Matrix Valued little q-Jacobi Polynomials Related to Matrix Valued Basic Hypergeometric Series

Noud Aldenhoven ${ }^{1}$
Joint work with Erik Koelink ${ }^{1}$ and Ana M. de los Ríos ${ }^{2}$
${ }^{1}$ Radboud Universiteit Nijmegen
${ }^{2}$ Universidad de Sevilla

Seminario de Teoría de Lie, Universidad Nacional de Córdoba, 31 October 2013

http://www.math.ru.nl/~aldenhoven

Overview

1. Orthogonal polynomials and their connection to Lie theory.
2. Matrix valued little q-Jacobi polynomials.
3. Matrix valued basic hypergeometric series.

This talk is based on the preprint 2×2 Matrix Valued little q-Jacobi Polynomials, arXiv:1308.2540.

Part 1

Orthogonal Polynomials and their connection to Lie Theory.

The Netherlands

Argentina

Orthogonal polynomials

References: [KS98]
An orthogonal polynomial sequence $\left(p_{n}\right)_{n \geq 0}$ is a family of polynomials over \mathbb{C} which are orthogonal with respect to some inner product \langle,$\rangle , i.e.$

$$
\operatorname{dg}\left(p_{n}\right)=n, \quad\left\langle p_{m}, p_{n}\right\rangle=C_{m} \delta_{m, n}
$$

We are interested in orthogonal polynomials sequences which are solutions to a second order differential or difference equation and can be represented as a hypergeometric series.

The Askey scheme

ASKEY SCHEME

OF
HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS

Quantum analogues of special functions

Theorem (Weierstrass, unpublished)
Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a complex analytic function and suppose it satisfy an algebraic addition formula, i.e. there exists $P(x, y, z) \in \mathbb{C}[x, y, z]$ such that for all $z_{1}, z_{2} \in \mathbb{C}$ we have $P(f(x), f(y), f(x+y))=0$, then

1. f is a rational functions in z,
2. f is a rational function in q^{z},
3. f is an elliptic function.

The Askey scheme has a quantum analogue which are all orthogonal polynomials sequences which are solutions to a second order q-difference equation and can be represented as a basic hypergeometric series.

The q-Askey Scheme

SCHEME

OF
BASIC HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS
(4)

Non-commutative orthogonal polynomials

Now suppose we take orthogonal polynomial sequences over some non-commutative algebra - for example $\operatorname{Mat}_{2}(\mathbb{C})$.
Question (The big question)
Does there exist a non-commutative Askey Scheme?
Problem (The big problem)
I have no clue at all how to find a non-commutative Askey Scheme and if it would exist, it will be too big and contain too many non-interesting cases.

Problem (A smaller problem)
Do there exist interesting examples of non-commutative orthogonal polynomials?

Approach
Use Lie theory to find interesting non-commutative examples.

Spherical functions

Fix pair (G, K) where G is a compact Lie group and K a compact subgroup of G.

Definition

Let $t \in \hat{K}$. A spherical function $\phi: G \rightarrow \operatorname{End}(V)$ on G of type t is a continuous function such that

1. $\phi(e)=I$,
2. $\phi\left(k_{1} a k_{2}\right)=t\left(k_{1}\right) \phi(a) t\left(k_{2}\right)$ for all $k_{1}, k_{2} \in K$ and $a \in G$.
3. $\phi(x) \phi(y)=\int_{K} \xi_{t}\left(k^{-1}\right) \phi(x k y) d k$ for all $x, y \in G$,
where ξ_{t} is the character times the degree of t.

Examples

Suppose we take the trivial representation $t=1$. If we have a $K A K$-decomposition, $G=K A K$, then by property 2 $\left(\phi\left(k_{1} a k_{2}\right)=t\left(k_{1}\right) \phi(a) t\left(k_{2}\right)\right)$ a spherical function is defined on A and $\phi: A \rightarrow \mathbb{C}$.

Example

- On $(\mathrm{SU}(2) \times \mathrm{SU}(2), \mathrm{SU}(2)), \phi(a)$ is a Chebychev polynomial.
- On (SU(3), U(2)), $\phi(a)$ is a Jacobi polynomial.

Examples

References: [GPT03], [KvPR12]
Now suppose that t is not the trivial representation. The spherical function $\phi: G \rightarrow \operatorname{End}(V)$ can take values in a non-commutative matrix ring of $\operatorname{End}(V)$.

Example

- $\mathrm{On}(\mathrm{SU}(2) \times \mathrm{SU}(2), \mathrm{SU}(2)), \phi(a)$ is a matrix-valued analogue of Chebychev polynomials.
- On $(\mathrm{SU}(3), \mathrm{U}(2)), \phi(a)$ is a matrix-valued analogue of Jacobi polynomials.

Quantum spherical functions

References: [Let04], Dijkhuizen, Sugitani, Koornwinder, Noumi, Kolb

Let G be a compact Lie group and \mathfrak{g} its semi-simple Lie algebra. $\mathcal{U}_{q}(\mathfrak{g})$ is the quantised universal algebra, $\mathcal{A}_{q}(G)$ the quantised function algebra.
Theorem
For every Gel'fand pair (G, K) there exists a q-analogue $\left(\mathcal{U}_{q}(\mathfrak{g}), \mathcal{B}\right)$, where \mathcal{B} is a right coideal of $\mathcal{U}_{q}(\mathfrak{g})$, i.e. $\Delta(\mathcal{B}) \subseteq \mathcal{B} \otimes \mathcal{U}_{q}(\mathfrak{g})$.

Definition
$\phi \in \mathcal{A}_{q}(G)$ is called a scalar quantum spherical function if
$\mathcal{B} \cdot \phi=0=\phi \cdot \mathcal{B}$.

Examples

For these quantum Gel'fand pairs $\left(\mathcal{U}_{q}(\mathfrak{g}), \mathcal{B}\right)$ there exists a quantum Iwasawa decomposition such that $\mathcal{U}_{q}(\mathfrak{g}) \simeq \mathcal{B} \otimes \mathcal{A} \otimes N$.

Examples

If we restrict the quantum zonal spherical to \mathcal{A} we get:

- $\operatorname{For}\left(\mathcal{U}_{q}(\mathfrak{s l}(2)) \otimes \mathcal{U}_{q}(\mathfrak{s l}(2)), \mathcal{B}\right), \phi(a)$ is a (quantum) Chebychev polynomial.
- For $\left(\mathcal{U}_{q}(\mathfrak{s l}(3)), \mathcal{B}^{\prime}\right), \phi(a)$ is a little q-Jacobi polynomial.

Question

What is the matrix valued picture of the quantum spherical functions?

Question
What are matrix valued little q-Jacobi polynomials?

Part 2

Matrix valued little q-Jacobi polynomials.

The Netherlands

Argentina

little q-Jacobi Polynomials

Fix $0<q<1$ and take $0<a<q^{-1}$ and $b<q^{-1}$. The little q-Jacobi polynomials $\left(p_{n}(x)\right)_{n \geq 0}$ are defined by

$$
p_{n}(x ; a, b \mid q)={ }_{2} \phi_{1}\left[\begin{array}{c}
q^{-n}, a b q^{n+1} \\
a q
\end{array} ; q, q x\right] .
$$

little q-Jacobi polynomials

The little q-Jacobi polynomials satisfy the q-Difference equation.

$$
\lambda_{n} p_{n}(x)=B(x) p_{n}(q x)-(B(x)+D(x)) p_{n}(x)+D(x) p_{n}\left(q^{-1} x\right)
$$

where

$$
\begin{aligned}
\lambda_{n} & =q^{-n}\left(1-q^{n}\right)\left(1-a b q^{n+1}\right) \\
B(x) & =a\left(b q-x^{-1}\right) \\
D(x) & =1-x^{-1}
\end{aligned}
$$

Every polynomials solution is unique up to a constant.

little q-Jacobi polynomials

The little q-Jacobi polynomials are orthogonal with respect to the inner product

$$
\langle f, g\rangle=\sum_{n=0}^{\infty}(a q)^{n} \frac{(b q ; q)_{n}}{(q ; q)_{n}} f\left(q^{n}\right) \overline{g\left(q^{n}\right)}
$$

i.e.

$$
\left\langle p_{m}, p_{n}\right\rangle=C_{n} \delta_{m, n}
$$

where $C_{n}>0$.

Matrix valued polynomials

Let $N \geq 1$ and $P \in \operatorname{Mat}_{N}(\mathbb{C})[x]$. Then

$$
P(x)=R_{m} x^{m}+R_{m-1} x^{m-1}+\ldots+R_{1} x+R_{0}
$$

where $R_{i} \in \operatorname{Mat}_{N}(\mathbb{C})$.

Matrix valued orthogonal polynomials

References: [DPS08]
Let $P, Q \in \operatorname{Mat}_{N}(\mathbb{C})[x]$ and define an inner product by

$$
\langle P, Q\rangle=\sum_{n=0}^{\infty} q^{n} P\left(q^{n}\right) W\left(q^{n}\right)\left(Q\left(q^{n}\right)\right)^{*} \in \operatorname{Mat}_{N}(\mathbb{C})
$$

where $W:\left\{q^{n}: n \geq 0\right\} \rightarrow \operatorname{Mat}_{N}(\mathbb{C})$, such that

- $W\left(q^{n}\right)$ is positive definite for all n.
- W is Hermitian, i.e. $\left(W\left(q^{n}\right)\right)^{*}=W\left(q^{n}\right)$.
- $\left\langle x^{n} I, I\right\rangle \in \operatorname{Mat}_{N}(\mathbb{C})$ for all $n \geq 0$.
- If $P \in \operatorname{Mat}_{N}(\mathbb{C})[x]$ has a non-singular leading coefficient, then $\langle P, P\rangle$ is non-singular.

Matrix valued orthogonal polynomials

A sequence $\left(P_{m}\right)_{m \geq 0}$ of matrix-valued polynomials is orthogonal if for all $m, n \geq 0$:

- $\operatorname{deg}\left(P_{m}\right)=m$.
- P_{m} has non-singular leading coefficient.
- $\left\langle P_{m}, P_{n}\right\rangle=\Lambda_{m} \delta_{m, n}$, where Λ_{m} is a positive definite matrix.

Trivial matrix valued orthogonal polynomials

A weight matrix $W(x)$ is called trivial if there exists a unitary matrix K, independent of x, and a diagonal matrix $D(x)$ such that for all $n \geq 0$

$$
W\left(q^{n}\right)=K D\left(q^{n}\right) K^{*}
$$

In this case the orthogonal polynomials are of the form

$$
P_{n}(x)=K\left(\begin{array}{cccc}
p_{n, 1}(x) & 0 & \cdots & 0 \\
0 & p_{n, 2}(x) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & p_{n, N}(x)
\end{array}\right)
$$

Symmetric q-difference operators

References: [GT07]
Let D be a q-difference operator defined by

$$
D P(x)=P(q x) F_{1}(x)+P(x) F_{0}(x)+P\left(q^{-1} x\right) F_{-1}(x)
$$

where $P: \mathbb{C} \rightarrow \operatorname{Mat}_{N}(\mathbb{C})$ and $F_{1}, F_{0}, F_{-1} \in \operatorname{Mat}_{N}(\mathbb{C})\left[x^{-1}\right]$.
Definition
A q-difference operator D is called symmetric if $\langle D P, Q\rangle=\langle P, D Q\rangle$ for all $P, Q \in \operatorname{Mat}_{N}(\mathbb{C})[x]$.

Theorem
If D is symmetric and preserves polynomials then there exists a $\operatorname{MVOPS}\left(P_{n}\right)_{n \geq 0}$ which are eigenvector of D, i.e. $D P_{n}=\Lambda_{n} P_{n}$.

Symmetric q-difference operators

Theorem

Let

$$
\begin{aligned}
& D P(x)=P(q x) F_{1}(x)+P(x) F_{0}(x)+P\left(q^{-1} x\right) F_{-1}(x) \\
& \langle P, Q\rangle=\sum_{n=0}^{\infty} q^{n} P\left(q^{n}\right) W\left(q^{n}\right)\left(Q\left(q^{n}\right)\right)^{*}
\end{aligned}
$$

If symmetry equations

$$
\begin{aligned}
F_{0}\left(q^{n}\right) W\left(q^{n}\right) & =W\left(q^{n}\right)\left(F_{0}\left(q^{n}\right)\right)^{*}, & & n \in \mathbb{N}, \\
q F_{1}\left(q^{n-1}\right) W\left(q^{n-1}\right) & =W\left(q^{n}\right)\left(F_{-1}\left(q^{n}\right)\right)^{*}, & & n \in \mathbb{N} \backslash\{0\},
\end{aligned}
$$

and boundary conditions

$$
W(1)\left(F_{-1}(1)\right)^{*}=0, \quad F_{1}\left(q^{n}\right) W\left(q^{n}\right)=o\left(q^{-n}\right), \quad \text { as } n \rightarrow \infty
$$

hold, then D is symmetric.

Symmetric q-difference operators

Idea of the proof: Take the truncated inner product

$$
\langle P, Q\rangle_{M}=\sum_{n=0}^{M} q^{n} P\left(q^{n}\right) W\left(q^{n}\right) Q^{*}\left(q^{n}\right)
$$

Write $P\left(q^{n}\right)=A_{0}+\mathcal{O}\left(q^{n}\right)$ and $Q\left(q^{n}\right)=B_{0}+\mathcal{O}\left(q^{n}\right)$. Use symmetry equations and boundary conditions to calculate
$\langle D P, Q\rangle_{M}-\langle P, D Q\rangle_{M}$

$$
=q^{M} A_{0}\left(F_{1}\left(q^{M}\right) W\left(q^{M}\right)-W\left(q^{M}\right)\left(F_{1}\left(q^{M}\right)\right)^{*}\right) B_{0}+\mathcal{O}\left(q^{M}\right)
$$

Then by the last boundary condition

$$
\lim _{M \rightarrow \infty}\left(\langle D P, Q\rangle_{M}-\langle P, D Q\rangle_{M}\right)=0
$$

A construction

If

$$
F_{1}\left(q^{n-1}\right) F_{-1}\left(q^{n}\right)=\left|s\left(q^{n}\right)\right|^{2} I, \quad n \in \mathbb{N} \backslash\{0\}
$$

where $s\left(q^{n}\right) \in \mathbb{C} \backslash\{0\}$. Let $T(1)=I$ and

$$
T\left(q^{n}\right)=q^{\frac{1}{2}} \frac{s\left(q^{n}\right)}{\left|s\left(q^{n}\right)\right|^{2}} F_{1}\left(q^{n-1}\right) T\left(q^{n-1}\right), \quad n \in \mathbb{N} \backslash\{0\} .
$$

The inner product

$$
\langle P, Q\rangle=\sum_{n=0}^{\infty} P\left(q^{n}\right) T\left(q^{n}\right) T^{*}\left(q^{n}\right) Q^{*}\left(q^{n}\right)=\sum_{n=0}^{\infty} q^{n} P\left(q^{n}\right) W\left(q^{n}\right) Q^{*}\left(q^{n}\right)
$$

satisfies the symmetry equation

$$
q F_{1}\left(q^{n-1}\right) W\left(q^{n-1}\right)=W\left(q^{n}\right) F_{-1}^{*}\left(q^{n}\right), \quad n \in \mathbb{N} \backslash\{0\} .
$$

2×2 Matrix valued little q-Jacobi polynomials

Consider

$$
D P(x)=P(q x) F_{1}(x)+P(x) F_{0}(x)+P\left(q^{-1} x\right) F_{-1}(x)
$$

where

$$
F_{-1}(x)=\left(x^{-1}-1\right) A^{-1}, \quad F_{1}(x)=\left(a x^{-1}-a b q\right) A
$$

and

$$
A=\left(\begin{array}{cc}
q & v(q-1) \\
0 & 1
\end{array}\right)
$$

where $v \in \mathbb{C}$. Then

$$
T\left(q^{n}\right) T^{*}\left(q^{n}\right)=(a q)^{n} \frac{(b q ; q)_{n}}{(q ; q)_{n}} A^{n}\left(A^{*}\right)^{n}
$$

2×2 Matrix valued little q-Jacobi polynomials

Take

$$
F_{0}(x)=K-x^{-1}\left(A^{-1}+a A\right), \quad K=\left(\begin{array}{cc}
0 & v(1-q)\left(q^{-1}-a\right) \\
0 & 0
\end{array}\right) .
$$

Theorem
The sequence of matrix-valued orthogonal polynomials $\left(P_{n}\right)_{n \geq 0}$ with respect to the inner product

$$
\langle P, Q\rangle=\sum_{n=0}^{\infty} q^{n} P\left(q^{n}\right) a^{n} \frac{(b q ; q)_{n}}{(q ; q)_{n}} A^{n}\left(A^{*}\right)^{n} Q^{*}\left(q^{n}\right)
$$

are eigenvectors of

$$
D P(x)=P(q x) F_{1}(x)+P(x) F_{0}(x)+P\left(q^{-1} x\right) F_{-1}(x)
$$

2×2 Matrix valued little q-Jacobi polynomials

$$
A=\left(\begin{array}{cc}
q & v(q-1) \\
0 & 1
\end{array}\right)
$$

If $v=0$ then

$$
W\left(q^{n}\right)=a^{n} \frac{(b q ; q)_{n}}{(q ; q)_{n}} A^{n}\left(A^{*}\right)^{n}=\left(\begin{array}{cc}
w_{1}\left(q^{n}\right) & 0 \\
0 & w_{2}\left(q^{n}\right)
\end{array}\right) .
$$

where w_{1} and w_{2} are little q-Jacobi weights. However in general $W\left(q^{m}\right) W\left(q^{n}\right) \neq W\left(q^{n}\right) W\left(q^{m}\right)$, hence W is not trivial.

Part 3

-

Matrix valued basic hypergeometric series.

The Netherlands

Argentina

Matrix valued basic hypergeometric series

References: [Tir03], [CS10]
Let $\left(P_{n}\right)_{n \geq 0}$ the monic polynomials. Then $D P_{n}=\Lambda_{n} P_{n}$. If

$$
E_{n}=\left(\begin{array}{cc}
1 & \frac{-\mu_{n}}{1-a b q^{2 n+2}} v \\
0 & 1
\end{array}\right), \quad \text { where } \mu_{n}=1-q^{n}+a q^{n+1}-a b q^{2 n+2}
$$

then

$$
\tilde{\Lambda}_{n}=E_{n}^{-1} \Lambda_{n} E_{n}=\operatorname{diag}\left(-q^{-n}-a b q^{n+2},-q^{-n}-a b q^{n+1}\right)
$$

Let $\tilde{P}_{n}=E_{n} P_{n}$, then

$$
D \tilde{P}_{n}=E_{n} D P_{n}=E_{n} \Lambda_{n} P_{n}=E_{n} \Lambda_{n} E_{n}^{-1} E_{n} P_{n}=\tilde{\Lambda}_{n} \tilde{P}_{n}
$$

Matrix valued basic hypergeometric series

We can write

$$
\begin{aligned}
\tilde{\Lambda}_{n} \tilde{P}_{n}(x)= & D \tilde{P}_{n}(x) \\
= & \tilde{P}_{n}\left(q^{-1} x\right)\left(x^{-1}-1\right) A^{-1}+\tilde{P}_{n}(x)\left(K-x^{-1}\left(A^{-1}-a A\right)\right) \\
& +\tilde{P}_{n}(q x)\left(a x^{-1}-a b q\right) A .
\end{aligned}
$$

Let $\tilde{P}_{i, n}$ be the i-th row of $\tilde{P}_{n}, i=1,2$. Multiply from the right by $x A$ such that

$$
\begin{aligned}
\tilde{P}_{i, n}\left(q^{-1} x\right)(1-x) & +\tilde{P}_{i, n}(x)\left(-I-a A^{2}+\left(K A-\tilde{\Lambda}_{i, n} I\right) x\right) \\
& +\tilde{P}_{i, n}(q x)\left(a A^{2}-a b q A^{2} x\right)=0 .
\end{aligned}
$$

Therefore rewrite

$$
\tilde{P}_{i, n}\left(q^{-1} x\right)(1-x)+\tilde{P}_{i, n}(x)(-I-C+A x)+\tilde{P}_{i, n}(q x)(C+B x)=0 .
$$

Matrix valued basic hypergeometric series

Suppose we want to solve

$$
F\left(q^{-1} x\right)(1-x)+F(x)(-I-C+A x)+F(q x)(C+B x)=0
$$

where $F: q^{\mathbb{N}} \rightarrow \mathbb{C}^{N}$ (row-valued!). Use the Frobenius method. Suppose $F(x)=\sum_{k=0}^{\infty} F^{k} x^{k}, F^{k} \in \mathbb{C}^{N}$ (rows). Then

$$
F^{k}\left(C-q^{k} I\right)=\frac{q}{1-q^{k}} F^{k-1}\left(I-q^{k-1} A-q^{2 k-2} B\right), \quad k \geq 1
$$

If $C-q^{k}$ I non-singular, then

$$
F^{k}=\frac{q}{1-q^{k}} F^{k-1}\left(I-q^{k-1} A-q^{2 k-2} B\right)\left(C-q^{k} I\right)^{-1}, \quad k \geq 1
$$

Matrix valued basic hypergeometric series

Let $A, B, C \in \operatorname{Mat}_{N}(\mathbb{C})$. Suppose that the eigenvalues of C are not in $q^{-\mathbb{N} \backslash\{0\}}$. Define
$(A, B ; C ; q)_{0}=I$,
$(A, B ; C ; q)_{k}=(A, B ; C ; q)_{k-1}\left(I-q^{k-1} A-q^{2 k-2} B\right)\left(I-q^{k} C\right)^{-1}$,
and

$$
{ }_{2} \eta_{1}\left[\begin{array}{c}
A, B \\
C
\end{array} ; q, x\right]=\sum_{k=0}^{\infty} \frac{x^{k}}{(q ; q)_{k}}(A, B ; C ; q)_{k}
$$

Matrix valued basic hypergeometric series

Theorem

$$
F(x)=F_{0}{ }_{2} \eta_{1}\left[\begin{array}{c}
A, B \\
C
\end{array} q, q x\right]=F_{0} \sum_{k=0}^{\infty} \frac{q^{k}}{(q ; q)_{k}} x^{k}(A, B ; C ; q)_{k}
$$

where $F_{0} \in \mathbb{C}^{N}$, is a solution of

$$
F\left(q^{-1} x\right)(1-x)+F(x)(-I-C+A x)+F(q x)(C+B x)=0
$$

Matrix valued basic hypergeometric series

We had

$$
\begin{aligned}
\tilde{P}_{i, n}\left(q^{-1} x\right)(1-x) & +\tilde{P}_{i, n}(x)\left(-I-a A^{2}+\left(K A-\tilde{\Lambda}_{i, n} I\right) x\right) \\
& +\tilde{P}_{i, n}(q x)\left(a A^{2}-a b q A^{2} x\right)=0
\end{aligned}
$$

and therefore by the previous theorem

$$
\tilde{P}_{i, n}(x)=\tilde{P}_{i, n}(0){ }_{2} \eta_{1}\left[\begin{array}{c}
K A-\tilde{\Lambda}_{i, n} l,-a b q A^{2} \\
a A^{2}
\end{array} ; q, q x\right] .
$$

Gracias!

The Netherlands

Argentina

References

囯 A．Conflitti and M．Schlosser．
Noncommutative hypergeometric and basic hypergeometric equations．
J．Nonlinear Math．Phys．，17（4）：429－443， 2010.
圊 D．Damanik，A．Pushnitski and B．Simon．
The Analytic Theory of Matrix Orthogonal Polynomials．
Surveys in Approximation Theory，4：1－85， 2008.
雷 F．A．Grünbaum，I．Pacharoni，and J．Tirao．
Matrix valued orthogonal polynomials of the Jacobi type． Indag．Math．（N．S．），14（3－4）：353－366， 2003.

圊 F．A．Grünbaum and J．Tirao．
The Algebra of Differential Operators Associated to a Weight Matrix．
Integral Equations Operator Theory，58：449－475， 2007.

References

囲 R．Koekoek and R．F．Swarttouw．
The Askey－scheme of hypergeometric orthogonal polynomials and its q－analogue．
Technical report，Technical University Delft， 1998.
囯 E．Koelink，M．van Pruijssen，and P．Román．
Matrix valued orthogonal polynomials related to
$(\mathrm{SU}(2) \times \mathrm{SU}(2)$, diag $)$ ．
Int．Math．Res．Not．IMRN，1（24）：5673－5730， 2012.
嗇 G．Letzter．
Quantum Zonal Spherical Functions and Macdonald Polynomials．
Adv．in Math．，Vol． 189 （2004）no．1，88－147．
目 J．A．Tirao．
The Matrix－Valued Hypergeometric Equation．
PNAS，100（14）， 2003.

