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Abstract. In the paper, the authors discuss properties of the q-Genocchi numbers and

polynomials with weight zero. They discover some interesting relations via the p-adic q-

integral on Zp and familiar basis Bernstein polynomials and show that the p-adic log gamma

functions are associated with the q-Genocchi numbers and polynomials with weight zero.

1. Preliminaries

Let p be an odd prime number. Denote the ring of the p-adic integers by
Zp, the field of rational numbers by Q, the field of the p-adic rational numbers
by Qp, and the completion of algebraic closure of Qp by Cp, respectively. Let
N be the set of positive integers and N∗ = {0} ∪ N the set of all non-negative
integers. Let | · |p be the p-adic norm on Q with | p |p= p−1.

When one talks of a q-extension, q can be variously considered as an inde-
terminate, a complex number q ∈ C, or a p-adic number q ∈ Cp. If q ∈ C,
one normally assumes |q| < 1. If q ∈ Cp, one normally assumes |1 − q|p < 1.
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We use the notation [x]q = 1−qx
1−q . Hence limq→1[x]q = x for any x ∈ C in the

complex case and any x with |x|p ≤ 1 in the present p-adic case. This is the
hallmark of a q-analog: The limit as q → 1 recovers the classical object.

A function f is said to be uniformly differentiable at a point a ∈ Zp if the
divided difference

Ff (x, y) =
f(x)− f(y)

x− y
converges to f ′(a) as (x, y) → (a, a). The class of all the uniformly differen-
tiable functions is denoted by UD(Zp).

For f ∈ UD(Zp), the p-adic q-analogue of Riemann sum for f is defined by

1

[pn]q

∑
0≤ξ<pn

f(ξ)qξ =
∑

0≤ξ<pn
f(ξ)µq

(
ξ + pnZp

)
(1.1)

in [7, 9], where n ∈ N. The integral of f on Zp is defined as the limit of (1.1)
as n tends to ∞, if it exists, and represented by

Iq(f) =

∫
Zp
f(ξ) dµq(ξ). (1.2)

The bosonic integral and the fermionic p-adic integral on Zp are defined re-
spectively by

I1(f) = lim
q→1

Iq(f) (1.3)

and
I−q(f) = lim

q→−q
Iq(f). (1.4)

For a prime p and a positive integer d with (p, d) = 1, set

X = Xd = lim←−n
Z/dpnZ, X1 = Zp,

X∗ =
⋃

(a,p)=1
0<a<dp

a+ dpZp,

and
a+ dpnZp =

{
x ∈ X | x ≡ a mod dpn

}
,

where a ∈ Z satisfies 0 ≤ a < dpn and n ∈ N.
In this paper, we will discuss properties of the q-Genocchi numbers and

polynomials with weight zero. Via the p-adic q-integral on Zp and familiar
basis Bernstein polynomials, we discover some interesting relations and show
that the p-adic log gamma functions are associated with the q-Genocchi num-
bers and polynomials with weight zero.

2. Main results

Now we are in a position to state our main results.
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Theorem 2.1. For n ∈ N, we have

G̃n+1,q(x)

n+ 1
= Hn

(
−q−1, x

)
. (2.1)

Proof. In [2, 3], Araćı, Acikgoz, and Seo considered the q-Genocchi polynomi-
als with weight α in the form

G̃
(α)
n+1,q(x)

n+ 1
=

∫
Zp

[x+ ξ]nqα dµ−q(ξ), (2.2)

where G̃
(α)
n+1,q = G̃

(α)
n+1,q(0) is called the q-Genocchi numbers with weight α.

Taking α = 0 in (2.2), we easily see that

G̃n+1,q

n+ 1
,
G̃

(0)
n+1,q

n+ 1
=

∫
Zp
ξn dµ−q(ξ), (2.3)

where G̃n,q are called the q-Genocchi numbers and polynomials with weight
0. From (2.3), it is simple to see

∞∑
n=0

G̃n,q
tn

n!
= t

∫
Zp
eξt dµ−q(ξ). (2.4)

By (1.4), we have

qnI−q(fn) + (−1)n−1I−q(f) = [2]q
∑

0≤`<n
q`(−1)n−1−`f(`), (2.5)

where fn(x) = f(x+n) and n ∈ N(see, [6, 8, 10]). Taking n = 1 in (2.5) leads
to the well-known equality

qI−q(f1) + I−q(f) = [2]qf(0). (2.6)

When setting f(x) = ext in (2.6), we find

∞∑
n=0

G̃n,q
tn

n!
=

[2]qt

qet + 1
. (2.7)

By (2.7), we obtain the q-Genocchi polynomials with weight 0 as follows

∞∑
n=0

G̃n,q(x)
tn

n!
=

[2]qt

qet + 1
ext. (2.8)

By (2.8), we see that∑
n≥0

G̃n,q(x)
tn

n!
= t

1−
(
−q−1

)
et −

(
−q−1

)ext = t
∑
n≥0

Hn

(
−q−1, x

) tn
n!
,
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where Hn

(
−q−1, x

)
are the n-th Frobenius-Euler polynomials defined by

∞∑
n=0

Hn(λ, x)
tn

n!
=

1− λ
et − λ

, λ ∈ C \ {1}.

Equating coefficients of tn on both sides of the above equality leads to the
identity (2.1). �

Theorem 2.2. For n ∈ N, the identity

qHn

(
−q−1, x+ 1

)
+Hn

(
−q−1, x

)
= [2]qx

n (2.9)

is valid.

Proof. By (2.6), we discover that

[2]q

∞∑
n=0

xn
tn

n!
= q

∫
Zp
e(x+ξ+1)t dµ−q(ξ) +

∫
Zp
e(x+ξ)t dµ−q(ξ)

=
∞∑
n=0

[
q

∫
Zp

(x+ ξ + 1)n dµ−q(ξ) +

∫
Zp

(x+ ξ)n dµ−q(ξ)

]
tn

n!

=

∞∑
n=0

[
qHn

(
−q−1, x+ 1

)
+Hn

(
−q−1, x

)] tn
n!
.

Equating coefficients of tn

n! on both sides of the above equation leads to the
identity (2.9). �

Theorem 2.3. The identities

Gn(x+ 1) +Gn(x) = 2nxn−1, n ≥ 1 (2.10)

and

qG̃n,q(1) + G̃n,q =

{
[2]q, n = 1

0, n 6= 1
(2.11)

are true, where Gn(x) are called the Genocchi polynomials.

Proof. These follow from respectively letting q = 1 and x = 0 into the iden-
tity (2.9). �

Theorem 2.4. The following identity holds

G̃n,q−1(1− x) = (−1)n+1G̃n,q(x). (2.12)
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Proof. When we substitute x by 1− x and q by q−1 in (2.8), it follows that

∞∑
n=0

G̃n,q−1(1− x)
tn

n!
= t

1 + q−1

q−1et + 1
e(1−x)t =

1 + q

et + q
etext

= − [2]q(−t)
qe−t + 1

e(−t)x =
∞∑
n=0

(−1)n+1G̃n,q(x)
tn

n!
.

From this, we procure the equality (2.12), the symmetric property of this type
polynomials. �

Theorem 2.5. The identity

G̃n,q(x) =
n∑
k=0

(
n

k

)
G̃k,qx

n−k (2.13)

is true.

Proof. By using (2.2) for α = 0 and the binomial theorem, we readily obtain
that

G̃n+1,q(x)

n+ 1
=

∫
Zp

(x+ ξ)n dµ−q(ξ)

=

n∑
k=0

(
n

k

)[∫
Zp
ξk dµ−q(ξ)

]
xn−k =

n∑
k=0

(
n

k

)
G̃k+1,q

k + 1
xn−k.

Further using
n+ 1

k + 1

(
n

k

)
=

(
n+ 1

k + 1

)
,

we obtain

G̃n+1,q(x) =

n∑
k=0

(
n+ 1

k + 1

)
G̃k+1,qx

n−k =

n+1∑
k=1

(
n+ 1

k

)
G̃k,qx

n+1−k.

Thus, the equality (2.13) follows. �

Proposition 2.1. The identities

G̃0,q = 0 and q
(
G̃q + 1

)n
+ G̃n,q =

{
[2]q, n = 1

0, n 6= 1
(2.14)

are true, where the usual convention of replacing
(
G̃q
)n

by G̃n,q is used.

Proof. These can be deduced from combining (2.11) with (2.13). �
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Proposition 2.2. For n > 1,

G̃n+1,q(2) =
(n+ 1)

q
[2]q +

1

q2
G̃n+1,q. (2.15)

Proof. From (2.13), it follows that

q2G̃n+1,q(2) = q2
(
G̃q + 1 + 1

)n+1
= q2

n+1∑
k=0

(
n+ 1

k

)(
G̃q + 1

)k
= (n+ 1)q2

(
G̃q + 1

)
+ q

n+1∑
k=2

(
n+ 1

k

)
q
(
G̃q + 1

)k
= (n+ 1)q

(
[2]q − G̃1,q

)
− q

n+1∑
k=2

(
n+ 1

k

)
G̃k,q

= (n+ 1)q[2]q −

[
q
n+1∑
k=2

(
n+ 1

k

)
G̃k,q + (n+ 1)qG̃1,q

]

= (n+ 1)q[2]q − q
n+1∑
k=0

(
n+ 1

k

)
G̃k,q

= (n+ 1)q[2]q − q
(
G̃q + 1

)n+1
= (n+ 1)q[2]q + G̃n+1,q

for n > 1. Therefore, we deduce (2.15). �

Theorem 2.6. The identity∫
Zp

(1− ξ)n dµ−q(ξ) = [2]q + q2
G̃n+1,q−1

n+ 1
(2.16)

is valid.

Proof. By virtue of (1.4), (2.12), and (2.15), we find

(n+ 1)

∫
Zp

(1− ξ)n dµ−q(ξ) = (n+ 1)(−1)n
∫
Zp

(ξ − 1)n dµ−q(ξ)

= (−1)nG̃n+1,q(−1) = G̃n+1,q−1(2) = (n+ 1)[2]q + q2G̃n+1,q−1 .

As a result, we conclude Theorem 2.6. �
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Theorem 2.7. The following identity holds:

n−k∑
`=0

(
n− k
`

)
(−1)`

G̃`+k+1,q

`+ k + 1

=


[2]q + q2

G̃n+1,q−1

n+ 1
, k = 0,

k∑
s=0

(
k

s

)
(−1)k−s

(
[2]q + q2

G̃n−s+1,q−1

n− s+ 1

)
, k 6= 0.

Proof. Let UD(Zp) be the space of continuous functions on Zp. For f ∈
UD(Zp), the p-adic analogue of Bernstein operator for f is defined by

Bn(f, x) =
n∑
k=0

f

(
k

n

)
Bk,n(x) =

n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k,

where n, k ∈ N∗ and the p-adic Bernstein polynomials of degree n is defined
by

Bk,n(x) =

(
n

k

)
xk(1− x)n−k, x ∈ Zp, (2.17)

see [4, 11, 12, 13]. Via the p-adic q-integral on Zp and Bernstein polynomials
in (2.17), we can obtain that

I1 =

∫
Zp
Bk,n(ξ) dµ−q(ξ)

=

(
n

k

)∫
Zp
ξk(1− ξ)n−k dµ−q(ξ)

=

(
n

k

) n−k∑
`=0

(
n− k
`

)
(−1)`

[∫
Zp
ξ`+k dµ−q(ξ)

]

=

(
n

k

) n−k∑
`=0

(
n− k
`

)
(−1)`

G̃`+k+1,q

`+ k + 1
.

On the other hand, by symmetric properties of Bernstein polynomials, we have
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I2 =

∫
Zp
Bn−k,n(1− ξ) dµ−q(ξ)

=

(
n

k

) k∑
s=0

(
k

s

)
(−1)k−s

∫
Zp

(1− ξ)n−s dµ−q(x)

=

(
n

k

) k∑
s=0

(
k

s

)
(−1)k−s

(
[2]q + q2

G̃n−s+1,q−1

n− s+ 1

)

=


[2]q + q2

G̃n+1,q−1

n+ 1
, k = 0,(

n

k

) k∑
s=0

(
k

s

)
(−1)k−s

(
[2]q + q2

G̃n−s+1,q−1

n− s+ 1

)
, k 6= 0.

Equating I1 and I2 yields Theorem 2.7. �

Theorem 2.8. The identity

n1+···+nm−mk∑
`=0

(
n1 + · · ·+ nm −mk

`

)
(−1)`

G̃`+mk+1,q

`+mk + 1

=


[2]q + q2

G̃n1+···+nm+1,q−1

n1 + · · ·+ nm + 1
, k = 0

mk∑
`=0

(
mk

`

)
(−1)mk+`

(
[2]q + q2

G̃n1+···+nm+`+1,q−1

n1 + · · ·+ nm + `+ 1

)
, k 6= 0

(2.18)

is true.

Proof. The p-adic q-integral on Zp of the product of several Bernstein polyno-
mials can be calculated as

I3 =

∫
Zp

m∏
s=1

Bk,ns(ξ) dµ−q(ξ)

=
m∏
s=1

(
ns
k

)∫
Zp
ξmk(1− ξ)n1+···+nm−mk dµ−q(ξ)

=
m∏
s=1

(
ns
k

) n1+···+nm−mk∑
`=0

(
n1 + · · ·+ nm −mk

`

)
(−1)`

[∫
Zp
ξ`+mk dµ−q(ξ)

]

=

m∏
s=1

(
ns
k

) n1+···+nm−mk∑
`=0

(
n1 + · · ·+ nm −mk

`

)
(−1)`

G̃`+mk+1,q

`+mk + 1
.
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On the other hand, by symmetric properties of Bernstein polynomials and the
equality (2.16), we have

I4 =

∫
Zp

m∏
s=1

Bns−k,ns(1− ξ) dµ−q(ξ)

=
m∏
s=1

(
ns
k

) mk∑
`=0

(
mk

`

)
(−1)mk−`

∫
Zp

(1− ξ)n1+···+nm−` dµ−q(ξ)

=
m∏
s=1

(
ns
k

) mk∑
`=0

(
mk

`

)
(−1)mk−`

(
[2]q + q2

G̃n1+···+nm−`+1,q−1

n1 + · · ·+ nm − `+ 1

)

=


[2]q + q2

G̃n1+···+nm+1,q−1

n1 + · · ·+ nm + 1
, k = 0,

m∏
s=1

(
ns
k

) mk∑
`=0

(
mk

`

)
(−1)mk−`

(
[2]q + q2

G̃n1+···+nm−`+1,q−1

n1 + · · ·+ nm − `+ 1

)
, k 6= 0.

Equating I3 and I4 results in an interesting identity (2.18) for the q-analogue
of Genocchi polynomials with weight 0. �

3. An identity on p-adic locally analytic functions

In this section, we consider Kim’s p-adic q-log gamma functions related to
the q-analogue of Genocchi polynomials.

Definition 3.1. ([5, 7]) For x ∈ Cp \ Zp,

(1 + x) log(1 + x) = x+

∞∑
n=1

(−1)n+1

n(n+ 1)
xn+1.

Kim’s p-adic locally analytic function on x ∈ Cp \ Zp can be defined as
follows.

Definition 3.2. ([5, 7]) For x ∈ Cp \ Zp,

Gp,q(x) =

∫
Zp

[x+ ξ]q(log[x+ ξ]q − 1) dµ−q(ξ).

By considering Kim’s p-adic q-log gamma function, we introduce the fol-
lowing p-adic locally analytic function

Gp,1(x) , Gp(x) =

∫
Zp

(x+ ξ)[log(x+ ξ)− 1] dµ−q(ξ). (3.1)
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Theorem 3.1. For x ∈ Cp \ Zp,

Gp(x) =

(
x+

G̃2,q

2

)
log x+

∞∑
n=1

(−1)n+1

n(n+ 1)(n+ 2)

G̃n+2,q

xn
− x. (3.2)

Proof. Replacing x by ξ
x in (3.1) leads to

(x+ ξ)[log(x+ ξ)− 1] = (x+ ξ) log x+
∞∑
n=1

(−1)n+1

n(n+ 1)

ξn+1

xn
− x. (3.3)

From (3.1) and (3.3), we can establish an interesting formula (3.2). �

Remark 3.1. This is a revised version of the preprint [1].
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