{q}(f)=\int_{\mathbb{Z}_{p}} f(\xi) \mathrm{d} \mu_{q}(\xi) . \tag{1.2}
\end{equation*}
$$

The bosonic integral and the fermionic p-adic integral on \mathbb{Z}_{p} are defined respectively by

$$
\begin{equation*}
I_{1}(f)=\lim _{q \rightarrow 1} I_{q}(f) \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{-q}(f)=\lim _{q \rightarrow-q} I_{q}(f) . \tag{1.4}
\end{equation*}
$$

For a prime p and a positive integer d with $(p, d)=1$, set

$$
\begin{gathered}
X=X_{d}=\lim _{\hbar} \mathbb{Z} / d p^{n} \mathbb{Z}, \quad X_{1}=\mathbb{Z}_{p}, \\
X^{*}=\bigcup_{\substack{(a, p)=1 \\
0<a<d p}} a+d p \mathbb{Z}_{p},
\end{gathered}
$$

and

$$
a+d p^{n} \mathbb{Z}_{p}=\left\{x \in X \mid x \equiv a \quad \bmod d p^{n}\right\},
$$

where $a \in \mathbb{Z}$ satisfies $0 \leq a<d p^{n}$ and $n \in \mathbb{N}$.
In this paper, we will discuss properties of the q-Genocchi numbers and polynomials with weight zero. Via the p-adic q-integral on \mathbb{Z}_{p} and familiar basis Bernstein polynomials, we discover some interesting relations and show that the p-adic log gamma functions are associated with the q-Genocchi numbers and polynomials with weight zero.

2. Main results

Now we are in a position to state our main results.

Theorem 2.1. For $n \in \mathbb{N}$, we have

$$
\begin{equation*}
\frac{\widetilde{G}_{n+1, q}(x)}{n+1}=H_{n}\left(-q^{-1}, x\right) . \tag{2.1}
\end{equation*}
$$

Proof. In [2, 3], Arací, Acikgoz, and Seo considered the q-Genocchi polynomials with weight α in the form

$$
\begin{equation*}
\frac{\widetilde{G}_{n+1, q}^{(\alpha)}(x)}{n+1}=\int_{\mathbb{Z}_{p}}[x+\xi]_{q^{\alpha}}^{n} \mathrm{~d} \mu_{-q}(\xi), \tag{2.2}
\end{equation*}
$$

where $\widetilde{G}_{n+1, q}^{(\alpha)}=\widetilde{G}_{n+1, q}^{(\alpha)}(0)$ is called the q-Genocchi numbers with weight α. Taking $\alpha=0$ in (2.2), we easily see that

$$
\begin{equation*}
\frac{\widetilde{G}_{n+1, q}}{n+1} \triangleq \frac{\widetilde{G}_{n+1, q}^{(0)}}{n+1}=\int_{\mathbb{Z}_{p}} \xi^{n} \mathrm{~d} \mu_{-q}(\xi), \tag{2.3}
\end{equation*}
$$

where $\widetilde{G}_{n, q}$ are called the q-Genocchi numbers and polynomials with weight 0 . From (2.3), it is simple to see

$$
\begin{equation*}
\sum_{n=0}^{\infty} \widetilde{G}_{n, q} \frac{t^{n}}{n!}=t \int_{\mathbb{Z}_{p}} e^{\xi t} \mathrm{~d} \mu_{-q}(\xi) . \tag{2.4}
\end{equation*}
$$

By (1.4), we have

$$
\begin{equation*}
q^{n} I_{-q}\left(f_{n}\right)+(-1)^{n-1} I_{-q}(f)=[2]_{q} \sum_{0 \leq \ell<n} q^{\ell}(-1)^{n-1-\ell} f(\ell) \tag{2.5}
\end{equation*}
$$

where $f_{n}(x)=f(x+n)$ and $n \in \mathbb{N}($ see, $[6,8,10])$. Taking $n=1$ in (2.5) leads to the well-known equality

$$
\begin{equation*}
q I_{-q}\left(f_{1}\right)+I_{-q}(f)=[2]_{q} f(0) \tag{2.6}
\end{equation*}
$$

When setting $f(x)=e^{x t}$ in (2.6), we find

$$
\begin{equation*}
\sum_{n=0}^{\infty} \widetilde{G}_{n, q} \frac{t^{n}}{n!}=\frac{[2]_{q} t}{q e^{t}+1} . \tag{2.7}
\end{equation*}
$$

By (2.7), we obtain the q-Genocchi polynomials with weight 0 as follows

$$
\begin{equation*}
\sum_{n=0}^{\infty} \widetilde{G}_{n, q}(x) \frac{t^{n}}{n!}=\frac{[2]_{q} t}{q e^{t}+1} e^{x t} . \tag{2.8}
\end{equation*}
$$

By (2.8), we see that

$$
\sum_{n \geq 0} \widetilde{G}_{n, q}(x) \frac{t^{n}}{n!}=t \frac{1-\left(-q^{-1}\right)}{e^{t}-\left(-q^{-1}\right)} e^{x t}=t \sum_{n \geq 0} H_{n}\left(-q^{-1}, x\right) \frac{t^{n}}{n!},
$$

where $H_{n}\left(-q^{-1}, x\right)$ are the n-th Frobenius-Euler polynomials defined by

$$
\sum_{n=0}^{\infty} H_{n}(\lambda, x) \frac{t^{n}}{n!}=\frac{1-\lambda}{e^{t}-\lambda}, \quad \lambda \in \mathbb{C} \backslash\{1\}
$$

Equating coefficients of t^{n} on both sides of the above equality leads to the identity (2.1).

Theorem 2.2. For $n \in \mathbb{N}$, the identity

$$
\begin{equation*}
q H_{n}\left(-q^{-1}, x+1\right)+H_{n}\left(-q^{-1}, x\right)=[2]_{q} x^{n} \tag{2.9}
\end{equation*}
$$

is valid.
Proof. By (2.6), we discover that

$$
\begin{aligned}
{[2]_{q} \sum_{n=0}^{\infty} x^{n} \frac{t^{n}}{n!} } & =q \int_{\mathbb{Z}_{p}} e^{(x+\xi+1) t} \mathrm{~d} \mu_{-q}(\xi)+\int_{\mathbb{Z}_{p}} e^{(x+\xi) t} \mathrm{~d} \mu_{-q}(\xi) \\
& =\sum_{n=0}^{\infty}\left[q \int_{\mathbb{Z}_{p}}(x+\xi+1)^{n} \mathrm{~d} \mu_{-q}(\xi)+\int_{\mathbb{Z}_{p}}(x+\xi)^{n} \mathrm{~d} \mu_{-q}(\xi)\right] \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left[q H_{n}\left(-q^{-1}, x+1\right)+H_{n}\left(-q^{-1}, x\right)\right] \frac{t^{n}}{n!}
\end{aligned}
$$

Equating coefficients of $\frac{t^{n}}{n!}$ on both sides of the above equation leads to the identity (2.9).

Theorem 2.3. The identities

$$
\begin{equation*}
G_{n}(x+1)+G_{n}(x)=2 n x^{n-1}, \quad n \geq 1 \tag{2.10}
\end{equation*}
$$

and

$$
q \widetilde{G}_{n, q}(1)+\widetilde{G}_{n, q}= \begin{cases}{[2]_{q},} & n=1 \tag{2.11}\\ 0, & n \neq 1\end{cases}
$$

are true, where $G_{n}(x)$ are called the Genocchi polynomials.
Proof. These follow from respectively letting $q=1$ and $x=0$ into the identity (2.9).

Theorem 2.4. The following identity holds

$$
\begin{equation*}
\widetilde{G}_{n, q^{-1}}(1-x)=(-1)^{n+1} \widetilde{G}_{n, q}(x) \tag{2.12}
\end{equation*}
$$

Proof. When we substitute x by $1-x$ and q by q^{-1} in (2.8), it follows that

$$
\begin{aligned}
\sum_{n=0}^{\infty} \widetilde{G}_{n, q^{-1}}(1-x) \frac{t^{n}}{n!} & =t \frac{1+q^{-1}}{q^{-1} e^{t}+1} e^{(1-x) t}=\frac{1+q}{e^{t}+q} e^{t} e^{x t} \\
& =-\frac{[2]_{q}(-t)}{q e^{-t}+1} e^{(-t) x}=\sum_{n=0}^{\infty}(-1)^{n+1} \widetilde{G}_{n, q}(x) \frac{t^{n}}{n!} .
\end{aligned}
$$

From this, we procure the equality (2.12), the symmetric property of this type polynomials.

Theorem 2.5. The identity

$$
\begin{equation*}
\widetilde{G}_{n, q}(x)=\sum_{k=0}^{n}\binom{n}{k} \widetilde{G}_{k, q} x^{n-k} \tag{2.13}
\end{equation*}
$$

is true.
Proof. By using (2.2) for $\alpha=0$ and the binomial theorem, we readily obtain that

$$
\begin{aligned}
\frac{\widetilde{G}_{n+1, q}(x)}{n+1} & =\int_{\mathbb{Z}_{p}}(x+\xi)^{n} \mathrm{~d} \mu_{-q}(\xi) \\
& =\sum_{k=0}^{n}\binom{n}{k}\left[\int_{\mathbb{Z}_{p}} \xi^{k} \mathrm{~d} \mu_{-q}(\xi)\right] x^{n-k}=\sum_{k=0}^{n}\binom{n}{k} \frac{\widetilde{G}_{k+1, q}}{k+1} x^{n-k} .
\end{aligned}
$$

Further using

$$
\frac{n+1}{k+1}\binom{n}{k}=\binom{n+1}{k+1}
$$

we obtain

$$
\widetilde{G}_{n+1, q}(x)=\sum_{k=0}^{n}\binom{n+1}{k+1} \widetilde{G}_{k+1, q} x^{n-k}=\sum_{k=1}^{n+1}\binom{n+1}{k} \widetilde{G}_{k, q} x^{n+1-k} .
$$

Thus, the equality (2.13) follows.
Proposition 2.1. The identities

$$
\widetilde{G}_{0, q}=0 \quad \text { and } \quad q\left(\widetilde{G}_{q}+1\right)^{n}+\widetilde{G}_{n, q}= \begin{cases}{[2]_{q},} & n=1 \tag{2.14}\\ 0, & n \neq 1\end{cases}
$$

are true, where the usual convention of replacing $\left(\widetilde{G}_{q}\right)^{n}$ by $\widetilde{G}_{n, q}$ is used.
Proof. These can be deduced from combining (2.11) with (2.13).

Proposition 2.2. For $n>1$,

$$
\begin{equation*}
\widetilde{G}_{n+1, q}(2)=\frac{(n+1)}{q}[2]_{q}+\frac{1}{q^{2}} \widetilde{G}_{n+1, q} . \tag{2.15}
\end{equation*}
$$

Proof. From (2.13), it follows that

$$
\begin{aligned}
q^{2} \widetilde{G}_{n+1, q}(2) & =q^{2}\left(\widetilde{G}_{q}+1+1\right)^{n+1}=q^{2} \sum_{k=0}^{n+1}\binom{n+1}{k}\left(\widetilde{G}_{q}+1\right)^{k} \\
& =(n+1) q^{2}\left(\widetilde{G}_{q}+1\right)+q \sum_{k=2}^{n+1}\binom{n+1}{k} q\left(\widetilde{G}_{q}+1\right)^{k} \\
& =(n+1) q\left([2]_{q}-\widetilde{G}_{1, q}\right)-q \sum_{k=2}^{n+1}\binom{n+1}{k} \widetilde{G}_{k, q} \\
& =(n+1) q[2]_{q}-\left[q \sum_{k=2}^{n+1}\binom{n+1}{k} \widetilde{G}_{k, q}+(n+1) q \widetilde{G}_{1, q}\right] \\
& =(n+1) q[2]_{q}-q \sum_{k=0}^{n+1}\binom{n+1}{k} \widetilde{G}_{k, q} \\
& =(n+1) q[2]_{q}-q\left(\widetilde{G}_{q}+1\right)^{n+1}=(n+1) q[2]_{q}+\widetilde{G}_{n+1, q}
\end{aligned}
$$

for $n>1$. Therefore, we deduce (2.15).

Theorem 2.6. The identity

$$
\begin{equation*}
\int_{\mathbb{Z}_{p}}(1-\xi)^{n} \mathrm{~d} \mu_{-q}(\xi)=[2]_{q}+q^{2} \frac{\widetilde{G}_{n+1, q^{-1}}}{n+1} \tag{2.16}
\end{equation*}
$$

is valid.
Proof. By virtue of (1.4), (2.12), and (2.15), we find

$$
\begin{aligned}
& (n+1) \int_{\mathbb{Z}_{p}}(1-\xi)^{n} \mathrm{~d} \mu_{-q}(\xi)=(n+1)(-1)^{n} \int_{\mathbb{Z}_{p}}(\xi-1)^{n} \mathrm{~d} \mu_{-q}(\xi) \\
& =(-1)^{n} \widetilde{G}_{n+1, q}(-1)=\widetilde{G}_{n+1, q^{-1}}(2)=(n+1)[2]_{q}+q^{2} \widetilde{G}_{n+1, q^{-1}}
\end{aligned}
$$

As a result, we conclude Theorem 2.6.

Theorem 2.7. The following identity holds:

$$
\begin{aligned}
& \sum_{\ell=0}^{n-k}\binom{n-k}{\ell}(-1)^{\ell} \frac{\widetilde{G}_{\ell+k+1, q}}{\ell+k+1} \\
& = \begin{cases}{[2]_{q}+q^{2} \frac{\widetilde{G}_{n+1, q^{-1}}}{n+1},} & k=0, \\
\sum_{s=0}^{k}\binom{k}{s}(-1)^{k-s}\left([2]_{q}+q^{2} \frac{\widetilde{G}_{n-s+1, q^{-1}}}{n-s+1}\right), & k \neq 0 .\end{cases}
\end{aligned}
$$

Proof. Let $U D\left(\mathbb{Z}_{p}\right)$ be the space of continuous functions on \mathbb{Z}_{p}. For $f \in$ $U D\left(\mathbb{Z}_{p}\right)$, the p-adic analogue of Bernstein operator for f is defined by

$$
B_{n}(f, x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) B_{k, n}(x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k}
$$

where $n, k \in \mathbb{N}^{*}$ and the p-adic Bernstein polynomials of degree n is defined by

$$
\begin{equation*}
B_{k, n}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}, \quad x \in \mathbb{Z}_{p}, \tag{2.17}
\end{equation*}
$$

see $[4,11,12,13]$. Via the p-adic q-integral on \mathbb{Z}_{p} and Bernstein polynomials in (2.17), we can obtain that

$$
\begin{aligned}
I_{1} & =\int_{\mathbb{Z}_{p}} B_{k, n}(\xi) \mathrm{d} \mu_{-q}(\xi) \\
& =\binom{n}{k} \int_{\mathbb{Z}_{p}} \xi^{k}(1-\xi)^{n-k} \mathrm{~d} \mu_{-q}(\xi) \\
& =\binom{n}{k} \sum_{\ell=0}^{n-k}\binom{n-k}{\ell}(-1)^{\ell}\left[\int_{\mathbb{Z}_{p}} \xi^{\ell+k} \mathrm{~d} \mu_{-q}(\xi)\right] \\
& =\binom{n}{k} \sum_{\ell=0}^{n-k}\binom{n-k}{\ell}(-1)^{\ell} \frac{\widetilde{G}_{\ell+k+1, q}}{\ell+k+1} .
\end{aligned}
$$

On the other hand, by symmetric properties of Bernstein polynomials, we have

$$
\begin{aligned}
I_{2} & =\int_{\mathbb{Z}_{p}} B_{n-k, n}(1-\xi) \mathrm{d} \mu_{-q}(\xi) \\
& =\binom{n}{k} \sum_{s=0}^{k}\binom{k}{s}(-1)^{k-s} \int_{\mathbb{Z}_{p}}(1-\xi)^{n-s} \mathrm{~d} \mu_{-q}(x) \\
& =\binom{n}{k} \sum_{s=0}^{k}\binom{k}{s}(-1)^{k-s}\left([2]_{q}+q^{2} \frac{\widetilde{G}_{n-s+1, q^{-1}}}{n-s+1}\right) \\
& = \begin{cases}{[2]_{q}+q^{2} \frac{\widetilde{G}_{n+1, q^{-1}}}{n+1},} & k=0, \\
\binom{n}{k} \sum_{s=0}^{k}\binom{k}{s}(-1)^{k-s}\left([2]_{q}+q^{2} \frac{\widetilde{G}_{n-s+1, q^{-1}}}{n-s+1}\right), & k \neq 0 .\end{cases}
\end{aligned}
$$

Equating I_{1} and I_{2} yields Theorem 2.7.
Theorem 2.8. The identity

$$
\begin{align*}
& \sum_{\ell=0}^{n_{1}+\cdots+n_{m}-m k}\binom{n_{1}+\cdots+n_{m}-m k}{\ell}(-1)^{\ell} \frac{\widetilde{G}_{\ell+m k+1, q}}{\ell+m k+1} \\
& = \begin{cases}{[2]_{q}+q^{2} \frac{\widetilde{G}_{n_{1}+\cdots+n_{m}+1, q^{-1}}}{n_{1}+\cdots+n_{m}+1},} & k=0 \\
\sum_{\ell=0}^{m k}\binom{m k}{\ell}(-1)^{m k+\ell}\left([2]_{q}+q^{2} \frac{\widetilde{G}_{n_{1}+\cdots+n_{m}+\ell+1, q^{-1}}}{n_{1}+\cdots+n_{m}+\ell+1}\right), & k \neq 0\end{cases} \tag{2.18}
\end{align*}
$$

is true.
Proof. The p-adic q-integral on \mathbb{Z}_{p} of the product of several Bernstein polynomials can be calculated as

$$
\begin{aligned}
I_{3} & =\int_{\mathbb{Z}_{p}} \prod_{s=1}^{m} B_{k, n_{s}}(\xi) \mathrm{d} \mu_{-q}(\xi) \\
& =\prod_{s=1}^{m}\binom{n_{s}}{k} \int_{\mathbb{Z}_{p}} \xi^{m k}(1-\xi)^{n_{1}+\cdots+n_{m}-m k} \mathrm{~d} \mu_{-q}(\xi) \\
& =\prod_{s=1}^{m}\binom{n_{s}}{k} \sum_{\ell=0}^{n_{1}+\cdots+n_{m}-m k}\binom{n_{1}+\cdots+n_{m}-m k}{\ell}(-1)^{\ell}\left[\int_{\mathbb{Z}_{p}} \xi^{\ell+m k} \mathrm{~d} \mu_{-q}(\xi)\right] \\
& =\prod_{s=1}^{m}\binom{n_{s}}{k} \sum_{\ell=0}^{n_{1}+\cdots+n_{m}-m k}\binom{n_{1}+\cdots+n_{m}-m k}{\ell}(-1)^{\ell} \frac{\widetilde{G}_{\ell+m k+1, q}}{\ell+m k+1} .
\end{aligned}
$$

On the other hand, by symmetric properties of Bernstein polynomials and the equality (2.16), we have

$$
\begin{aligned}
I_{4} & =\int_{\mathbb{Z}_{p}} \prod_{s=1}^{m} B_{n_{s}-k, n_{s}}(1-\xi) \mathrm{d} \mu_{-q}(\xi) \\
& =\prod_{s=1}^{m}\binom{n_{s}}{k} \sum_{\ell=0}^{m k}\binom{m k}{\ell}(-1)^{m k-\ell} \int_{\mathbb{Z}_{p}}(1-\xi)^{n_{1}+\cdots+n_{m}-\ell} \mathrm{d} \mu_{-q}(\xi) \\
& =\prod_{s=1}^{m}\binom{n_{s}}{k} \sum_{\ell=0}^{m k}\binom{m k}{\ell}(-1)^{m k-\ell}\left([2]_{q}+q^{2} \frac{\widetilde{G}_{n_{1}+\cdots+n_{m}-\ell+1, q^{-1}}}{n_{1}+\cdots+n_{m}-\ell+1}\right) \\
& =\left\{\begin{array}{l}
{[2]_{q}+q^{2} \frac{\widetilde{G}_{n_{1}+\cdots+n_{m}+1, q^{-1}}}{n_{1}+\cdots+n_{m}+1},} \\
\prod_{s=1}^{m}\binom{n_{s}}{k} \sum_{\ell=0}^{m k}\binom{m k}{\ell}(-1)^{m k-\ell}\left([2]_{q}+q^{2} \frac{\widetilde{G}_{n_{1}+\cdots+n_{m}-\ell+1, q^{-1}}}{n_{1}+\cdots+n_{m}-\ell+1}\right), k \neq 0
\end{array}\right.
\end{aligned}
$$

Equating I_{3} and I_{4} results in an interesting identity (2.18) for the q-analogue of Genocchi polynomials with weight 0 .

3. An identity on p-Adic locally analytic functions

In this section, we consider Kim's p-adic q-log gamma functions related to the q-analogue of Genocchi polynomials.
Definition 3.1. $([5,7])$ For $x \in \mathbb{C}_{p} \backslash \mathbb{Z}_{p}$,

$$
(1+x) \log (1+x)=x+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} x^{n+1}
$$

Kim's p-adic locally analytic function on $x \in \mathbb{C}_{p} \backslash \mathbb{Z}_{p}$ can be defined as follows.

Definition 3.2. $([5,7])$ For $x \in \mathbb{C}_{p} \backslash \mathbb{Z}_{p}$,

$$
G_{p, q}(x)=\int_{\mathbb{Z}_{p}}[x+\xi]_{q}\left(\log [x+\xi]_{q}-1\right) \mathrm{d} \mu_{-q}(\xi)
$$

By considering Kim's p-adic q-log gamma function, we introduce the following p-adic locally analytic function

$$
\begin{equation*}
G_{p, 1}(x) \triangleq G_{p}(x)=\int_{\mathbb{Z}_{p}}(x+\xi)[\log (x+\xi)-1] \mathrm{d} \mu_{-q}(\xi) \tag{3.1}
\end{equation*}
$$

Theorem 3.1. For $x \in \mathbb{C}_{p} \backslash \mathbb{Z}_{p}$,

$$
\begin{equation*}
G_{p}(x)=\left(x+\frac{\widetilde{G}_{2, q}}{2}\right) \log x+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)(n+2)} \frac{\widetilde{G}_{n+2, q}}{x^{n}}-x \tag{3.2}
\end{equation*}
$$

Proof. Replacing x by $\frac{\xi}{x}$ in (3.1) leads to

$$
\begin{equation*}
(x+\xi)[\log (x+\xi)-1]=(x+\xi) \log x+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+1)} \frac{\xi^{n+1}}{x^{n}}-x \tag{3.3}
\end{equation*}
$$

From (3.1) and (3.3), we can establish an interesting formula (3.2).
Remark 3.1. This is a revised version of the preprint [1].
Acknowledgements. The authors appreciate the anonymous referee for his valuable suggestions to and helpful comments on the original version of this manuscript.

References

[1] S. Araci, M. Acikgoz and F. Qi, On the q-Genocchi numbers and polynomials with weight zero and their applications, Number Theory(math.NT); Cornell University Library, available online at http://arxiv.org/abs/1202.2643.
[2] S. Araci, M. Acikgoz and J.J. Seo, A note on the weighted q-Genocchi numbers and polynomials with their interpolation function, Honam Math. J., 34 (2012), 11-18.
[3] S. Araci, D. Erdal and J.J. Seo, A study on the Fermionic p-adic q-integral representation on \mathbb{Z}_{p} associated with weighted q-Bernstein and q-Genocchi polynomials, Abstr. Appl. Anal., 2011 (2011), Article ID 649248, 10 pages.
[4] S. Araci, J.J. Seo and D. Erdal, New construction weighted (h, q)-Genocchi numbers and polynomials related to Zeta type function, Discrete Dyn. Nat. Soc., 2011 (2011), Article ID 487490, 7 pages.
[5] T. Kim, A note on the q-analogue of p-adic log gamma function, Number Theory(math.NT); Cornell University Library, Available online at http://arxiv.org/abs/ 0710.4981.
[6] T. Kim, New approach to q-Euler polynomials of higher order, Russ. J. Math. Phys., 17(2) (2010), 218-225.
[7] T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory, 76(2) (1999), 320-329.
[8] T. Kim, q-Euler numbers and polynomials associated with p-adic q-integrals, J. Nonlinear Math. Phys., 14(1) (2007), 15-27.
[9] T. Kim, q-Volkenborn integration, Russ. J. Math. Phys., 9(3) (2002), 288-299.
[10] T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the Fermionic p-adic integral on \mathbb{Z}_{p}, Russ. J. Math. Phys., 16(4) (2009), 484-491.
[11] T. Kim and J. Choi, On the q-Euler numbers and polynomials with weight 0 , Abstr. Appl. Anal., 2012 (2012), Article ID 795304, 7 pages.
[12] T. Kim, J. Choi and Y.-H. Kim, Some identities on the q-Bernoulli numbers and polynomials with weight 0 , Abstr. Appl. Anal., 2011 (2011), Article ID 361484, 8 pages.
[13] D.S. Kim, T. Kim, S.-H. Lee, D.-V. Dolgy and S.-H. Rim, Some new identities on the Bernoulli numbers and polynomials, Discrete Dyn. Nat. Soc., 2011 (2011) Article ID 856132, 11 pages.

[^0]: ${ }^{0}$ Received October 6, 2012. Revised February 15, 2013.
 ${ }^{0} 2010$ Mathematics Subject Classification: 05A10, 11B65, 11B68, 11B73.
 ${ }^{0}$ Keywords: Genocchi number, Genocchi polynomial, q-Genocchi number, q-Genocchi polynomial, weight, application.

