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Abstract

Araaya, T. 2003: The Symmetric Meixner-Pollaczek Polynomials. Uppsala disser-
tations in Mathematics 27. 70 pp. Uppsala. ISBN 91-506-1681-1.

The Symmetric Meixner-Pollaczek polynomials are considered. We denote these

polynomials in this thesis by p
(λ)
n (x) instead of the standard notation p

(λ)
n (x/2, π/2),

where λ > 0. The limiting case of these sequences of polynomials p
(0)
n (x) =

limλ→0 p
(λ)
n (x), is obtained, and is shown to be an orthogonal sequence in the

strip, S = {z ∈ C : −1 ≤ �(z) ≤ 1}.

From the point of view of Umbral Calculus, this sequence has a special prop-
erty that makes it unique in the Symmetric Meixner-Pollaczek class of polynomi-
als: it is of convolution type. A convolution type sequence of polynomials has a
unique associated operator called a delta operator. Such an operator is found for

p
(0)
n (x), and its integral representation is developed. A convolution type sequence

of polynomials may have associated Sheffer sequences of polynomials. The set

of associated Sheffer sequences of the sequence p
(0)
n (x) is obtained, and is found

to be P = {{p(λ)
n (x)}∞n=0 : λ ∈ R}. The major properties of these sequences of

polynomials are studied.

The polynomials {p(λ)
n (x)}∞n=0, λ < 0, are not orthogonal polynomials on the

real line with respect to any positive real measure for failing to satisfy Favard’s
three term recurrence relation condition. For every λ ≤ 0, an associated non-

standard inner product is defined with respect to which p
(λ)
n (x) is orthogonal.

Finally, the connection and linearization problems for the Symmetric Meixner-
Pollaczek polynomials are solved. In solving the connection problem the convo-
lution property of the polynomials is exploited, which in turn helps to solve the
general linearization problem.
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This thesis consists of a summary and the following four papers:

I. The Meixner-Pollaczek Polynomials and a System of Orthogonal Polynomials
in a Strip (submitted).

II. Umbral Calculus and the Symmetric Meixner-Pollaczek Polynomials.

III. The Symmetric Meixner-Pollaczek Polynomials with real parameter.

IV. Linearization and Connection problems for the Symmetric Meixner-Pollaczek
Polynomials.



Contents

1. Introduction 5
2. A limiting case of the Symmetric Meixner-Pollaczek polynomials 7
3. Extending the parameter λ to the whole real line 8
4. Inner product for the extended symmetric Meixner-Pollaczek class 9
5. Linearization and connection problems for the Symmetric Meixner-

Pollaczek polynomials 10
Acknowledgements 11
References 12





1. Introduction

This thesis is mainly concerned about the Meixner-Pollaczek polynomials. These
are the polynomials first discovered by Meixner [23] and are known in the liter-
ature as the Meixner polynomials of the second kind (see Chihara [9]). These
polynomials were later studied by Pollaczek [25]. The polynomials are denoted by

p
(λ)
n (x, φ), and have a hypergeometric representation:

p(λ)
n (x, φ) =

(2λ)n

n!
einφ

2F1

(−n, λ + ix
2λ

∣∣∣∣ 1 − e−i2φ

)
, λ > 0, 0 < φ < π,

where

2F1

(
a, b
c

∣∣∣∣ x

)
:=

∞∑
k=0

(a)k(b)k

(c)k

xk

k!
, and

(a)k := a(a + 1) . . . (a + k − 1).

The polynomials are completely described by the recurrence formula:

p
(λ)
−1(x, φ) = 0, p

(λ)
0 (x, φ) = 1,

(n + 1)p
(λ)
n+1(x, φ)− 2[x sin φ + (n + λ) cos φ]p(λ)

n (x, φ) + (n + 2λ− 1)p
(λ)
n−1(x, φ) = 0

for n ≥ 1, and have a generating function

Gλ(x, t) = (1 − eiφt)−λ+ix(1 − e−iφt)−λ−ix =
∞∑

n=0

p(λ)
n (x, φ)tn.

Erdélyi [13] and Szegö [29] briefly mentioned these polynomials. Their major
properties are discussed by Chihara [9] and Koekoek and Swarttouw [18]. As-
ymptotic properties of these polynomials and their zeros are studied by Li and
Wong [21]. The applications of these polynomials are also studied by many of
them. For example: The connection between the Heisenberg algebra and Meixner-
Pollaczek polynomials are studied by Bender, Mead and Pinsky [8] and Koorn-
winder [20]. The combinatorial interpretation of the linearization coefficients of
these polynomials is discussed by Zeng [30]. The interpretation of the Meixner-
Pollaczek polynomials as overlap coefficients in the positive discrete series represen-
tation of the Lie algebra SU(1, 1) are discussed by Koelink and Van der Jeugt [19].

An area of interest in connection with orthogonal polynomials is limit relations.
The report by Koekoek and Swarttouw [18] is a good source of information in
this direction, Askey and Wilson [5] is another. Both papers illustrate the Askey-
Scheme of hypergeometric orthogonal polynomials from the highest levels Wilson
and Racah with degree of freedom 4 to the lowest level Hermite with degree of
freedom 0. They consider (from and to) limit relations for the intermediate levels.
The Meixner-Pollaczek polynomials have their place in this scheme in the third
row with two free parameters. Those below Meixner-Pollczek are Laguerre and
Hermite polynomials, with defining formulas [18]:
The Laguerre polynomials

L(α)
n (x) =

(α + 1)n

n! 1
F1

( −n
α + 1

∣∣∣∣ x

)
. (1.1)

The Hermite polynomials

Hn(x) = (2x)n
2F0

(−n/2,−(n − 1)/2
−

∣∣∣∣ − 1/x2

)
. (1.2)

5



6

In particular, one is interested to know the limiting cases of p
(λ)
n (x, φ), say as

φ → 0, φ → π, λ → ∞ or λ → 0. Using an appropriate scaling of the
variable, we have

Meixner-Pollaczek → Laguerre:
Making the substitution λ = (α + 1)/2, x �→ −x/(2φ), and letting φ → 0,

lim
φ→0

p
(α+1

2
)

n (− x

2φ
, φ) = L(α)

n (x).

Meixner-Pollaczek → Hermite:
Making the substitution x �→ x

√
λ−λ cos φ
sin φ

and letting λ → ∞,

lim
λ→∞

λ−n/2p(λ)
n (

x
√

λ − λ cos φ

sin φ
, φ) =

Hn(x)

n!
.

The case φ → π, produces the trivial polynomial system. This leaves us with the
last limit situation, i.e., λ → 0.

In Section 2 we tackle this problem for a fixed value of φ. In fact from now on we
fix the value of the parameter φ to be π/2, and further we make the scaling of the

variable so that we have p
(λ)
n (x/2, π/2). The resulting polynomials are called the

the Symmetric Meixner-Pollaczek polynomials, and this thesis is mainly concerned
with the set of these kinds of polynomials and their extensions. In the sequel we

denote these polynomials by p
(λ)
n (x). Section 2 considers the limiting case of these

polynomials, i.e., p
(0)
n (x) := limλ→0 p

(λ)
n (x), and shows that these polynomials are

orthogonal polynomials in a strip, which is one of the main results of Paper 2.

Besides, the polynomials p
(0)
n (x) are found to be important polynomials.

Section 3 starts with the Symmetric Meixner-Pollaczek polynomials, P
+ =

{{p(λ)
n (x)}∞n=0 : λ > 0} plus the new system mentioned in the preceding para-

graph, {p(0
n )(x)}∞n=0. It extends this class to include sequences of polynomials

{{p(λ)
n (x)}∞n=0 : λ < 0}, so that the extended class becomes P = {{p(λ)

n (x)}∞n=0 : λ ∈
R}. It employs Umbral Calculus [27, 11, 10] to identify the special properties of the

polynomials {p(0)
n (x)}∞n=0, and to study the connection between {p(0)

n (x)}∞n=0 and
the other members of P. Furthermore, it examines the major properties of the Sym-

metric Meixner-Pollaczek polynomials which are shared by {{p(λ)
n (x)}∞n=0 : λ < 0}.

Unfortunately, the polynomials {p(λ)
n (x)}∞n=0, λ < 0, mentioned in the preced-

ing paragraph are not orthogonal polynomials on the real line with respect to any
positive real measure for failing to satisfy Favard’s [14] positivity condition. How-

ever, for each λ ≤ 0, defining an inner product with respect to which p
(λ)
n (x) is an

orthogonal system is of interest though its real application is not known.

Motivated by the Sobolev type orthogonal polynomials [24, 22] corresponding to

the Sobolev type inner product (4.7), in Section 4 we consider P = {{p(λ)
n (x)}∞n=0 :

λ ∈ R}. For every λ ∈ R, we define in an analogous way a corresponding inner

product with respect to which the system {p(λ)
n (x)}∞n=0 becomes orthogonal. For

λ > 0 these inner products coincide with the standard inner products for the
Meixner-Pollaczek polynomials.
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Another area of interest in connection with orthogonal polynomials is the Fourier
expansion of functions with respect to an orthogonal polynomial system, i.e.,

f(x) =
∞∑

k=0

Ckpk(x), where f satisfies certain conditions.

Particular cases of this expansion are when f is a polynomial in a different class,
or is a product of two or more polynomials. These are what are called connection
and linearization problems [3, 4, 7, 15, 16], respectively. In Section 5 we solve
these problems for the Symmetric Meixner-Pollaczek polynomials.

2. A limiting case of the Symmetric Meixner-Pollaczek

polynomials

Let w(x) = 1/(2 cosh (πx/2)). Then the function w(x) is the density function
of a probability measure. Furthermore, it has interesting properties that make it
useful as a weight function for orthogonal polynomials. The most useful property
of the weight function w(x) is that it can be interpreted as a Poisson kernel [28],
namely we have the following;

Proposition 1. Let the function f be continuous and harmonic in the strip S =
{ z : −1 ≤ Im(z) ≤ 1}, and suppose further that |f(z)| < Cea|z|, for some a,
0 ≤ a < π/2. Then

f(0) =

∫ ∞

−∞

f(x + i) + f(x − i)

2

dx

2 cosh π
2
x
. (2.1)

Since the weight w is so closely related to the strip S, we describe an orthog-
onal basis for the space H2(S,P) where P is the Poisson measure for 0. This is
summarized in the following theorem (Paper 1 and [17]):

Theorem 1. Let the system {σk}∞k=0 be given by the following recursion relation:

σ−1 = 0, σ0 = 1 and σk+1(z) = zσk(z) − k(k − 1)σk−1(z). (2.2)

Then:

(1) the function σk(z) is a monic polynomial of degree k.
(2) the sequence of polynomials { (k!)−1σk(z) }∞0 is an orthogonal basis in the

Hilbert space H2(S,P).
(3) the norm of (k!)−1σk is 1 for k = 0 and

√
2 for k ≥ 1.

(4) the polynomials σk(z) have an exponential generating function
∞∑

k=0

σk(z)

k!
sk = ez arctan s.

Another important result of Paper 1 is that σ̃k := (k!)−1σk is the limiting case of

the Symmetric Meixner-Pollaczek polynomial systems, p
(λ)
k (x), as the parameter

λ → 0, and it has a hypergeometric representation. This is the content of the next
proposition.

Proposition 2.

σ̃k(x) = lim
λ→0+

p
(λ)
k (x) = p

(0)
k (x),

p
(0)
0 (x) = 1, and p

(0)
k (x) = ik−1x 2F1

(
1 − k, 1 + ix

2
2

∣∣∣∣ 2

)
, k ≥ 1.
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3. Extending the parameter λ to the whole real line

The polynomial sequence {p(0)
n (x)}∞n=0 introduced in Section 2 has a special

property in the Symmetric Meixner-Pollaczek polynomial class. This is seen from
the generating function of these polynomials, and leads to:

p(0)
n (x + y) =

n∑
k=0

p
(0)
k (y)p

(0)
n−k(x). (3.1)

This is the only polynomial sequence in the Meixner-Pollaczek class with this
property. A polynomial sequence with such a property is called a convolution type
polynomial. Convolution type polynomials have a unique associated polynomial

operator which is called a delta operator. We denote the delta operator for p
(0)
n (x)

by Q. This is the operator which maps p
(0)
1 (x) to 1 and Qp

(0)
n (x) = p

(0)
n−1(x). An

integral representation of this operator is found, which is one of the results in
Paper 2. It is described by

Qf = − 1

sinh πx
2

∗ f(x) =

∫ ∞

−∞

f(x + y)

2 sinh πy
2

dy.

In Umbral language, a convolution type sequence of polynomials may have as-

sociated sequences of Sheffer polynomials. In the case of {p(0)
n (x)}∞n=0, these are

the sequences of polynomials {qn(x)}∞n=0 satisfying:

qn(x + y) =
n∑

k=0

p
(0)
k (x)qn−k(y).

However, every sequence of polynomials whose generating function is of the form
ex arctan t/(1+ t2)λ, where λ ∈ R satisfies the above mentioned property. These are
the polynomials completely described by the recurrence relation

p
(λ)
−1(x) = 0, p

(λ)
0 (x) = 1 and (3.2)

(n + 1)p
(λ)
n+1(x) − xp(λ)

n (x) + (n − 1 + 2λ)p
(λ)
n−1(x) = 0, n=1, 2, . . . .

Now, if we take the whole class P = {{p(λ)
n (x)}∞n=0 : λ ∈ R}, then the convolution

property of {p(0)
n (x)}n∈N justifies that for each λ ∈ R, there is an associated

linear shift-invariant polynomial operator denoted by P λ and defined by P λ :

{p(0)
n (x)}n∈N �→ {p(λ)

n (x)}n∈N such that P λp
(0)
n := p

(λ)
n . The set of all these operators

make up an algebra of shift-invariant polynomial operators. The main results in
Paper 2 include:

Proposition 3. p
(0)
n (x) is the basic sequence with respect to the delta operator Q

and conversely.

An immediate consequence of which is:

Proposition 4. For each λ ∈ R the following statements are equivalent:

1) p
(λ)
n (x) is a Sheffer sequence with respect to p

(0)
n (x).

2) p
(λ)
n (x) is a Sheffer sequence with respect to Q.

Another important result is:
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Proposition 5. Each of the operators P λ, λ ∈ R and Q has a power series
representation in powers of the differential operator D, moreover each operator
has a closed form representation given by

P λ = cos2λ(D), Q = tanD.

4. Inner product for the extended symmetric Meixner-Pollaczek

class

Proposition 1 makes it natural to consider the following two operators:

Rf(x) :=
1

2
(f(x + i) + f(x − i)) (4.1)

Jf(x) :=
1

2i
(f(x + i) − f(x − i)) (4.2)

These operators happen to connect the polynomials in P, as stated in the following
proposition.

Proposition 6. Given any λ ≥ 0, the following relations hold true:

Rp(λ)
n (x) = p(λ+1/2)

n (x), (4.3)

Jp(λ)
n (x) = p

(λ+1/2)
n−1 (x). (4.4)

We also consider the operator R on the product of two functions, say f and g
as follows:

R(fg) :=
f(x + i)g(x + i) + f(x − i)g(x − i)

2
,

which may also be written as:

R(fg) = f(x − i)Rg(x) + iJf(x)g(x − i).

Furthermore, powers of R are considered where Rr+1f := R[Rrf ], for which a
simple induction gives

Rrf =
1

2r

r∑
k=0

(
r

k

)
f(x + i(r − 2k)). (4.5)

Applying this to the polynomials in P, we have

Proposition 7. Suppose that p
(λ)
n , p

(λ)
m are the symmetric polynomials and r is a

positive integer, then:

Rr(p(λ)
n p(λ)

m ) =
r∑

k=0

(
r

k

)
p

(λ+ r
2
)

n−k p
(λ+ r

2
)

m−k . (4.6)

For each real number λ ≤ 0 we define, Nλ := {n| n ∈ N and λ + n/2 > 0},
then Nλ has a least element. We denote the associated least element by mλ, where
mλ = minn∈N{n : λ+n/2 > 0}. In what follows we will be interested in the results
of Proposition 7 where r is replaced by mλ.

Inner-products other than the standard one are often used, particularly when
a non-standard inner-product is more natural. Orthogonal polynomials with re-
spect to such inner products can also be considered. For example, Sobolev type
orthogonal polynomials appear in the works of Milovanović [24], Marcellán and
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Álvarez-Nodarse [22] and the references therein. In general, the Sobolev type inner
product is defined by:

〈f, g〉 =
m∑

k=0

∫
R

f (k)(t)g(k)(t)dµk(t), (4.7)

where dµk(t), k = 0, 1, . . . , m are given positive measures on R.

Now, let λ ≤ 0 be given and let mλ be the associated least positive integer, then
we define the associated inner product as follows:

〈f, g〉λ =

∫
λ

fgd(Pλ(x)) :=

∫ ∞

−∞
Rmλ(fg)ωλ+

mλ
2

(x)dx,

=
1

2mλ

mλ∑
k=0

(
mλ

k

)
×

∫ ∞

−∞
f(x + i(mλ − 2k))g(x − i(mλ − 2k))ωλ+

mλ
2

(x)dx,

where ωλ+
mλ
2

(x) :=
|Γ(λ + mλ

2
+ ix

2
|2

2π
, (4.8)

is the weight function associated with the polynomials p
(λ+

mλ
2

)
n (x), in the Symmet-

ric Meixner-Pollaczek class, and Rmλf is as defined in formula (4.5).

The preceding inner product in (4.8) is analogous to the Sobolev type inner
product in (4.7) where the differential operator is replaced by the operator R, and
the positive measures dµk(t) for k = 0, 1, . . . , mλ are replaced by ωλ+

mλ
2

(t)dt.

One of the major results of Paper 3 is summarized in the following theorem:

Theorem 2. For each λ ≤ 0, the corresponding polynomial system p
(λ)
n (x), is an

orthogonal polynomial system with respect to the inner product (4.8).

Proposition 8. For each λ ∈ R, the corresponding orthogonal polynomial system
with respect to the associated inner product satisfies the following relation:

〈p(λ)
n (x), p(λ)

n (x)〉λ =




∑n
k=0

(
mλ

k

)
21−2µΓ(n−k+2µ)

(n−k)!
, if n < mλ,

∑mλ

k=0

(
mλ

k

)
21−2µΓ(n−k+2µ)

(n−k)!
, if n ≥ mλ,

where µ = λ + mλ

2
.

5. Linearization and connection problems for the Symmetric

Meixner-Pollaczek polynomials

Paper 4 is concerned about the linearization and connection problems for the
Symmetric Meixner-Pollaczek polynomials. The main results in this paper include:

Proposition 9. Let λ > 0 be given, then for any p, q ∈ N

p(λ)
p (x)p(λ)

q (x) =

p+q∑
ν=|p−q|

Cpqν p(λ)
ν (x), where (5.1)

Cpqν =
ν!

Γ(2λ + ν)

Γ(2λ + p+q+ν
2

)

(ν+p−q
2

)!(p+q−ν
2

)!(ν+q−p
2

)!
. (5.2)
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The sequence of linearization coefficients Cpqν in (5.2) satisfy the recurrence rela-
tion:

Cp,q,ν+2 =
(ν + 1)2

(2λ + ν)2

(p + q − ν)(4λ + p + q + ν)

(2 + p + ν − q)(2 + q + ν − p)
Cp,q,ν . (5.3)

In Paper 4 a variant solution is obtained for the linearization problem using
the Rodrigues’ formula of the polynomials, which is summarized in the following
proposition.

Proposition 10. Let λ > 0 be given, then for any n, m ∈ N

p(λ)
n (x)p(λ)

m (x) =
n+m∑
r=0

Cnmrp
(λ)
r (x), where (5.4)

Cnmr =
2r+2λ−1

Γ(2λ + r)

r∑
k=0

r−k∑
l=0

k∑
q=0

(
r

k

)(
r − k

l

)(
k

q

)
×

il(−i)q

∫ ∞

−∞
p

(λ+ r
2
)

n−k−l(x)p
(λ+ r

2
)

m+k−r−q(x)wλ+ r
2
(x)dx. (5.5)

The connection problem has also been considered. Its solution has brought
about the convolution property of the polynomials into the play. This in turn
leads us to remark that it is easy to solve the general linearization problem for
these polynomials using this property, i.e., if λ, µ ∈ R, and ν > 0, then

p(λ)
n p(µ)

n =
n+m∑

k=|n−m|
Cnmkp

(ν)
k ,

and the coefficients can be solved using the convolution property and (5.1) (or (5.4)).
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