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APPELL POLYNOMIALS AND THEIR RELATIVES III.
CONDITIONALLY FREE THEORY

MICHAEL ANSHELEVICH

Abstract. We extend to the multivariate noncommutative con-
text the descriptions of a “once-stripped” probability measure in

terms of Jacobi parameters, orthogonal polynomials, and the mo-
ment generating function. The corresponding map Φ on states

was introduced previously by Belinschi and Nica. We then re-
late these constructions to the c-free probability theory, which is

a version of free probability for algebras with two states, intro-
duced by Bożejko, Leinert, and Speicher. This theory includes

the free and Boolean probability theories as extreme cases. The

main objects in the paper are the analogs of the Appell poly-
nomial families in the two state context. They arise as fixed

points of the transformation which takes a polynomial family

to the associated polynomial family (in several variables), and

their orthogonality is also related to the map Φ above. In addi-
tion, we prove recursions, generating functions, and factorization

and martingale properties for these polynomials, and describe the

c-free version of the Kailath–Segall polynomials, their combina-
torics, and Hilbert space representations.

1. Introduction

The title of the paper will be explained below, but we start with some very
classical results.

Let μ be a probability measure on the real line, all of whose moments
are finite, which we normalize to have mean zero and variance one. It has a
sequence of monic orthogonal polynomials {Pn}, which satisfy a three term
recursion relation. The coefficients in this recursion are the Jacobi parameters
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of the measure. The measure also has a family of orthogonal polynomials of
the second kind {Qn}, which satisfy the same recursion with different initial
conditions. They are orthogonal with respect to the measure ν which is the
“once-stripped” [DKS09] version of μ: the Jacobi parameter sequences of ν
are obtained by removing the first terms of the Jacobi sequences of μ. It is a
classical fact going back to Darboux that equivalently,

Qn−1(x) =
∫

R

Pn(x) − Pn(y)
x − y

dμ(y).

Using continued fraction expansions for the moment generating functions Mμ

and Mν of μ and ν, one obtains the third equivalent description:

1 − Mμ(z)−1 = z2Mν(z).

The paper starts with an extension of the equivalence between these three
results to the multivariate context of non-commutative polynomials, with mea-
sures being replaced by states (from a special but large class described in
[Ans08a] of states which have monic orthogonal polynomials). More precisely,
it turns out that in the multivariate context, the map μ �→ ν is in general not
defined, and we consider its inverse Φ : ν �→ μ. The map Φ was introduced by
Belinschi and Nica ([BN08], [BN09]).

It is easy to see that the unique fixed point of Φ is the semicircular distri-
bution, and correspondingly the Chebyshev polynomials of the second kind
are the unique orthogonal polynomials which satisfy

Un−1(x) =
∫

R

Un(x) − Un(y)
x − y

dμ(y).

However, if we remove the orthogonality requirement and only ask that the
polynomials be centered with respect to μ, then we show that such a family
exists for any μ. In fact, these are the free Appell polynomials, which were
defined in the first paper [Ans04] of this series using the following recursion
involving the difference quotient:

An(x) − An(y)
x − y

=
n−1∑
k=0

Ak(x)An−k−1(y)

(these objects were also considered earlier in [VS93]). The parallel here is
with Paul Appell’s [App80] differential recursion

A′
n(x) = nAn−1(x).

The free Appell polynomials have a number of properties which resemble those
of the usual Appell families. Moreover, they turned out to be related to free
probability ([VDN92], [NS06]). In the second paper [Ans09a], we performed
similar analysis for polynomial families related to Boolean probability theory,
one of only two other natural non-commutative probability theories in addi-
tion to the free one (and of course the usual theory). In fact, even though
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the free and Boolean theories are quite different, the corresponding polyno-
mial families turned out to be closely related, and in particular their Meixner
families coincide.

The initial motivation for this paper was to explain this fact. Both the
free and the Boolean setting are in fact particular cases of a more general
construction for a space with two expectations, or more precisely an algebra
with two states (A, ϕ,ψ). We define the Appell polynomial families in this
setting, so that they restrict correctly to the two cases above. All the familiar
results—recursion relations, generating functions, relations to partition lat-
tices and cumulants, Kailath–Segall expansions, and martingale properties—
hold in this case, none of which will come as a surprise to the readers familiar
with the first two papers in the series. The main function of these results is
to confirm that the definition of the Appell polynomials in the two-state set-
ting is the correct one, and unify the free and Boolean constructions. In one
variable, the c-free Appell polynomials have also appeared in [VS93] under
the name of associated sequences.

More interestingly, the two state free probability theory is directly relevant
to the discussion at the beginning of the introduction, which involves two mea-
sures μ, ν. Namely, to the three equivalent definitions of the relation μ = Φ[ν]
we now add three more. First, the two state free cumulant generating function
for the pair (μ, ν) is in this case simple quadratic. Recall that the unique fixed
point of Φ is the semicircle law, and that in the usual free probability theory,
only the second free cumulant of this law is nonzero. Second, if μ = Φ[ν], the
c-free Appell polynomials are almost orthogonal. They are orthogonal if in
addition, ν is a free product of semicircular distributions, in which case μ is a
free Meixner state. The role of the free Meixner states, and of the map Φ and
its generalizations, in free probability theory with two states is investigated
in more detail in [Ans09b]. Third, such a pair (μ, ν) minimizes a certain type
of free Fisher information.

In the free and Boolean theory, the free Meixner distributions arose as those
distributions whose orthogonal polynomials are also generalized Appell (more
precisely, Sheffer). As mentioned above, in the two-state theory these distri-
butions arise much more naturally, namely they are the ones for which the
Appell polynomials themselves are orthogonal. In retrospect, this statement
should have been expected. One of the ways to describe the free Meixner dis-
tributions is that their Jacobi parameter sequences are constant after the first
step. In the language of [AB98], this corresponds to looking at partitions for
which one distinguishes the classes at depth one from the other classes, and
this is exactly the underlying combinatorics of the two-state theory. It is then
natural to ask for the relation between distributions whose Jacobi parameter
sequences are constant after some point (considered for example in [Kat86])
and “n-state” probability theories. Such theories have indeed been attempted
([CDI97], [M�lo99]), but the resulting products are not associative.
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The paper is organized as follows. After a brief preliminary Section 2, in
Section 3, we prove the equivalence between various descriptions of multivari-
ate non-commutative orthogonal polynomials of the second kind. The next
section provides background on noncommutative probability theories. Sec-
tion 5 treats the c-free Appell polynomials, their orthogonality, and further
properties of the transformation Φ. Section 6 finishes with martingale prop-
erties and Fock space representations for the c-free Appell polynomials, which
parallel the results in [Ans04, Ans09a].

2. Preliminaries I

We will freely use the notions from the Preliminaries section of [Ans09a];
here we list the highlights.

2.1. Polynomials and power series. Let C〈x〉 = C〈x1, x2, . . . , xd〉 be all
the polynomials with complex coefficients in d non-commuting variables. They
form a unital ∗-algebra.

For i = 1, . . . , d, define the partial difference quotient operator

∂i : C〈x〉 → C〈x〉 ⊗ C〈x〉

by a linear extension of ∂i(1) = 0,

∂i

(
xu(1)xu(2) · · · xu(n)

)
=

∑
j:u(j)=i

xu(1) · · · xu(j−1) ⊗ xu(j+1) · · · xu(n).

Also, for a noncommutative power series G in

z = (z1, z2, . . . , zd),

define the left noncommutative partial derivative DiG by a linear extension
of Di(1) = 0,

Diz�u = δiu(1)zu(2) · · · zu(n).

A monic polynomial family in

x = (x1, x2, . . . , xd)

is a family {P�u(x)} indexed by all multi-indices

∞⋃
k=1

{
�u ∈ {1, . . . , d}k

}
(with P∅ = 1 being understood) such that

P�u(x) = x�u + lower-order terms.
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2.2. Algebras and states. Algebras A in this paper will always be complex
∗-algebras and, unless stated otherwise, unital. If the algebra is nonunital, one
can always form its unitization C1 ⊕ A; if A was a C∗-algebra, its unitization
can be made into one as well.

Functionals A → C will always be linear, unital, and ∗-compatible. A state
is a functional which in addition is positive definite, that is

ϕ[X∗X] ≥ 0

(zero value for nonzero X is allowed).
Most of the time we will be working with states on C〈x〉 arising as joint

distributions. For
X1,X2, . . . ,Xd ∈ Asa,

their joint distribution with respect to ψ is a state ϕ on C〈x〉 determined by

ϕ[P (x)] = ψX1,X2,...,Xd [P (x1, x2, . . . , xd)] = ψ[P (X1,X2, . . . ,Xd)].

The numbers ϕ[x�u] are the moments of ϕ. More generally, for d noncommut-
ing indeterminates z = (z1, . . . , zd), the series

M(z) =
∑

�u

ϕ[x�u]z�u

is the moment generating function of ϕ.
A state ϕ on C〈x〉 has a monic orthogonal polynomial system, or MOPS,

if for any multi-index �u, there is a monic polynomial P�u with leading term
x�u, such that these polynomials are orthogonal with respect to ϕ, that is,

〈P�u, P�v 〉ϕ = 0

for �u �= �v.
For a probability measure μ on R all of whose moments are finite, its monic

orthogonal polynomials {Pn} satisfy three-term recursion relations

(1) xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x),

with initial conditions P−1 = 0, P0 = 1. We will call the parameter sequences

(β0, β1, β2, . . .), (γ1, γ2, γ3, . . .)

the Jacobi parameter sequences for μ. Generalizations of such parameters for
states with MOPS were found in [Ans08b], so that every such state is of the
form ϕ{ Ti },C for two families of matrices { T (n)

i }, {C(n)}.

2.3. Free Appell polynomials. Let (A, ψ) be an algebra with a linear
functional. The free Appell polynomials are, for each n ∈ N, maps

Aψ : (Asa)n → A, (X1,X2, . . . ,Xn) �→ Aψ(X1,X2, . . . ,Xn)

such that Aψ(X1,X2, . . . ,Xn) is a polynomial in X1,X2, . . . ,Xn,

(2) ∂iA
ψ(X1,X2, . . . ,Xn) = Aψ(X1, . . . ,Xi−1) ⊗ Aψ(Xi+1. . . . ,Xn),
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with the obvious modifications for i = 1, n corresponding to Aψ(∅) = 1, and

(3) ψ[Aψ(X1,X2, . . . ,Xn)] = 0

for n ≥ 1. They were introduced in [Ans04] via a slightly more complicated
but equivalent definition.

3. Noncommutative orthogonal polynomials of the second kind

Remark 1 (Polynomials of the first and second kind). For a measure μ all
of whose moments are finite, its monic orthogonal polynomials {Pn} satisfy
a three-term recursion relation (1), with initial conditions P−1 = 0, P0 = 1.
Since this recursion is second order, there is another family of polynomials
satisfying the same recursion, with initial conditions Q0 = 0, Q1 = 1, which
can also be defined via

Qn−1(x) = (I ⊗ μ)[∂Pn].

These are polynomials of the first and second kind corresponding to μ, see
Section 1.2.1 of [Akh65]; one also says that {Qn} are associated to {Pn}. In
general, {Qn} are orthogonal with respect to a different measure, obtained
from μ by deleting the first terms of its Jacobi parameter sequences. There
is a unique case when the formula above does not give a new family: the
Chebyshev polynomials of the second kind are a fixed point for this operation
(up to a shift in degree), and are associated to themselves. We now show that,
if we drop the condition of orthogonality and only keep centeredness, i.e.,
orthogonality to the constants, such fixed points are exactly the free Appell
polynomials. The following proposition actually describes a more general
multivariate case.

Proposition 1. For any ψ, the free Appell polynomials are the unique
polynomial family satisfying

(I ⊗ ψ)∂iP (X1,X2, . . . ,Xn) = δinP (X1, . . . ,Xn−1)

and
ψ[P (X1,X2, . . . ,Xn)] = 0.

Proof. It immediately follows from their definition that the free Appell
polynomials satisfy these properties. To prove uniqueness, it suffices to show
that the map

P �→
(
(I ⊗ ψ)∂1P, (I ⊗ ψ)∂2P, . . . , (I ⊗ ψ)∂dP

)
on polynomials contains only constants in its kernel. For this, in turn, it
suffices to show that the images under this map of different monomials x�u are
linearly independent. Indeed, take any distinct �u1, �u2, . . . , �uk. Choose some
i, j with (I ⊗ ψ)∂i(x�uj

) of the highest degree. Then, denoting n = |�uj |, it
follows that uj(n) = i and all |�us| ≤ n. So (I ⊗ ψ)∂i(x�uj

) contains the term
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xuj(1)xuj(2) · · · xuj(n−1), and the only way one of the other (I ⊗ ψ)∂i(x�us
) could

contain this term is if �us = �uj , which is not the case. �
Definition and Remark 2. In [BN09], Belinschi and Nica defined a map

Φ from states to states via

ηΦ[ψ](w) = 1 −
(
1 + MΦ[ψ](w)

)−1 =
d∑

i=1

wi

(
1 + Mψ(w)

)
wi.

As mentioned in the Introduction, in one variable this map can be described
as the transformation coming from the shift on Jacobi parameter sequences:
if μ has the Jacobi parameter sequences

{(β0, β1, β2, . . .), (γ1, γ2, γ3, . . .)},

it follows from the continued fraction representations for ηΦ[μ](w) and Mμ(w)
that the Jacobi parameter sequences for Φ[μ] are

{(0, β0, β1, . . .), (1, γ1, γ2, . . .)}.

In particular, the free Meixner distributions (Section 4.5) are exactly the
images under Φ of various semicircular distributions:

μb,c = Φ[SC(b,1 + c)].

Theorem 2. Let ψ be a state with MOPS {Q�u(x)}, corresponding to{
T (n)

i ,1 ≤ i ≤ d,n ≥ 0
}
,

{
C(n), n ≥ 1

}
,

where T (n)
i , C(n) are dn × dn matrices. The following are equivalent conditions

on a state ϕ with mean zero and identity covariance.
(a) ϕ = Φ[ψ], that is, 1 − (1 + Mϕ(w))−1 =

∑d
i=1 wi(1 + Mψ(w))wi.

(b) ϕ is the state with MOPS corresponding to the matricial sequences{
0, T (n−1)

i ⊗ I,1 ≤ i ≤ d,n ≥ 1
}
,

{
I, C(n−1) ⊗ I,n ≥ 2

}
.

(c) ϕ is a state with MOPS {P�u(x)} which satisfy

(I ⊗ ϕ)∂jP(�u,m)(x) = 0

for j �= m and
Q�u(x) = (I ⊗ ϕ)∂mP(�u,m)(x).

In this case, we call the polynomials {Q�u(x)} the orthogonal polynomials
of the second kind for ϕ.

Proof. The first two statements are equivalent using the results in the Ap-
pendix of [Ans09a]. Next, we show that (c) ⇒ (b). Let ϕ = ϕ{Δi },Γ, so that
by Theorem 2 of [Ans08a], its MOPS satisfy the recursions

xiP(�u,m)(x) = P(i,�u,m) +
∑
�v,k

Δi,(�v,k),(�u,m)P(�v,k)(x)

+ δi,u(1)Γ(�u,m)P(u(2),...,m)(x).
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If
(I ⊗ ϕ)∂jP(�u,m)(x) = δjmQ�u(x),

then using

(I ⊗ ϕ)∂j

(
xiP(�u,m)(x)

)
= δijϕ

[
P(�u,m)(x)

]
+ xi(I ⊗ ϕ)∂jP(�u,m)(x)

= xi(I ⊗ ϕ)∂jP(�u,m)(x),

we get

xiδjmQ�u(x)

= δjmQ(i,�u) +
∑
�v,k

δjkΔi,(�v,k),(�u,m)Q�v(x) + δi,u(1)δjmΓ(�u,m)Q(u(2),...)(x)

= δjmQ(i,�u) +
∑

�v

Δi,(�v,j),(�u,m)Q�v(x) + δi,u(1)δjmΓ(�u,m)Q(u(2),...)(x).

Since this equality holds for any j = m and the coefficients on the right-hand
side are uniquely determined, it follows that they do not depend on m, so that
Δi,(�v,j),(�u,m) = δjmTi,�v,�u and Γ(�u,m) = C�u, in other words Δ(n)

i = T (n−1)
i ⊗ I

and Γ(n) = C(n−1) ⊗ I for
ψ = ϕ{ Ti },C .

The converse is similar, and follows by induction. �

Remark 3. Further statements equivalent to the conditions of the preced-
ing theorem are proven in Section 5.2:

(d) The two-state free cumulant generating function Rϕ,ψ of (ϕ,ψ) is simple
quadratic.

(e) The c-free Appell polynomials Aϕ,ψ are orthogonal to the degree one c-
free Appell polynomials, and ϕ has mean zero and identity covariance
(see Lemma 7).

(f) For fixed ψ, the c-free Fisher information for the pair (ϕ,ψ) is minimal
among all states ϕ with mean zero and identity covariance (see Proposi-
tion 9).

4. Preliminaries II

4.1. Partitions. NC(n) is the lattice of noncrossing partitions of n elements,
and Int(n) is the corresponding lattice of interval partitions. A class B ∈ π of
a noncrossing partition is inner if for j ∈ B,

∃i
π∼ k

π

�∼ j : i < j < k,

otherwise B is outer. The collection of all the inner classes of π will be denoted
Inner(π), and similarly for Outer(π).
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4.2. Cumulants. For a state ϕ, its Boolean cumulant generating function
is defined by

ηϕ(z) = 1 −
(
1 + Mϕ(z)

)−1
,

and its coefficients are the Boolean cumulants of ϕ. They can also be expressed
in terms of moments of ϕ using the lattice of interval partitions. Similarly,
the free cumulant generating function of a state ψ is defined by either of the
equivalent implicit equations

(4) Mψ(w) = Rψ
(
w

(
1 + Mψ(w)

))
or

(5) Mψ(w) = Rψ
((

1 + Mψ(w)
)
w

)
,

where(
1 + Mψ(w)

)
w =

((
1 + Mψ(w)

)
w1,

(
1 + Mψ(w)

)
w2, . . . ,

(
1 + Mψ(w)

)
wd

)
.

We will frequently, sometimes without comment, use the change of variables

(6) zi =
(
1 + Mψ(w)

)
wi, wi =

(
1 + Rψ(z)

)−1
zi.

The coefficients of Rψ(z) are the free cumulants of ψ, and can also be expressed
in terms of the moments of ψ using the lattice of noncrossing partitions.

4.3. Two-state cumulants. The typical setting in this paper is a triple
(A, ϕ,ψ), where A is an algebra and ϕ,ψ are functionals on it. If necessary,
we will assume that both ϕ,ψ are states with MOPS. By rotation, we can
assume without loss of generality that ϕ is normalized to have zero means
and identity covariance. Then no such assumptions can be made on ψ, but
the MOPS condition still guarantees that the covariance of ψ is diagonal.

We define the two-state free cumulants of the pair (ϕ,ψ) via

ϕ[x1 · · · xn] =
∑

π∈NC(n)

∏
B∈Outer(π)

Rϕ,ψ

[∏
i∈B

xi

] ∏
C∈Inner(π)

Rψ

[∏
j∈C

xj

]
.

Their generating function is

Rϕ,ψ(z) =
∑

�u

Rϕ,ψ[x�u]z�u.

Equivalently (up to changes of variables, this is Theorem 5.1 of [BLS96]), we
could have defined the two-state free cumulant generating function via the
condition

(7) ηϕ(w) =
(
1 + Mψ(w)

)−1
Rϕ,ψ

((
1 + Mψ(w)

)
w

)
.

We also note that for zi = (1 + Mψ(w))wi,

1 + Rψ(z) − Rϕ,ψ(z) = 1 + Mψ(w) − Rϕ,ψ
((

1 + Mψ(w)
)
w

)
(8)

=
(
1 + Mψ(w)

)(
1 + Mϕ(w)

)−1
.
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For elements X1,X2, . . . ,Xn ∈ Asa, we will denote their joint cumulants

Rϕ,ψ[X1,X2, . . . ,Xn] = RϕX1,X2,...,Xn ,ψX1,X2,...,Xn
[x1, x2, . . . , xn]

to be the corresponding joint cumulants with respect to their joint distribu-
tions.

Definition 4. Let (A, ϕ,ψ) be an algebra with two states.
(a) Subalgebras A1, . . . , Ad ⊂ A are conditionally free, or c-free, with respect

to (ϕ,ψ) if for any n ≥ 2,

Xi ∈ Au(i), i = 1,2, . . . , n, u(1) �= u(2) �= · · · �= u(n),

the relation
ψ[X1] = ψ[X2] = · · · = ψ[Xn] = 0

implies

(9) ϕ[X1X2 · · · Xn] = ϕ[X1]ϕ[X2] · · · ϕ[Xn].

(b) The subalgebras are (ϕ|ψ) free if for X1,X2, . . . ,Xn ∈
⋃d

j=1 Aj ,

Rϕ,ψ[X1,X2, . . . ,Xn] = 0

unless all Xi lie in the same subalgebra.

As pointed out in [BB09], these properties are not equivalent, however
they become equivalent under the extra requirement that the subalgebras are
ψ-freely independent. In any case, throughout most of the paper we will be
working with cumulants, and will only invoke conditional freeness itself in
Section 6.2.

Example 5. If X,Z are c-free from Y , then (Lemma 2.1 of [BLS96])

ϕ[XY ] = ϕ[X]ϕ[Y ],
ϕ[XY Z] = ϕ[X]ϕ[Y ]ϕ[Z] + (ϕ[XZ] − ϕ[X]ϕ[Z])ψ[Y ].

Lemma 3. Under the hypothesis of the preceding definition, the conclusion
(9) remains valid without any assumptions on the endpoints ψ[X1] and ψ[Xn].

Proof. For n = 2, the result is stated in the preceding example. For n ≥ 3,
denote Y = X2 · · · Xn−1. Then

ϕ[X1Y Xn] = ϕ
[
(X1 − ψ[X1])Y (Xn − ψ[Xn])

]
+ ψ[X1]ϕ

[
Y (Xn − ψ[Xn])

]
+ ϕ

[
(X1 − ψ[X1])Y

]
ψ[Xn] + ψ[X1]ϕ[Y ]ψ[Xn] = 0,

since for each of these terms, the argument of ϕ satisfies the hypothesis of the
definition. �

Example 6. The following are important particular cases of conditional
freeness.
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(a) If ϕ = ψ, so that (A, ϕ) is an algebra with a single state, conditional
freeness with respect to (ϕ,ϕ) is the same as free independence with
respect to ϕ. Moreover, Rϕ,ϕ = Rϕ.

(b) If A is a nonunital algebra, define a state δ0 on its unitization C1 ⊕ A
by δ0[1] = 1, δ0[A] = 0. Then conditional freeness of subalgebras (C1 ⊕
A1), . . . , (C1 ⊕ Ad) with respect to (ϕ, δ0) is the same as Boolean indepen-
dence of subalgebras A1, . . . , Ad with respect to ϕ. Moreover, Rϕ,δ0 = ηϕ.
The Boolean theory has been treated as a particular case of the c-free
theory in [Fra08] and in a number of other sources.

(c) Specializing the preceding example, if A = C〈x〉, it is a unitization of
the algebra of polynomials without constant term, and δ0[P ] is the con-
stant term of a polynomial, so that we denote, even for non-commuting
polynomials,

δ0[P ] = P (0).

See [Len98], [M�lo02], [Yos03], [Leh04], [Ora05], [Fra06], [Pop08], as well
as references in [Ans09b] for other particular cases and generalizations of
conditional freeness; the appearance of the free Meixner laws (see below) in
related contexts has been observed even more widely.

4.4. Convolutions. If ϕ,ψ are two unital linear functionals on C〈x〉, then
ϕ � ψ is their free convolution, that is a unital linear functional on C〈x〉
determined by

Rϕ(z) + Rψ(z) = Rϕ�ψ(z).
Similarly, ϕ � ψ, their Boolean convolution, is a unital linear functional on
C〈x〉 determined by

ηϕ(z) + ηψ(z) = ηϕ�ψ(z).
See Lecture 12 of [NS06] for the relation between free convolution and free
independence; the relation in the Boolean case is similar.

4.5. Free Meixner distributions and states. The semicircular distribu-
tion with mean α and variance β is

dSC(α,β)(x) =
1

2πβ

√
4β − (x − α)21[α−2

√
β,α+2

√
β](x)dx.

For b ∈ R, 1 + c ≥ 0, the free Meixner distributions, normalized to have mean
zero and variance one, are

dμb,c(x) =
1
2π

√
4(1 + c) − (x − b)2

1 + bx + cx2
dx + zero, one, or two atoms.

They are characterized by their Jacobi parameter sequences having the special
form

(0, b, b, b, . . .), (1,1 + c,1 + c,1 + c, . . .),
or by the special form of the generating function of their orthogonal polyno-
mials. In particular, μ0,0 = SC(0,1) is the standard semicircular distribution,



50 M. ANSHELEVICH

μb,0 are the centered free Poisson distributions, and μb,−1 are the normalized
Bernoulli distributions.

More generally, free Meixner states are states on C〈x〉, characterized by a
number of equivalent conditions (see [Ans07]), among them the equations

(10) DiDjR
ϕ(z) = δij +

d∑
k=1

Bk
ijDkRϕ(z) + CijDiR

ϕ(z)DjR
ϕ(z)

for certain {Bk
ij ,Cij }. In [Ans09a], these equations were shown to be equiva-

lent to

(11) DiDjη
ϕ(z) = δij +

d∑
k=1

Bk
ijDkηϕ(z) + (1 + Cij)Diη

ϕ(z)Djη
ϕ(z).

5. Appell polynomials

5.1. Definition and basic properties.

Definition 7. Let (A, ϕ,ψ) be an algebra with two functionals. Define
the c-free Appell polynomials to be, for each n ∈ N, maps

Aϕ,ψ : (Asa)n → A, (X1,X2, . . . ,Xn) �→ Aϕ,ψ(X1,X2, . . . ,Xn)

by specifying that Aϕ,ψ(X1,X2, . . . ,Xn) is a polynomial in X1,X2, . . . ,Xn,

(12) ∂iA
ϕ,ψ(X1,X2, . . . ,Xn) = Aψ(X1, . . . ,Xi−1) ⊗ Aϕ,ψ(Xi+1. . . . ,Xn)

with the obvious modifications for i = 1, n corresponding to Aϕ,ψ(∅) = 1, and

(13) ϕ[Aϕ,ψ(X1,X2, . . . ,Xn)] = 0

for n ≥ 1. This determines the polynomials uniquely. Here, Aψ(·) are the free
Appell polynomials for ψ (Section 2.3).

Each Aϕ,ψ(·) is a multilinear map, and its value is a polynomial in its ar-
guments. In particular, define A�u(x1, x2, . . . , xd) ∈ C〈x〉 to be the polynomial
such that

Aϕ,ψ
(
Xu(1),Xu(2), . . . ,Xu(n)

)
= A�u(X1,X2, . . . ,Xd).

Note that the polynomial A�u(x) depends on the choice of X1,X2, . . . ,Xd, so
in cases where confusion may arise we will denote this polynomial by

AX1,X2,...,Xd

�u (x1, x2, . . . , xd).

Example 8. The low order c-free Appell polynomials are

Aϕ,ψ(X1) = X1 − Rϕ,ψ[X1],

Aϕ,ψ(X1,X2) = X1X2 − X1R
ϕ,ψ[X2] − Rψ[X1]X2

+ Rψ[X1]Rϕ,ψ[X2] − Rϕ,ψ[X1,X2],
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and

Aϕ,ψ(X1,X2,X3)

= X1X2X3 − X1X2R
ϕ,ψ[X3] − X1R

ψ[X2]X3 − Rψ[X1]X2X3

+ X1R
ψ[X2]Rϕ,ψ[X3] − X1R

ϕ,ψ[X2,X3] + Rψ[X1]X2R
ϕ,ψ[X3]

+ Rψ[X1]Rψ[X2]X3 − Rψ[X1,X2]X3 − Rψ[X1]Rψ[X2]Rϕ,ψ[X3]

+ Rψ[X1]Rϕ,ψ[X2,X3] + Rψ[X1,X2]Rϕ,ψ[X3] − Rϕ,ψ[X1,X2,X3].

Proposition 4. Fix (A, ϕ,ψ).
(a) For fixed (X1,X2, . . . ,Xd), the generating function of their c-free Appell

polynomials is

Hϕ,ψ(x,z) = 1 +
∑

�u

A�u(x)z�u

=
(
1 − x · z + Rψ(z)

)−1(1 + Rψ(z) − Rϕ,ψ(z)
)
.

(b) The polynomials satisfy a recursion relation

XAϕ,ψ(X1, . . . ,Xn)
= Aϕ,ψ(X,X1, . . . ,Xn)

+
n−1∑
j=0

Rψ[X,X1, . . . ,Xj ]Aϕ,ψ(Xj+1, . . . ,Xn) + Rϕ,ψ[X,X1, . . . ,Xn].

(c) The monomials have an expansion in terms of the c-free Appell polyno-
mials

X1X2 · · · Xn =
n∑

k=0

∑
B⊂ {1,...,n}

B={i(1),...,i(k)}

k∏
j=1

ψ
[
Xi(j−1)+1 · · · Xi(j)−1

]

× ϕ
[
Xi(k)+1 · · · Xu(n)

]
Aϕ,ψ

(
Xi(1),Xi(2), . . . ,Xi(k)

)
.

(d) The explicit formula for the c-free Appell polynomials is

Aϕ,ψ(X1, . . . ,Xn) =
∑

π∈Int(n)

∑
S⊂Sing(π)

(−1)|Sc |
∏

B∈Sc

n/∈B

Rψ[Xi : i ∈ B]

×
∏

B∈Sc

n∈B

Rϕ,ψ[Xi : i ∈ B]
∏

{i} ∈S

Xi.

See Proposition 10, part (c) for notation.

Proof. For part (a), we check that, identifying C〈x〉 ⊗ C〈x〉 = C〈x,y〉,

∂xiH
ϕ,ψ(x,z) =

(
1 − x · z + Rψ(z)

)−1
zi

(
1 − y · z + Rψ(z)

)−1

×
(
1 + Rψ(z) − Rϕ,ψ(z)

)
= Hψ(x,z)ziH

ϕ,ψ(y,z),
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where

Hψ(x,z) =
(
1 − x · z + Rψ(z)

)−1 = 1 +
∑

�u

Aψ
�u (x)z�u

is the generating function for the free Appell polynomials of ψ. Also, making
the change of variables (6) and using relation (8),

ϕ[Hϕ,ψ(x,z)] = ϕ
[(

1 − x · z + Rψ(z)
)−1](1 + Rψ(z) − Rϕ,ψ(z)

)
(14)

= ϕ
[(

1 −
(
1 + Mψ(w)

)
x · w + Mψ(w)

)−1]
×

(
1 + Mψ(w)

)(
1 + Mϕ(w)

)−1

= ϕ[(1 − x · w)−1]
(
1 + Mψ(w)

)−1

×
(
1 + Mψ(w)

)(
1 + Mϕ(w)

)−1

=
(
1 + Mϕ(w)

)(
1 + Mϕ(w)

)−1 = 1.

It follows that the coefficients in the power series expansion of Hϕ,ψ(x,z)
satisfy conditions (12) and (13), which determine these coefficients uniquely.

For part (b), we observe that

1 + Rψ(z) − Rϕ,ψ(z) =
(
1 − x · z + Rψ(z)

)
Hϕ,ψ(x,z)

=
(
1 − x · z + Rψ(z)

)(
1 +

∑
�u

A�u(x)z�u

)

or

−Rϕ,ψ(z) = −
∑

i

xizi +
∑

�u

A�u(x)z�u

−
∑
i,�u

xiA�u(x)ziz�u +
∑

�u

A�u(x)Rψ(z)z�u.

Identifying coefficients of ziz�u with |�u| = n, we get

xiA�u(x) = A(i,�u)(x) +
n−1∑
j=0

Rψ
[
xixu(1) · · · xu(j)

]
A(u(j+1),...,u(n))(x)

+ Rϕ,ψ[xix�u].

For part (c),

Hϕ,ψ
(
x,

(
1 + Mψ(w)

)
w

)
= (1 − x · w)−1

(
1 + Mϕ(w)

)−1
,

so that

(1 − x · w)−1 =
(

1 +
∑

�v

A�v(x)
[(

1 + Mψ(w)
)
w

]
�v

)(
1 + Mϕ(w)

)
.
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It follows that for |�u| = n,

x�u =
n∑

k=0

∑
B⊂ {1,...,n}

B={i(1),...,i(k)}

k∏
j=1

ψ
[
xu(i(j−1)+1) · · · xu(i(j)−1)

]

×ϕ
[
xu(i(k)+1) · · · xu(n)

]
A(�u:B)(x).

Part (d) is obtained by combining parts (c) and (d) of Proposition 10. �
Proposition 5. For any ϕ,ψ, the c-free Appell polynomials are the unique

polynomial family satisfying

(ψ ⊗ I)∂iP (X1,X2, . . . ,Xn) = δi1P (X2, . . . ,Xn)

and
ϕ[P (X1,X2, . . . ,Xn)] = 0.

The proof is similar to Proposition 1.

Corollary 6. The Boolean Appell polynomials of [Ans09a] are, in agree-
ment with part (b) of Example 6, the c-free Appell polynomials corresponding
to ψ = δ0.

Proof. For any monomial,

(δ0 ⊗ I)∂i

(
Xu(1)Xu(2) · · · Xu(n)

)
=

∑
j:u(j)=i

(
δ0 ⊗ I

)((
Xu(1) · · · Xu(j−1)

)
⊗

(
Xu(j+1) · · · Xu(n)

))
= δi,u(1)Xu(2) · · · Xu(n) = Di

(
Xu(1)Xu(2) · · · Xu(n)

)
.

So polynomials satisfying the conditions in the preceding proposition with
ψ = δ0 are exactly those satisfying the definition in Section 3.2 of [Ans09a]. �
5.2. Orthogonality. The argument in equation (14) shows that for any
ψ, the c-free Appell polynomials are also Boolean (and hence free) Sheffer
polynomials for ϕ:

Hϕ,ψ(x,z) =
(
1 − x · V(z)

)−1(1 − ηϕ(V(z))
)
,

where
Vi(z) =

(
1 + Rψ(z)

)−1
zi.

In one variable, every Boolean Sheffer family of ϕ is of this form, but this is
not the case in several variables because of the special form of the series V.
By Proposition 7 of [Ans09a], these polynomials are orthogonal if and only if

(Diη
ϕ)(V(z)) = zi

and ϕ is a free Meixner state. Lemma 7 and Theorem 8 below separate these
two conditions and describe a number of other properties equivalent to them.
The orthogonality is with respect to the state ϕ.
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Lemma 7. The following are equivalent.
(a) The two-state free cumulant generating function of (ϕ,ψ) is simple qua-

dratic:

Rϕ,ψ(z) =
d∑

i=1

z2
i .

(b) ϕ = Φ[ψ].
(c) All of the c-free Appell polynomials for (ϕ,ψ) are orthogonal to the degree

one c-free Appell polynomials, and ϕ has mean zero and identity covari-
ance.

Proof.
d∑

i=1

(
1 + Mψ(w)

)
wi

(
1 + Mψ(w)

)
wi = Rϕ,ψ

((
1 + Mψ(w)

)
w

)
=

(
1 + Mψ(w)

)
ηϕ(w)

if and only if

ηϕ(w) =
d∑

i=1

wi

(
1 + Mψ(w)

)
wi

so that ϕ = Φ[ψ]. Thus (a) ⇔ (b).
It follows from the recursion relation in part (b) of Proposition 4 that

ϕ[Aϕ,ψ(X)Aϕ,ψ(X1,X2, . . . ,Xn)] = ϕ
[
(X − ϕ[X])Aϕ,ψ(X1,X2, . . . ,Xn)

]
= Rϕ,ψ[X,X1, . . . ,Xn].

So the degree one c-free Appell polynomials are orthogonal to the rest if and
only if

Rϕ,ψ
[
xu(1), xu(2), . . . , xu(n)

]
= 0

for n > 2 and Rϕ,ψ[xi, xj ] = 0 for i �= j, so that Rϕ,ψ(z) =
∑d

i=1(aizi + biz
2
i ).

The normalization of ϕ forces Rϕ,ψ(z) =
∑d

i=1 z2
i . �

Remark 9. A free version of the mapping Φ was considered in the last
section of [Ans08b]; the states described there are the image under the appro-
priate Bercovici-Pata bijection of the states in the next theorem.

Theorem 8. Let ϕ,ψ be states with MOPS, ϕ with mean zero and identity
covariance. The c-free Appell polynomials Aϕ,ψ are orthogonal if and only if
either of the following equivalent conditions holds:
(a) Rϕ,ψ and Rψ are both quadratic,

Rϕ,ψ(z) =
d∑

i=1

z2
i
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and

Rψ(z) =
d∑

i=1

bizi +
d∑

i=1

(1 + ci)z2
i .

(b) ψ is the joint distribution of freely independent semicircular elements with
means bi and variances 1 + ci, bi ∈ R, ci ≥ −1, and

ϕ = Φ[ψ].

In any case, ϕ is a free Meixner state, and

DiDjη
ϕ = δij + biDjη

ϕ + (1 + ci)Diη
ϕDjη

ϕ.

Proof. The main result (Theorem 2) of [Ans08a] states that polynomials
with respect to a state with MOPS are orthogonal if any only if they satisfy
a recursion relation involving polynomials of only three consecutive total de-
grees. Comparing that result with the recursion in part (b) of Proposition 4,
this is the case exactly when

Rϕ,ψ[X1,X2, . . . ,Xn] = Rψ[X1,X2, . . . ,Xn] = 0

for n ≥ 3, so that both the cumulant functions are quadratic.
For the change of variable (6), the generating function for the c-free Appell

polynomials is

Hϕ,ψ(x,z) = (1 − x · w)−1
(
1 + Mϕ(w)

)−1 = (1 − x · w)−1
(
1 − ηϕ(w)

)
.

By Proposition 7 of [Ans09a], the polynomials with such a generating function
are orthogonal if and only if ϕ is a free Meixner state and

Diη
ϕ(w) = zi.

That is,
ηϕ(w) =

∑
i

wizi =
∑

i

wi

(
1 + Mψ(w)

)
wi

and ϕ = Φ[ψ].
It remains to show that the only ψ such that Φ[ψ] is a free Meixner state

are the ones in the statement of the theorem. Indeed,

Djη
ϕ(w) =

(
1 + Mψ(w)

)
wj

and so
DiDjη

ϕ(w) = δij + DiM
ψ(w)wj .

On the other hand,

Diη
ϕ(w) = Di

((
1 + Mψ(w)

)−1
Rϕ,ψ

((
1 + Mψ(w)

)
w

))
(15)

= (DiR
ϕ,ψ)

((
1 + Mψ(w)

)
w

)
and using equation (4),

DiM
ψ(w) =

(
1 + Mψ(w)

)
(DiR

ψ)
(
w

(
1 + Mψ(w)

))
.



56 M. ANSHELEVICH

It follows that if ϕ is a free Meixner state, with ηϕ satisfying equation (11),
then

DiDjη
ϕ(w) = δij + DiM

ψ(w)wj

= δij +
∑

k

Bk
ij

(
1 + Mψ(w)

)
wk

+ (1 + Cij)
(
1 + Mψ(w)

)
wi

(
1 + Mψ(w)

)
wj

= δij +
(
1 + Mψ(w)

)
(DiR

ψ)
(
w

(
1 + Mψ(w)

))
wj .

Therefore, for any i, j,∑
k

Bk
ijwk + (1 + Cij)wi

(
1 + Mψ(w)

)
wj = (DiR

ψ)
(
w

(
1 + Mψ(w)

))
wj .

It follows that Bk
ij = δjkbij and for all j,

bij + (1 + Cij)zi = DiR
ψ(z)

for zi = wi(1 + Mψ(w)), so that

Rψ(z) =
∑

i

bijzi +
∑

i

(1 + Cij)z2
i .

This is true for any j, therefore bij = bi, Cij = ci, and finally

Rψ(z) =
∑

i

(
bizi + (1 + ci)z2

i

)
,

so that ψ is a free product of semicircular distributions with means bi and
variances (1 + ci). �

Example 10. Similarly to Proposition 5, the c-free Appell polynomials
satisfy, and are characterized by, the properties

(I ⊗ ϕ)∂iA
ϕ,ψ(X1,X2, . . . ,Xn) = δinAψ(X1, . . . ,Xn−1)

and
ϕ[Aϕ,ψ(X1,X2, . . . ,Xn)] = 0.

In particular, if Aϕ,ψ(X1,X2, . . . ,Xn) are orthogonal with respect to ϕ, then

Aψ(X1, . . . ,Xn)

are the corresponding orthogonal polynomials of the second kind. Theorem 8,
combined with Proposition 3.18 of [Ans04], shows that the free Appell poly-
nomials Aψ are orthogonal if and only if ψ is a free product of semicircular
distributions. Thus, Aψ are orthogonal if and only if they are the polynomials
of the second kind for ϕ and Aϕ,ψ are orthogonal.
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Remark 11 (Conjugate variables in two-state free probability theory). For

X1,X2, . . . ,Xd ∈ (A, ϕ,ψ),

we can define their (formal) c-free conjugate variables ξi via
(ψ ⊗ ϕ)[∂iP (X1,X2, . . . ,Xd)] = ϕ[ξiP (X1,X2, . . . ,Xd)].

In particular,
ϕ[ξiA

ϕ,ψ(X1,X2, . . . ,Xd)] = (ψ ⊗ ϕ)[∂iA
ϕ,ψ(X1,X2, . . . ,Xd)] = δi1δd1

and more generally
ϕ[ξiA

X1,X2,...,Xd

�u (X1,X2, . . . ,Xd)] = δi,�u.

In one variable, if ϕ[p] =
∫

R
p(x)dμ(x), ψ[p] =

∫
R

p(x)dν(x), under appropriate
conditions on μ, ν

ξ(x) = π

(
Hν(x) + Hμ(x)

dν

dμ
(x)

)
,

where Hν(x) = 1
π

∫
R

1
x−y dν(y) is the Hilbert transform. Without a random

matrix connection, the use of these objects at this point is unclear, so we list
only one basic result. It elucidates the connection between minimization of
the free Fisher information on free semicircular variables, and the orthogo-
nality of the Chebyshev polynomials. In particular, it implies a version of
Proposition 6.9 of [Voi98].

Proposition 9. X1,X2, . . . ,Xd ∈ (A, ϕ,ψ) with well-defined formal c-free
conjugate variables satisfy

ϕ

[
d∑

i=1

ξ2
i

]
ϕ

[
d∑

i=1

X2
i

]
≥ d2.

Denoting their joint distributions μ = ϕX1,...,Xd and ν = ψX1,...,Xd , the equality
is achieved exactly for μ = Φ[ν]�λ (here � is the Boolean convolution, see
Section 4.4).

Proof. Since
d∑

i=1

ϕ[Aϕ,ψ(Xi)2] =
d∑

i=1

ϕ
[
(Xi − ϕ[Xi])2

]
=

d∑
i=1

Var[Xi],

it follows that

ϕ

[
d∑

i=1

ξ2
i

]
= ‖(ξ1, ξ2, . . . , ξd)‖2

ϕ

≥
〈(ξ1, ξ2, . . . , ξd), (Aϕ,ψ(X1),Aϕ,ψ(X1), . . . ,Aϕ,ψ(Xd))〉2

ϕ

‖(Aϕ,ψ(X1),Aϕ,ψ(X1), . . . ,Aϕ,ψ(Xd))‖2
ϕ

=
(
∑d

i=1 ϕ[ξiA
ϕ,ψ(Xi)])2∑d

i=1 ϕ[Aϕ,ψ(Xi)2]
=

d2∑d
i=1 Var[Xi]

.
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Therefore,

ϕ

[
d∑

i=1

ξ2
i

]
ϕ

[
d∑

i=1

X2
i

]
≥ ϕ

[
d∑

i=1

ξ2
i

]
d∑

i=1

Var[Xi] ≥ d2.

The equality is achieved if and only if each Xi is ϕ-centered and (ξ1, ξ2, . . . , ξd)
is a multiple of

(Aϕ,ψ(X1),Aϕ,ψ(X2), . . . ,Aϕ,ψ(Xd)).

Using the proof of Lemma 7, this says that Rϕ,ψ(z) = λ
∑d

i=1 z2
i , in other

words

ημ(w) = λ

d∑
i=1

wi

(
1 + Mν(w)

)
wi = ληΦ[ν]

and μ = Φ[ν]�λ. �

6. Fock space representation and processes

6.1. Fock space representation. Let A0 be an algebra without identity,
and μ, ν functionals on it. Let A be the unital algebra generated by non-
commuting symbols {X(f) : f ∈ Asa

0 } subject to the linearity relations

X(αf + βg) = αX(f) + βX(g).

Equivalently, A is the tensor algebra of A0. The star-operation on it is deter-
mined by the requirement that all X(f), f ∈ Asa

0 are self-adjoint. For such
f, fi, define the c-free Kailath–Segall polynomials to be multilinear maps W
from Asa

0 to A determined by

X(f) = W (f) + μ[f ],
X(f)W (f1) = W (f, f1) + W (ff1) + μ[ff1] + ν[f ]W (f1),

X(f)W (f1, f2, . . . , fn) = W (f, f1, f2, . . . , fn) + W (ff1, f2, . . . , fn)
+ ν[ff1]W (f2, . . . , fn) + ν[f ]W (f1, f2, . . . , fn).

Denoting
fΛ =

∏
i∈Λ

fi,

W (f1, f2, . . . , fn) is a polynomial in {X(fΛ) : Λ ⊂ {1,2, . . . , n}}.
In the case that μ, ν are positive (semi-)definite, the c-free Kailath–Segall

polynomials have a representation on the Fock space

CΩ ⊕ L2(A0, μ) ⊕
∞⊕

n=1

(
L2(A0, ν)⊗n ⊗ L2(A0, μ)

)
via

(16) W (f1, f2, . . . , fn)Ω = f1 ⊗ f2 ⊗ · · · ⊗ fn,

so that for f ∈ Asa
0 , X(f) is a symmetric operator.
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Example 12. We recover the limiting distributions in the central and Pois-
son limit theorems of [BLS96] as follows. Let

A0 = {P (x) ∈ C[x]|P (0) = 0}.

In the analog of the Gaussian representation, we take μ[x] = ν[x] = 0, skip the
second term in the recursions, and quotient out by the relation x2 − 1 (see
Example 4.14 of [Ans04] for more details). Then each W is a polynomial in
x, with recursions

x = W1(x),
xW1(x) = W2(x) + μ[x2],
xWn(x) = Wn+1(x) + ν[x2]Wn−1(x).

Similarly, for the analog of the Poisson distribution, we take μ[xi] = μ[xj ],
ν[xi] = ν[xj ] for all i, j, and quotient out by the relation x2 − x. Again each
W is a polynomial in x, with recursions

x = W1(x) + μ[x],
xW1(x) = W2(x) + (1 + ν[x])W1(x) + μ[x],
xWn(x) = Wn+1(x) + (1 + ν[x])Wn(x) + ν[x]Wn−1(x).

Proposition 10. For S ⊂ Outer(π), C ∈ Outer(π)\S, denote

C < S if ∃c ∈ C,B ∈ S, b ∈ B: c < b

and
C > S if ∀c ∈ C,B ∈ S, b ∈ B: c > b.

(a) The monomials have an expansion in terms of the c-free Kailath–Segall
polynomials:

X(f1) · · · X(fn) =
n∑

k=1

∑
π∈NC(n)

Outer(π)={B1,...,Bk }

∑
S⊂Outer(π)

∏
C∈Inner(π)

ν[fC ]

×
∏

C∈Outer(π)\S

C<S

ν[fC ]
∏

C∈Outer(π)\S

C>S

μ[fC ] W (fB : B ∈ S).

Pictorially, the outer classes C with C < S are “potentially inner,” since
they will become inner if the “open” classes of S are closed with something
to the left of them. See Figure 1 for an example.

(b) In the Fock space representation (16),

μ[f1f2 · · · fn] = Rϕ,ψ[X(f1),X(f2), . . . ,X(fn)]

and
ν[f1f2 · · · fn] = Rψ[X(f1),X(f2), . . . ,X(fn)]
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Figure 1. Graphical representation of the term ν[f6f7] ×
ν[f10]ν[f1f2]ν[f4]μ[f9f11]W (f3, f5f8), with π = {(1,2), (3),
(4), (5,8), (6,7), (9,11), (10)} and S = {(3), (5,8)}.

for
ϕ[X(f1)X(f2) · · · X(fn)] = 〈Ω,X(f1) · · · X(fn)Ω〉

and
ψ[X(f1) · · · X(fn)] =

∑
π∈NC(n)

∏
C∈π

ν[fC ].

It follows that if {fi} are mutually orthogonal, meaning fifj = 0 for i �= j,
then {X(fi)} are freely independent with respect to ψ and c-free with
respect to (ϕ,ψ) (and also (ϕ|ψ)-free).

(c) The c-free Kailath–Segall polynomials are

W (f1, f2, . . . , fn)

=
∑

π∈Int(n)

∑
S⊂Sing(π)

(−1)n− |Sc |
∏

{i} ∈S

i �=n

ν[fi]
∏

{n} ∈S

μ[fn]
∏

B∈Sc

X(fB),

where Sing(π) are all the singletons (one-element classes) of π, and∏
{n} ∈S

μ[fn] = 1

if {n} /∈ S. See Figure 2 for an example.
(d) The c-free Appell polynomials have an expansion in terms of the c-free

Kailath–Segall polynomials:

Aϕ,ψ(X(f1),X(f2), . . . ,X(fn)) =
∑

π∈Int(n)

π=(B1,B2,...,Bk)

W (fB1 , fB2 , . . . , fBk
).

Figure 2. W (f1, f2) expanded as X(f1)X(f2) − X(f1f2) −
X(f1)μ[f2] − ν[f1]X(f2) + ν[f1]μ[f2].
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Figure 3. Aϕ,ψ(X(f1),X(f2),X(f3)) expanded as W (f1,
f2, f3) + W (f1, f2f3) + W (f1f2, f3) + W (f1f2f3).

In particular, this linear combination of the Kailath–Segall polynomials is
in fact a polynomial in {X(f1),X(f2), . . . ,X(fn)} only. See Figure 3 for
an example.

Proof. The proofs are by induction and very similar to the calculations in
[Ans04], so we only outline them. For part (a), multiplying the sum by X(f0)
on the left and applying the recursions results in the following transformations
of the pair (π,S): for B the left-most class of S,

If S = ∅, π �→ {0} ∪ π, S �→ {0} or S �→ S,

If |S| ≥ 1, π �→ {0} ∪ π, S �→ {0} ∪ S or S �→ S,

π �→
{

{0} ∪ B
}

∪ (π\ {B}),

S �→
{

{0} ∪ B
}

∪ (S\ {B}) or S �→ S\{B},

which produce all possible choices of new such pairs.
Part (b) follows from part (a) since

〈Ω,X(f1) · · · X(fn)Ω〉 =
∑

π∈NC(n)

∏
C∈Inner(π)

ν[fC ]
∏

B∈Outer(π)

μ[fB ].

For part (c), using this expansion for W (f0, f1, . . . , fn) and applying the re-
cursions gives the following transformations: for C the left-most class of π,

π �→ {0} ∪ π, S �→ S or S �→ {0} ∪ S,

π �→
{

{0} ∪ C
}

∪ (π\ {C}), S �→ {{0} ∪ C} ∪ (S\{C}) or S �→ S,

π �→
{

{0} ∪ C
}

∪ (π\ {C}), S �→ {{0} ∪ C} ∪ (S\{C}).

The identical terms in the second and third line come with opposite signs, and
as a result one again gets all possible pairs such that S consists of singletons.

For part (d), we show that the sum on the right-hand side satisfies the
recursion of the c-free Appell polynomials. The proof is identical to Proposi-
tion 3.22 of [Ans04]. �

6.2. Processes with c-free increments and polynomial martingales.
There are two natural ways to evolve pairs of states in two-state free proba-
bility theory. One way is to choose a freely infinitely divisible state ρ and an
arbitrary state ψ, and evolve ϕ with Rϕ,ψ(z) = Rρ(z) as

Rϕ(t),ψ(z) = tRρ(z) = Rρ�t

(z).
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It is not hard to see that in this case, ϕ(t) = ϕ�t, and so for any ψ, we get a
Boolean convolution semigroup, which corresponds to a process with Boolean
independent increments. The other way is the evolution ϕ(t) of Remark 8 of
[Ans09b], which corresponds to processes with c-free increments and ψ-free
increments. A Fock space representation in Remark 13, or the constructions
in [BS91], provide examples of such processes.

Proposition 11. Let π ∈ P (n) have the property that the collections

{Xi : i ∈ B}B∈π

are c-free with respect to (ϕ,ψ) and freely independent with respect to ψ. Let
σ ∈ Int(n),

σ = (C1,C2, . . . ,Ck)

be the largest partition in Int(n) with σ ≤ π. In other words, classes of σ are
the largest consecutive subsets of classes of π. Then

Aϕ,ψ(X1,X2, . . . ,Xn) =
k−1∏
i=1

Aψ(Xj : j ∈ Ci)Aϕ,ψ(Xj : j ∈ Ck).

Proof. It suffices to show that the right-hand side of the equation above
satisfies the two conditions in the definition of Aϕ,ψ . Indeed, for s ∈ Cl, l < k,

∂s

(
k−1∏
i=1

Aψ(Xj : j ∈ Ci)Aϕ,ψ(Xj : j ∈ Ck)

)

=
l−1∏
i=1

Aψ(Xj : j ∈ Ci)Aψ(Xj : j ∈ Cl, j < s)

⊗ Aψ(Xj : j ∈ Cl, j > s)Aϕ,ψ(Xj : j ∈ Ck)

= Aψ(Xj : j < s) ⊗ Aψ(Xj : j ∈ Cl, j > s)Aϕ,ψ(Xj : j ∈ Ck),

and for s ∈ Ck,

∂s

(
k−1∏
i=1

Aψ(Xj : j ∈ Ci)Aϕ,ψ(Xj : j ∈ Ck)

)

=
k−1∏
i=1

Aψ(Xj : j ∈ Ci)Aψ(Xj : j ∈ Ck, j < s)

⊗ Aϕ,ψ(Xj : j ∈ Ck, j > s)

= Aψ(Xj : j < s) ⊗ Aϕ,ψ(Xj : j ∈ Ck, j > s),
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where we have used Proposition 3.13 of [Ans04], which states the same fac-
torization property for the free Appell polynomials. Also, by Lemma 3,

ϕ

[
k−1∏
i=1

Aψ(Xj : j ∈ Ci)Aϕ,ψ(Xj : j ∈ Ck)

]

=
k−1∏
i=1

ϕ[Aψ(Xj : j ∈ Ci)]ϕ[Aϕ,ψ(Xj : j ∈ Ck)] = 0. �

See Remark 5 of [Ans09a] or Remark 2.2 of [BB09] on the relation which
the following result bears to the statement “the c-free Appell polynomials are
martingale polynomials.”

Proposition 12. If {Xi, Yi|i = 1, . . . , n} ⊂ (Asa, ϕ,ψ), B ⊂ A a subalgebra,
{Xi} ⊂ B ⊂ A and {Yi} are c-free and ψ-freely independent from B, then for
any X ∈ B,

ϕ[XAϕ,ψ(X1 + Y1,X2 + Y2, . . . ,Xn + Yn)] = ϕ[XAϕ,ψ(X1,X2, . . . ,Xn)].

Proof. Using the preceding proposition, the expression

ϕ[XAϕ,ψ(X1 + Y1,X2 + Y2, . . . ,Xn + Yn)]

can be expanded as∑
�u=(u(1),u(2),...,u(2k))

u(1)+u(2)+···+u(2k)=n

ϕ
[
XAψ

(
X1, . . . ,Xu(1)

)
Aψ

(
Yu(1)+1, . . . , Yu(1)+u(2)

)
· · ·

× Aϕ,ψ
(
Yu(1)+···+u(2k−1)+1, . . . , Yu(1)+···+u(2k)

)]
+

∑
ϕ[XAψ(X1, . . .) · · · Aϕ,ψ(. . . ,Xn)]

+
∑

ϕ[XAψ(Y1, . . .) · · · Aϕ,ψ(. . . ,Xn)]

+
∑

ϕ[XAψ(Y1, . . .) · · · Aϕ,ψ(. . . , Yn)].

Each term in this sum is of the form ϕ[x1y2x2y2 · · · ], with xi ∈ B, yi c-free and
ψ-freely independent from B, and all the terms satisfying ψ[xi] = ψ[yi] = 0,
except x1 and the last term. Applying conditional freeness and Lemma 3, this
equals the product

ϕ[x1]ϕ[y1]ϕ[x2]ϕ[y2] · · · .

Moreover, unless there are no y terms at all, the last term is Aϕ,ψ and ϕ
applied to it is zero. So the only nonzero term in the sum is

ϕ[XAϕ,ψ(X1,X2, . . . ,Xn)]. �

Remark 13 (Fock space representation of processes with c-free increments).
Let ϕ,ψ be states on C〈x〉 such that (ϕ,ψ) are c-freely infinitely divisible and
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ψ is freely infinitely divisible. In other words, Rϕ,ψ and Rψ are conditionally
positive definite, see [Ans09b]. On

A0 = {P (x) ∈ C〈x〉|P (0) = 0} ⊗ L∞[0,1],

define functionals

μ[P (x) ⊗ f ] = Rϕ,ψ[P (x)]
∫ 1

0

f(t)dt,

ν[P (x) ⊗ f ] = Rψ[P (x)]
∫ 1

0

f(t)dt.

Then μ, ν are positive semi-definite, so one has a Fock representation for the
corresponding c-free Kailath–Segall polynomials as in Proposition 10. Denote

Xi(t) = X
(
xi ⊗ 1[0,t)

)
.

Then {X(t)} is a process with stationary c-free and ψ-freely independent
increments.

Let

ϕ[W (P1 ⊗ f1, P2 ⊗ f2, . . . , Pn ⊗ fn)|t]
= W

(
P1 ⊗ 1[0,t)f1, P2 ⊗ 1[0,t)f2, . . . , Pn ⊗ 1[0,t)fn

)
,

and extend this operation to all of A. It follows from Proposition 10 that

ϕ
[
A

X1(t),...,Xd(t)
�u (X1(t), . . . ,Xd(t))|s

]
= A

X1(s),...,Xd(s)
�u (X1(s), . . . ,Xd(s)).
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