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FALLACIS" AND q-TRINOMIAL COEFFICIENTS 

GEORGE E. ANDREWS 

1. INTRODUCTION 

In [5], R. J. Baxter and the author introduced q-analogs of the coefficients 
in the Laurent polynomial 

(1.1) n () -I n n' (l+x+x ) = L . Xl. 
j=-n } 2 

The coefficients in (1.1) are called trinomial coefficients (although the same 
name is used for the coefficients arising in (x + y + z)n). Now trinomial coef-
ficients have a rather sparse literature. There are occasional references to them 
in combinatorics books (e.g., [11]; indeed Euler found them worthy of a 20 
page account [12]). However they have seen little development perhaps for two 
reasons: (1) their elementary properties mimic closely those of binomial coeffi-
cients, and (2) there is no nice simple formula for them as there is for binomial 
coefficients: (~) = n!j(m!(n - m)!). Indeed the simplest formulas for (~)2 
(easily derived from (1.1)) are 

( 1.2) 

and 

( 1.3) 

( n) n! 
m 2=~j!(j+m)!(n-2j-m)!' 

1_ 

neither of which is especially attractive. 
It came as a real surprise that q-analogs of these numbers were to play a 

crucial role in the solution of a model in statistical mechanics [5]. For example 
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[5, §4], we required a representation of the polynomials defined by 

3 
( 1.4) b m(3-b) "'" . Ym(a, ; q) = q L.J Ym- I (a, J; q) , 

j=4-b 

{ I ifa=b, 
Yo(a, b; q) = 0 th . o erwlse 

(1.5) 

(where a and b are among {I, 2, 3}), so that, for example, 
00 

(1.6) II 
n=1 

n;iEO, ±3 (mod 7) 

would be an immediate corollary. The representation we found was [5, p. 319, 
equation (4.7), j = k = 1] 

Y (3' ) = ~ 14.112+.11 (m; 7 J.l; q) 
m ,q L.J q 7J.l 

.11=-00 2 (1.7) 
_ ~ 14.112+13.11+3 (m; 7 J.l + 3; q) 
.u~oo q 7 J.l + 3 2 ' 

where 

(1.8) 

and 
( 1.9) j-I (A)j = (A; q)j = (l-A)(l-Aq)···(l-Aq ). 

As we have described in [6], consideration of these polynomials was literally 
thrust upon us. We should emphasize the similarity between the above and 
Schur's polynomial proof of the Rogers-Ramanujan identities [13, §4]. The 
polynomials Schur examined were given by GI(q) = G2(q) = 1 and Gn(q) = 
Gn_1 (q) + qn-2Gn_2(q) for n > 2. Schur showed that 

( 1.10) G () = ~ (_l)A A(5A+I)/2 [ n 1 
n+1 q A~OO q l n ~ 5A. J q 

where Lx J is the greatest integer ::; x and 
(1.11) 

{ 
(1 _ qA)(1 _ qA-I) ... (1 _ qA-B+I) 

[A] [A] B B-1 ' B = B = (l-q :(1-q )···(l-q) 
q 0 othefWlse. 

O::;B::;A, 

Since generalizations of Schur's identity (1.10) have been utilized extensively 
in physics [3, 8] and additive number theory [1, 4, 7, 9, 10], one may naturally 
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ask whether the q-trinomial coefficients, appearing in a similar context such as 
(1.7), may have diverse applications rivalling those of the q-binomial coeffi-
cients. 

It would seem that to answer this question one would need to identify the 
q-trinomial coefficients as the generating functions of certain partition-like ob-
jects. While there are certain rather artificial interpretations (see §7), none has 
yielded any combinatorial explanation of (1.7) as the combinatorics of the q-
binomial coefficients explains (1.10) [1]. This is surely the key aspect of these 
polynomials, and unfortunately it will not be resolved in this paper. However 
we shall consider related questions which we hope will provide further evidence 
for the power of q-trinomial coefficients and consequently for the importance 
of understanding them fully. 

Obviously one way to proceed is to attempt to investigate any unresolved 
mysteries related to the trinomial coefficients themselves. As Richard Guy and 
Donald Knuth pointed out, Euler [12, pp. 54-55] presented such a mystery 
in two truly surprising pages devoted to Exemplum Memorabile Inductionis 
Fallacis. Euler first computed (~)2 for 0:5 m :5 9: 

1,1,3,7,19,51,141,393,1107,3139, .... 
He then triples each entry in a row shifted one to the right: 

1,1,3,7,19,51,141,393,1107,3139, '" 
3,3,9,21,57,153,423,1179,3321, ... , 

and starting with the first two-entry column, he subtracted the first row from 
the second: 

2,0,2,2,6, 12,30, 72, 182, ... , 
each of which may be factored into two consecutive integers: 

1 ·2, O· 1, 1 ·2, 1 ·2, 2·3, 3·4, 5·6, 8·9, 13· 14, .... 
The first factors make up the Fibonacci sequence Fn defined by F_I = 1, 
Fo = 0, Fn = Fn_ 1 + Fn_2 for n > O. 

Su;prisingly, however, this marvelous rule 

(1.12) 3(m;I)2 - (m;2)2 = Fm(Fm + 1), -1 :5m:57, 

is false for m > 7. In order to understand (1.12) we define 

(1.13) Em (a , b) = f ((10~a) - (10':+ b) ). 
).=-00 2 2 

As part of Theorem 2.1, we show that 
(1.14) 2Em+ I(0, 1) = Fm(Fm + 1), 
from which (1.12) follows by inspection (see Corollary 2.2). However our real 
concern lies with the q-analogs of the various formulae appearing in Theo-
rem 2.1. What develops in this instance is not another proof of the Rogers-
Ramanujan identities, but rather new identities for the even and odd parts 
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of the Rogers-Ramanujan functions. To be more explicit, we recall the first 
Rogers-Ramanujan function: 

00 n2 

G(q) = L q 2 n 
n=O (1 - q)( 1 - q ) ... (1 - q ) 
00 1 

= g (1 _ q5n+I)(I _ q5n+4) . 

( 1.15) 

Then for the even part of G(q) we have (see (6.22» 

1 ~oo (60).2-4), _ 60).2+44),+8) 
( 1 16) (G() G( » L.J).=-oo q q 

. :2 q + -q = n°o (1 _ 2n) 
n=1 q 

and for the odd part we have (see (6.22» 
1 ~oo (60).2+16),+1 _ 60;.2+64),+17) 
-(G( ) - G(- » _ L.J).=-oo q q 
2 q q - n°o (1 _ 2n) 

n=1 q 
( 1.17) 

These identities, which can be proved by other means, are limiting cases of 
the following Schur polynomial identities (see (6.16) and (6.17»: 
( 1.18) 

1 1/2 1/2 :2(G2m+l (q )+G2m+I (-q » 

= ~ 30;.2-2). (m; lOA.; q) _ ~ 30).2+22).+4 (m; lOA. + 4; q) 
L- q lOA. L- q lOA. + 4 ' 

;'=-00 2 ;'=-00 2 

( 1.19) 
-1/2 q 1/2 1/2 -2-(G2m+l (q ) - G2m+I (-q » 

= ~ 30;.2+8), (m; lOA. + 1; q) _ ~ 30).2+32).+8 (m; IDA. + 5; q) 
;.~oo q IDA. + 1 2 ;.~oo q IDA. + 5 2· 

By investigating Euler's Exemplu~ Memorabile Inductionis Fallacis we are 
led to results which raise more questions than they answer. In particular, the 
legacy of Schur's polynomials [1, 4, 8, 9, 10] suggests that q-trinomial coeffi-
cients can provide combinatorial explanations of (1. 7), (1.18), and (1.19). 

Just as Schur [13, equation (30)] proved the simpler 

( 1.20) ~ (_1)1.1 JL(3JL+I)/2 [ n ] - 1 L- q Ln - 3fJJ -
JL=-OO 2 

(a finite version of Euler'S Pentagonal Number Theorem), we shall also (in §§3 
and 5) look at the much simpler case of ( 1.13) in which the lOis replaced by 6. 

In §2 we shall examine Em(a, b) and Euler's remarkable example of a mis-
leading induction. Section 3 briefly treats the sequences of (1.13) when lOis 
replaced by 6. In §4 we provide the necessary background and new lemmas for 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



EULER'S "EXEMPLUM MEMORABILE INDUCfIONIS FALLACIS" 657 

the q-trinomial coefficients. In §5 we provide q-analogs of the results in §3. In 
§6 we treat q-analogs of the Em(a, b); this yields, among other things, (1.18) 
and (1.19). Our work raises new questions and these are briefly described in 
the conclusion. 

I wish to thank Ray and Christine Ayoub for translating Euler's Exemplum 
Memorabile Inductionis Fallacis for me. 

2. THE Em(a, b) AND EULER'S MISLEADING INDUCTION 

Actually the only hard part of understanding (1.12) is writing down (1.13). 
Once that has been done the following theorem is quite easy. 
Theorem 2.1. 

(2.1) 
(2.2) 
(2.3) 
(2.4) 
(2.5) 
(2.6) 

(2.7) 
(2.8) 
(2.9) 
(2.10) 

2Em(l, 2) = 2Em_I(0, 3) = 2Em+I(0, 1) = Fm(Fm + 1), 
Em (1 , 4) = Em+1(2, 3) = Fm+IFm, 

2Em(3, 4) = 2Em_ I(2, 5) = 2Em+I(4, 5) = Fm(Fm -1), 
2Em(l, 3) = F2m + Fm, 
2Em(2, 4) = F2m - Fm, 

2Em (1, 5) = F2m+ 1 - Fm_ l , 

2Em(0, 4) = F2m+1 + Fm_ l , 

2Em(0, 2) = F2m- 1 + Fm+l , 

2Em(3, 5) = F2m_1 - Fm+l , 

Em(O, 5) = F2m_1 +FmFm_ l • 

Remark. This result gives us Em (a, b) for every pair of integers a, b because 
clearly 

Em(a, b) = -Em(b, a), Em(10r + a, lOs + b) = Em(a, b), 
and 

Em(10 - a, b) = Em (a , b) = Em (a , 10 - b). 
Proof. We recall the Euler-Binet formula for the Fibonacci numbers (12, p. 54] 

</>n _ (fJn 
(2.11) Fn = v'5 ' 

where </> = (1 + v'5)/2 and (fJ = (1 - v'5)/2 are roots of the equation 
(2.12) x2-x-1 =0. 

Thus each extreme right-hand entry of (2.1)-(2.10) is of the form 

(2.13) A(</>2)m + B«(fJ2)m + C</>m + D(fJm + E( _l)m . 

Therefore each of these sequences satisfies a fifth-order recurrence whose aux-
iliary equation [15, p. 153] is 

(2.14) (x2 -x - l)(x2 - 3x + I)(x + I) = x 5 - 3x4 _x3 + 5x2 +x - 1, 

since </>2 and (fJ 2 are the roots of x 2 - 3x + 1 = O. 
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On the other hand, if e = e27Ci/ 1O , then 
(2.15) 

Em (a , b) = /0 f t (;) (ej(J.l-a) - ej(J.l-b» 
J.l=-oo )=0 2 

9 
= J... :2:(1 +ej +e-j)m(e-aj _e-bj ) 

10 j=O 
4 

= ~:2:(1 + 2COS(1Cjj5))m(cOS(1Cajj5) - cos(1Cbjj5)) 
j=1 

+ /o(-I)m«-lt - (_I)b) 

2 
= ~ :2:{(1 + 2COS(1Cjj5))m - (1 - 2COS(1Cjj5»m} 

j=1 

x (cos(1Cajj5) - cos(1Cbjj5» + /O(-I)m«-lt - (-1/) 

= a(¢hm + p(if>2)m + y<jJm + t5¢m + e(_I)m, 

since <jJ2 = 1 + 2COS(1Cj5), "4>2 = 1 - 2cos(21Cj5) , <jJ = 1 + 2 COS(21Cj5) , and 
¢ = 1 - 2COS(1Cj5). 

Hence by (2.13) and (2.15) we see that every entry in (2.1)-(2.10) satisfies 
the fifth-order recurrence whose auxiliary polynomial is (2.14). Therefore our 
theorem follows by mathematical induction provided all the assertions are true 
for m ~ 6, and this is easily verified by inspection. .0 

Corollary 2.2. For m ~ 7 , Equation (1.14) holds. 
Proof. From (1.1) we see that 

Hence 

(2.17) 

3(m; 1)2 - (m;2)2 = 3(m; 1)2 - (m_~ 1)2 - (m; 1)2 - (mt 1)2 
=2(m;I)2 -2(mtl)2 
= 2Em+ 1(0, 1) (for m ~ 7) 
= Fm(Fm + 1) (by (2.1». 0 

Obviously similar corollaries can be produced from all the other assertions 
in Theorem 2.1; however none seems quite this dramatic. 
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Also, the reader may wonder why we have treated differences of two trinomial 
coefficients in our sums. The following formula (proved exactly like Theorem 
2.1) makes clear how much simpler the differencing results tum out: 

IF2 IF2 IF F 2F IF 3m of 2 m + 2 m-I + 2 m-I m + 5 m-I + 5 m + 10 ° 1 a = 0, 
IFF I F2 I F I F 3m of 2 m-I m + 2 m - 'iO m-I + 5 m + 10 1 a = 1, 
IFF I F 3 F ·3m of "" ( m) 2 m-I m - 'iO m-I - 'iO m + 10 1 a = 2, 

(2.18) .. ];"" IOl+a 2= -!Fm_IFm--kFm_l-foFm+~~ ifa=3, 

IFF I F2 I F I F 3m of -2 m-I m - 2 m - 'iO m-I + 5 m + 10 1 a = 4, 
1 F2 IFF I F2 2 F I F 3m of 5 -2 m-I - 2 m-I m - 2 m + 5 m-I + 5 m + 10 1 a = . 

Additionally, we have been unable to find any reasonable q-analogs of any 
part of (2.18). 

3. RECURRENCES RELATED TO 6 

Obviously the sequences defined by (1.13) are speci~l cases of 

(3.1) Wm(k; a, b) = f ((k;'': a) - (k;'': b) ) . 
~-oo 2 2 

The case k = 7 is considered extensively in [5]. Elsewhere we shall treat k = 4 
and 5, which have somewhat different q-analogs. For later work in this paper, 
we shall find it useful to treat the case k = 6 . 

Theorem 3.1. 

(3.2) Wm+1(6; 0,1) = Wm+1(6; 0,1) = Wm+1(6; 2, 3) = Wm(6; 1,2) 
= Wm_1(6; 0,3) = (2m - (_I)m)/3, 

'"" '"" m-l (3.3) IBm(6; 0, 2) = IBm(6; ,1,3) = 2 . 
Proof. Now each entry satisfies a recurrence whose auxiliary polynomial is x 2 _ 

X - 2 = o. The rest is as before, only easier. 0 

4. q-TRINOMIAL COEFFICIENTS 

In [5], R. J. Baxter and the author studied six q-analogs of (j)2. To our 
surprise, there are intricate facts and relationships among the q-analogs which 
we found quite refractory. We shall require a selection of these results including 
three q;...analogs. First, the definitions [5, Equations (2.7), (2.8), (2.9), (2.13), 
and (2.14)]: 

( 4.1) ( m; B; q) = L qi(j+B) (q)m , 
A 2 i?O (q)/q)i+A(q)m-2i-A 

~ i[m] [2m-2 j ] To (m , A, q) = L.) -1) j 2 m _ A _ j , 
)=0 q 

(4.2) 
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and 

~ j [m] [2m - 2j ] (4.3) T,(m,A,q)=~(-q) j 2 m-A-j , 
}=o q 

where 

(4.4) 

and 
(4.5) n-' (A; q)n = (A)n = (I-A)(I-Aq)···(I-Aq ). 

These are indeed q-analogs of the trinomial coefficients since [5, p. 299] 

(4.6) (m. B' 1) (m) 'A' 2 =To(m,A, 1)=T,(m,A, 1)= A 2' 

There are easily established symmetry relations [5, p. 299, Equation (2.15)] 

(4.7) ( m; B; q) = qA(A+B) (m ; B + 2A ; q) , 
-A 2 A 2 

while, immediately from (4.4), we see that 

(4.8) (i = 0 or.1). 
We shall require only two of the several Pascal triangle recurrences [5, Equa-

tions (2.17) and (2.19)]: 

(4.9) m+A T, (m, A, q) = T, (m - 1 , A, q) + q To(m - I, A + I, q) 
m-A + q To(m - I, A - I , q), 

(4.10) m+A . 
To(m, A, q) = To(m - 1, A - I, q) + q T, (m - 1, A, q) 

2m+2A + q To(m - I, A + 1, q). 

Next we have an identity which reduces to a tautology when q = I [5, p. 301, 
Equation (2.20)]: 

m-A TI (m, A, q) - q To(m, A, q) - TI (m, A + 1, q) 
m+A+1 +q To(m,A+l,q)=O, 

(4.11) 

and two important identities [5, p. 305, Equations (2.33 i ) and (2.34)]: 

(4.12) 

and 

(4.13) (m; A ~ 1; q2)2 = qm(m-I)-A(A-I)T1(m, A, q-I). 

Also, we need to consider a sum of the To(m, A, q), so we define 

(4.14) U(m, A, q) = To(m, A, q) + To(m, A + 1, q). 
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Limiting values of our q-analogs are also needed [5, pp. 309-310, Equations 
(2.48), (2.53), (2.54)]: 

( 4.15) 1. (m; A; q) 1 1m =--, 
m-oo A 2 (q)oo 

2 
11'm U( A ) (-q; q )00 m, , q = 2 2 
m-~ (q ; q )00 

(4.16) 

In addition, two new lemmas are needed. 

Lemma 4.1. For m ~ I , 
(4.17) 

2m-1 U(m,A,q)=(I+q )U(m-I,A,q) 
m-A ) m+A+I ) + q TI (m - 1, A-I, q + q TI (m - 1, A + 2, q . 

Proof· 
U(m, A, q) - (I +q2m-I)U(m - 1, A, q) 

= To(m, A, q) + To(m, A + I, q) 
2m-1 - (1 + q )(To(m - 1, A, q) + To(m - 1, A + I, q» 

= To(m, A, q) - To(m - 1, A + 1, q) 
+ To(m, A + I, q) - To(m - 1, A, q) 

2m-1 2m-1 - q To(m - 1, A + 1 , q) - q To(m - 1, A, q) 
m-A 2m-2A = (q TI (m - 1, A, q) + q To(m - I, A-I, q» 

m+A+I 2m+2A+2 +(q T1(m-I,A+I,q)+q To(m-I,A+2,q» 
2m-1 2m-1 - q To(m - I, A + I, q) - q To(m - 1, A, q) 

(by two applications of equation (4.10)-with A replaced by -A in the first and 
by A + 1 in the second) 

m-A m-A = q (TI (m - 1, A, q) + q To(m - 1, A-I, q) 
m+A-I - q To(m - 1, A, q» 

m+A+I m+A+I + q (TI (m - 1, A + 1, q) + q To(m - IA + 2, q) 
m-A-2 - q To(m - 1, A + I, q» 

m-A m+A+I ( 2 ) = q TI (m - 1, A-I, q) + q TI m - 1, A+-, q 

(by two applications of (4.11 )-with A replaced by A-I in the first and by 
A + 1 in the second, and both with m replaced by m - 1). 0 

Lemma 4.2. For m ~ 2, 
(4.18) 
U(m, A, q) = (1 + q + lm-I)U(m - I, A, q) - qU(m - 2, A, q) 

2m-2A 2m+2A+2 +q To(m-I,A-2,q)+q To(m-2,A+3,q). 
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Proof. By Lemma 4.1, 

U(m, A, q) - (1 + q + im-1)U(m - 1, A, q) + qU(m - 2, A, q) 
m-A ) m+A+l = q Tl (m - 1, A-I, q + q Tl (m - 1, A + 2, q) 

- qU(m - 1, A, q) + qU(m - 2, A, q) 
m-A m+A+2 =q (T1(m-2,A-I,q)+q To(m-2,A,q) 

m-A +q To(m-2,A-2,q» 
m+A+l m+A+l +q (T1(m-2,A+2,q)+q To(m-2,A+3,q) 

m-A-3 + q To(m - 2, A + I, q)) 
m-l-A - q(To(m - 2, A + I, q) + q Tl (m - 2, A, q) 

2m-2A-2 + q To(m - 2, A-I, q)) 

- q(To(m - 2, A, q) + qm+AT1(m - 2, A + I, q) 
2m+2A +q To(m-2,A+2,q)) 

+ qTo(m - 2, A, q) + qTo(m - 2, A + 1, q) 

(by two applications of (4.10) and two of (4.9)) 

2m-2A ( 2 2m+2A+2 = q To m - 2, A - , q) + q To(m - 2, A + 3, q) 
m-A + q (T1 (m - 2, A-I, q) - Tl (m - 2, A, q) 

m-A-l m+A-2 - q To(m - 2, A-I, q) + q To(m - 2, A, q)) 
m+A+l + q (T1 (m - 2, A + 2, q) - Tl (m - 2, A + 1, q) 

m-A-3 m+A +q To(m-2,A+I,q)-q To(m-2,A+2,q)) 
(by cancelling and regrouping) 

2m-2A 2m+2A+2 2 = q To(m - 2, A - 2, q) + q To(m - , A + 3, q) 

(by two applications of (4.11 )-with A replaced by A - I in the first and by 
-A - 2 in the second, and both with m replaced by m - 2). 0 

5. THE q-ANALOG OF §3 

In this section we shall prove an identity, Theorem 5.1, which is, in fact, the 
q-analog of (3.4). From this we shall also deduce identities (83) and (86) in 
L. J. Slater's compendium [14] of Rogers-Ramanujan type identities. 

Theorem 5.1. 
m 2' 1 00 1 2A? +ll I1(l+qJ-)= L q (To(m,6A,q)+To(m,6A+I,q» 

j==l ).=-00 
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Proof. Let us denote the left-hand side of our theorem by Lm and the right-
hand side of Rm' Clearly Lm is uniquely defined by the conditions 

(5.1) L _ { 1 
m - (1 + lm-I)Lm_1 if m > O. 

if m = 0, 

On the other hand, Ro = 1 and 

00 1""2+",, 00 2 
R ~..,. ""U( 6 1 ) ~ qlll+1OA.+2U(m,6 1 +2,q) m = ~ q m, 1\., q - ~ I\. 

).=-00 ).=-00 

00 2 
- (1 2m-I)R + ~ III +ll+m-6).T ( _ 1 6 1 - 1 ) - + q m-I ~ q 1 m , I\. , q 

).=-00 

00 2 
+ L qlll+ll+m+6).+I TI (m_l,6it+2,q) 

).=-00 

00 2 - L qlll +lo).+2+m-6).-2 TI (m - 1, 6it + 1, q) 
).=-00 

00 2 - L q12). +lOA.+2+m+6A.+3 TI (m - 1, 6it -+ 4, q) 
).=-00 

2m-1 = (1 + q )Rm _ 1 

since the first sum (with it replaced by -it) cancels the third, and the fourth 
sum (with it replaced by -it - 1) cancels the second. 0 

Corollary 5.2. 

(5.2) 

~ 2j2 [m] = ~ Ill2_).(m; 6it; q) 
~q 2j ~ q 6it 
j?O ).=-00 2 

_ ~ Ill2+7J.+I (m; 6it + 2; q) 
~ q 6it+2' 

).=-00 2 

(5.3) 

"" 2/+2j [ m ] = ~ Ill2+5)' (m; 6it + 1; q) 
~ q 2j + 1 ~ q 6.it + 1 2 
j?O ).=-00 

_ ~ Ill2+13)'+3 (m; 6it + 3; q) ).f:'oo q 6it + 3 2 • 

Proof. Equation (5.2) is the even portion of Theorem 5.1 once it has had q 
2 

replaced by q-I and the result multiplied by qm ; equation (5.3) is the odd 
portion. 0 
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Finally we note that if m -+ 00 in (5.2), then we obtain (using (4.15) and 
the Jacobi triple product [2, p. 21]) 

n=l 

which is Slater's equation (83) [14, p. 160], and from (5.3) in the same way we 
obtain 

n=l 
which is Slater'S equation (86) [14, p. 161]. 

6. RESULTS RELATED TO THE ROOERS-RAMANUJAN IDENTITIES 

In order to provide q-analogs for some of the results in §2, we require the 
following polynomials: 

{
o ifn=O, 

Gn(q) = 1 if n = 1, 
Gn_l(q)+qn-2Gn_2 ifn~2, 

(6.1) 

and 

Obviously 
(6.3) 
Furthermore, it is a simple exercise in mathematical induction to prove that 
(6.4) 

and 
(6.5) 
In [2, p. 50, Example 10], it is shown that 

"'" j2 [n-l- j ] Gn(q) = L..J q . 
.>0 ] 1_ 

(6.6) 

and 

(6.7) 
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Reversing the order of summation in (6.6) and (6.7) and replacing q by q-I 
we obtain related reciprocal polynomials: 

(6.8) 

and 

(6.9) 

Theorem 6.1. 

(6.10) ).=-00 

00 2 - I: q40)' +36)'+8 U(m, lOA + 4, q), 

).=-00 

(6.11 ) ).=-00 

).=-00 

Proof. From (6.8) and (6.1) we can derive a defining second-order recurrence 
for Rm(q): 

(6.12) 
if m = 0, 
ifm=1, 
if m;::: 2. 

Hence to prove (6.10) we only need show that the right-hand side satisfies 
the same defining recurrence. Inspection shows the validity of (6.10) for m = ° 
and 1. So if Pm(q) denotes the right-hand side of (6.10), then by Lemma 4.2 
we obtain 

).=-00 

( 6.13) 

).=-00 

=0, 
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since the first portion of the first sum (with A. replaced by -A.) cancels the first 
portion of the second sum, and the second portion of the second sum (with A. 
replaced by -A. - 1) cancels the second portion of the first sum. 

Thus Pm(q) satisfies (6.12) and consequently (6.10) is valid. 
In the same way, it is easily verified that Sm(q) satisfies 

{ 
0 if m = 0, 

Sm(q) = 1 if m = 1, 
(1 + q + l2m-I)Sm_1 (q) - qSm_2(q) if m ~ 2. 

(6.14) 

As before, we let um(q) denote the right-hand side of (6.11), and we need 
only show that um(q) satisfies (6.14). Now by Lemma 4.2 we obtain 

2m-1 um(q) - (1 + q + q )um_ 1 (q) + qum_2(q) 

l=-oo 

( 6.15) 

l=-oo 

=0, 
since the first portion of the first sum (with A. replaced by -A.) cancels the first 
portion of the second sum, and the second sum (with A. replaced by -A. - 1) 
cancels the second portion of the first sum. 0 

Corollary 6.2. 
( 6.16) 

1 1/2 1/2 
2(G2m+l (q + G2m+ I(-q » 

= ~ 30l2-ll (m; lOA.; q) _ ~ 30l2+2ll+4 (m; lOA. + 4; q) 
L..J q lOA. L..J q lOA. + 4 ' 

l=-oo 2 l=-oo 2 

(6.17) 
-1/2 q 1/2 1/2 -2-(G2m+ l (q ) - G2m+I(-q » 

= ~ 30l2+8). (m; lOA. + 1; q) _ ~ 30l2+3ll+8 (m; lOA. + 5; q) 
L..J q lOA. + 1 L..J q 1 OA. + 5 ' 

l=-oo 2 l=-oo 2 

(.6.18) 
1 1/2 1/2 2(H2m (q ) + H2m(-q ) 

= ~ 30l2+4l (m; lOA. + 1; q) _ ~ 30l2+16l+2 (m; lOA. + 3; q) 
L..J q 10..1. + 1 L..J q 1 OA. + 3 ' 

l=-oo . 2 l=-oo 2 

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



EULER'S "EXEMPLUM MEMORABILE INDucnONIS FALLACIS" 667 

q-I/2 (H ( 1/2) _ H (_ 1/2» = ~ 30;.2+ 14;'+1 (m; lOA. + 2; q) 
2 2m q 2m q L- q 1OA.+2 

(6.19) ;'=-00 2 

_ ~ 30;.2+26),+5 (m; lOA. + 4; q) 
;'::--00 q lOA. + 4 2 • 

Proof. These four identities arise by replacing q by q -I in (6.10) and (6.11) 
and then extracting even functions and odd functions. 0 

Note that by (6.4) and (6.5) we see that Corollary 6.2 provides q-analogs of 
(2.7), (2.6), (2.4), and (2.5) respectively. 

Finally we note that if m -+ 00 in (6.10), then we obtain (using (4.16) and 
Jacobi's triple product [2, p. 21]) 

(6.20) 

which is Slater's equation (79) [14, p. 160]. If m -+ 00 in (6.11) we obtain 
(using (4.16) and Jacobi's triple product [2, p. 21]) 

(6.21) 

which is equivalent to Slater's equation (96) [14, p. 162]. 
To conclude this section we replace q by q2 in both (6.16) and (6.17), and 

then multiply the second resulting equation by q and add it to the first; taking 
the limit as m -+ 00 we obtain 

(6.22) 

This is the Rogers-Ramanujan series [2, p. 104]; however the right-hand side is 
split into even odd parts with each part a simple theta function quotient. This 
dissection is related clearly to Watson's representation of this series wherein 
even and odd parts can be readily discerned [16, p. 64, line 4]. 
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Exactly the same treatment of (6.18) and (6.19) yields for the second Roger-
Ramanujan series: 

00 j2+j { 00 L ~ = 2.1 2 L (q60).2+8)' _ q60).2+32.l.+4) 

j=o (q), (q, q)oo ).=-00 (6.23) 
+ q f: (q60).2+28).+2 _l°).2+5U+IO) } • 

).=-00 

7. CONCLUSION 

Having unravelled Euler's "remarkable example of misleading induction", we 
are left with deeper mysteries. For example, what is a combinatorial explanation 
of Theorems 5.1 or 6.1, or Corollary 6.2? Surely before we can answer such 
a question we must find a full combinatorial explanation of the q-trinomial 
coefficients themselves. Standard partition-theoretic arguments [2, Chapter 2] 
show that 

(7.1 ) 

is the generating function for all partitions in which the largest part is ~ n 
and the number of parts plus the edge of the Durfee square is also ~ n. This 
interpretation can easily be generalized to (m;:;q)2; however, it has yet to 
reveal anything significant about the various surprising identities involving q-
trinomial coefficients. Indeed the combinatorics of the identities in §4 is still 
unknown. 
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ABSTRACT. The trinomial coefficients are defined centrally by E~-m (7) 2xi = 

(1 + x + x-1)m . Euler observed that for -1 ~ m ~ 7, 3(mtl)2 - (mt2)2 = 
Fm(Fm + 1) ,where Fm is the mth Fibonacci number. The assertion is false 
for m > 7. We prove general identities-one of which reduces to Euler's as-
sertion for m ~ 7 . Our main object is to analyze q-analogs extending Euler's 
observation. Among other things we are led to finite versions of dissections of 
the Rogers-Ramanujan identities into even and odd parts. 
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