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31 October 2013

http://www.math.ru.nl/~aldenhoven



Overview

1. Orthogonal polynomials and their connection to Lie theory.

2. Matrix valued little q-Jacobi polynomials.

3. Matrix valued basic hypergeometric series.

This talk is based on the preprint 2× 2 Matrix Valued little
q-Jacobi Polynomials, arXiv:1308.2540.



Part 1
-

Orthogonal Polynomials and their connection to Lie Theory.

The Netherlands Argentina



Orthogonal polynomials

References: [KS98]

An orthogonal polynomial sequence (pn)n≥0 is a family of
polynomials over C which are orthogonal with respect to some
inner product 〈, 〉, i.e.

dg(pn) = n, 〈pm, pn〉 = Cmδm,n.

We are interested in orthogonal polynomials sequences which are
solutions to a second order differential or difference equation and
can be represented as a hypergeometric series.



The Askey scheme



Quantum analogues of special functions

Theorem (Weierstrass, unpublished)

Let f : C→ C be a complex analytic function and suppose it
satisfy an algebraic addition formula, i.e. there exists
P(x , y , z) ∈ C[x , y , z ] such that for all z1, z2 ∈ C we have
P(f (x), f (y), f (x + y)) = 0, then

1. f is a rational functions in z,

2. f is a rational function in qz ,

3. f is an elliptic function.

The Askey scheme has a quantum analogue which are all
orthogonal polynomials sequences which are solutions to a second
order q-difference equation and can be represented as a basic
hypergeometric series.



The q-Askey Scheme



Non-commutative orthogonal polynomials

Now suppose we take orthogonal polynomial sequences over some
non-commutative algebra - for example Mat2(C).

Question (The big question)

Does there exist a non-commutative Askey Scheme?

Problem (The big problem)

I have no clue at all how to find a non-commutative Askey Scheme
and if it would exist, it will be too big and contain too many
non-interesting cases.

Problem (A smaller problem)

Do there exist interesting examples of non-commutative orthogonal
polynomials?

Approach

Use Lie theory to find interesting non-commutative examples.



Spherical functions

Fix pair (G ,K ) where G is a compact Lie group and K a compact
subgroup of G .

Definition
Let t ∈ K̂ . A spherical function φ : G → End(V ) on G of type t is
a continuous function such that

1. φ(e) = I ,

2. φ(k1ak2) = t(k1)φ(a)t(k2) for all k1, k2 ∈ K and a ∈ G .

3. φ(x)φ(y) =
∫
K ξt(k−1)φ(xky)dk for all x , y ∈ G ,

where ξt is the character times the degree of t.



Examples

Suppose we take the trivial representation t = 1. If we have a
KAK -decomposition, G = KAK , then by property 2
(φ(k1ak2) = t(k1)φ(a)t(k2)) a spherical function is defined on A
and φ : A→ C.

Example

I On (SU(2)× SU(2), SU(2)), φ(a) is a Chebychev polynomial.

I On (SU(3),U(2)), φ(a) is a Jacobi polynomial.



Examples

References: [GPT03], [KvPR12]

Now suppose that t is not the trivial representation. The spherical
function φ : G → End(V ) can take values in a non-commutative
matrix ring of End(V ).

Example

I On (SU(2)× SU(2), SU(2)), φ(a) is a matrix-valued analogue
of Chebychev polynomials.

I On (SU(3),U(2)), φ(a) is a matrix-valued analogue of Jacobi
polynomials.



Quantum spherical functions

References: [Let04], Dijkhuizen, Sugitani, Koornwinder, Noumi,
Kolb

Let G be a compact Lie group and g its semi-simple Lie algebra.
Uq(g) is the quantised universal algebra, Aq(G ) the quantised
function algebra.

Theorem
For every Gel’fand pair (G ,K ) there exists a q-analogue (Uq(g),B),
where B is a right coideal of Uq(g), i.e. ∆(B) ⊆ B ⊗ Uq(g).

Definition
φ ∈ Aq(G ) is called a scalar quantum spherical function if
B.φ = 0 = φ.B.



Examples

For these quantum Gel’fand pairs (Uq(g),B) there exists a
quantum Iwasawa decomposition such that Uq(g) ' B ⊗A⊗ N.

Examples

If we restrict the quantum zonal spherical to A we get:

I For (Uq(sl(2))⊗ Uq(sl(2)),B), φ(a) is a (quantum)
Chebychev polynomial.

I For (Uq(sl(3)),B′), φ(a) is a little q-Jacobi polynomial.

Question
What is the matrix valued picture of the quantum spherical
functions?

Question
What are matrix valued little q-Jacobi polynomials?
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little q-Jacobi Polynomials

Fix 0 < q < 1 and take 0 < a < q−1 and b < q−1. The little
q-Jacobi polynomials (pn(x))n≥0 are defined by

pn(x ; a, b|q) = 2φ1

[
q−n, abqn+1

aq
; q, qx

]
.



little q-Jacobi polynomials

The little q-Jacobi polynomials satisfy the q-Difference equation.

λnpn(x) = B(x)pn(qx)− (B(x) + D(x))pn(x) + D(x)pn(q−1x),

where

λn = q−n(1− qn)(1− abqn+1),

B(x) = a(bq − x−1),

D(x) = 1− x−1.

Every polynomials solution is unique up to a constant.



little q-Jacobi polynomials

The little q-Jacobi polynomials are orthogonal with respect to the
inner product

〈f , g〉 =
∞∑
n=0

(aq)n
(bq; q)n
(q; q)n

f (qn)g(qn)

i.e.

〈pm, pn〉 = Cnδm,n.

where Cn > 0.



Matrix valued polynomials

Let N ≥ 1 and P ∈ MatN(C)[x ]. Then

P(x) = Rmxm + Rm−1xm−1 + . . .+ R1x + R0,

where Ri ∈ MatN(C).



Matrix valued orthogonal polynomials

References: [DPS08]

Let P,Q ∈ MatN(C)[x ] and define an inner product by

〈P,Q〉 =
∞∑
n=0

qnP(qn)W (qn)(Q(qn))∗ ∈ MatN(C),

where W : {qn : n ≥ 0} → MatN(C), such that

I W (qn) is positive definite for all n.

I W is Hermitian, i.e. (W (qn))∗ = W (qn).

I 〈xnI , I 〉 ∈ MatN(C) for all n ≥ 0.

I If P ∈ MatN(C)[x ] has a non-singular leading coefficient, then
〈P,P〉 is non-singular.



Matrix valued orthogonal polynomials

A sequence (Pm)m≥0 of matrix-valued polynomials is orthogonal if
for all m, n ≥ 0:

I deg(Pm) = m.

I Pm has non-singular leading coefficient.

I 〈Pm,Pn〉 = Λmδm,n, where Λm is a positive definite matrix.



Trivial matrix valued orthogonal polynomials

A weight matrix W (x) is called trivial if there exists a unitary
matrix K , independent of x , and a diagonal matrix D(x) such that
for all n ≥ 0

W (qn) = K D(qn) K ∗.

In this case the orthogonal polynomials are of the form

Pn(x) = K


pn,1(x) 0 · · · 0

0 pn,2(x) · · · 0
...

...
. . .

...
0 0 · · · pn,N(x)





Symmetric q-difference operators

References: [GT07]

Let D be a q-difference operator defined by

DP(x) = P(qx)F1(x) + P(x)F0(x) + P(q−1x)F−1(x),

where P : C→ MatN(C) and F1,F0,F−1 ∈ MatN(C)[x−1].

Definition
A q-difference operator D is called symmetric if
〈DP,Q〉 = 〈P,DQ〉 for all P,Q ∈ MatN(C)[x ].

Theorem
If D is symmetric and preserves polynomials then there exists a
MVOPS (Pn)n≥0 which are eigenvector of D, i.e. DPn = ΛnPn.



Symmetric q-difference operators

Theorem
Let

DP(x) = P(qx)F1(x) + P(x)F0(x) + P(q−1x)F−1(x),

〈P,Q〉 =
∞∑
n=0

qnP(qn)W (qn)(Q(qn))∗.

If symmetry equations

F0(qn)W (qn) = W (qn)(F0(qn))∗, n ∈ N,
qF1(qn−1)W (qn−1) = W (qn)(F−1(qn))∗, n ∈ N\{0},

and boundary conditions

W (1)(F−1(1))∗ = 0, F1(qn)W (qn) = o(q−n), as n→∞,

hold, then D is symmetric.



Symmetric q-difference operators

Idea of the proof: Take the truncated inner product

〈P,Q〉M =
M∑
n=0

qnP(qn)W (qn)Q∗(qn).

Write P(qn) = A0 +O(qn) and Q(qn) = B0 +O(qn). Use
symmetry equations and boundary conditions to calculate

〈DP,Q〉M − 〈P,DQ〉M

= qMA0

(
F1(qM)W (qM)−W (qM)(F1(qM))∗

)
B0 +O(qM).

Then by the last boundary condition

lim
M→∞

(〈DP,Q〉M − 〈P,DQ〉M) = 0.



A construction

If

F1(qn−1)F−1(qn) = |s(qn)|2I , n ∈ N\{0}.

where s(qn) ∈ C\{0}. Let T (1) = I and

T (qn) = q
1
2

s(qn)

|s(qn)|2
F1(qn−1)T (qn−1), n ∈ N\{0}.

The inner product

〈P,Q〉 =
∞∑
n=0

P(qn)T (qn)T ∗(qn)Q∗(qn) =
∞∑
n=0

qnP(qn)W (qn)Q∗(qn)

satisfies the symmetry equation

qF1(qn−1)W (qn−1) = W (qn)F ∗−1(qn), n ∈ N\{0}.



2× 2 Matrix valued little q-Jacobi polynomials

Consider

DP(x) = P(qx)F1(x) + P(x)F0(x) + P(q−1x)F−1(x),

where

F−1(x) = (x−1 − 1)A−1, F1(x) = (ax−1 − abq)A,

and

A =

(
q v(q − 1)
0 1

)
,

where v ∈ C. Then

T (qn)T ∗(qn) = (aq)n
(bq; q)n
(q; q)n

An(A∗)n



2× 2 Matrix valued little q-Jacobi polynomials

Take

F0(x) = K − x−1(A−1 + aA), K =

(
0 v(1− q)(q−1 − a)
0 0

)
.

Theorem
The sequence of matrix-valued orthogonal polynomials (Pn)n≥0
with respect to the inner product

〈P,Q〉 =
∞∑
n=0

qnP(qn) an
(bq; q)n
(q; q)n

An(A∗)n Q∗(qn)

are eigenvectors of

DP(x) = P(qx)F1(x) + P(x)F0(x) + P(q−1x)F−1(x),



2× 2 Matrix valued little q-Jacobi polynomials

A =

(
q v(q − 1)
0 1

)
If v = 0 then

W (qn) = an
(bq; q)n
(q; q)n

An(A∗)n =

(
w1(qn) 0

0 w2(qn),

)
.

where w1 and w2 are little q-Jacobi weights. However in general
W (qm)W (qn) 6= W (qn)W (qm), hence W is not trivial.
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Matrix valued basic hypergeometric series

References: [Tir03], [CS10]

Let (Pn)n≥0 the monic polynomials. Then DPn = ΛnPn. If

En =

(
1 −µn

1−abq2n+2 v

0 1

)
, where µn = 1− qn + aqn+1 − abq2n+2,

then

Λ̃n = E−1n ΛnEn = diag(−q−n − abqn+2,−q−n − abqn+1).

Let P̃n = EnPn, then

DP̃n = EnDPn = EnΛnPn = EnΛnE−1n EnPn = Λ̃nP̃n.



Matrix valued basic hypergeometric series

We can write

Λ̃nP̃n(x) = DP̃n(x)

= P̃n(q−1x)(x−1 − 1)A−1 + P̃n(x)(K − x−1(A−1 − aA))

+ P̃n(qx)(ax−1 − abq)A.

Let P̃i ,n be the i-th row of P̃n, i = 1, 2. Multiply from the right by
xA such that

P̃i ,n(q−1x)(1− x) + P̃i ,n(x)(−I − aA2 + (KA− Λ̃i ,nI )x)

+ P̃i ,n(qx)(aA2 − abqA2x) = 0.

Therefore rewrite

P̃i ,n(q−1x)(1− x) + P̃i ,n(x)(−I − C + Ax) + P̃i ,n(qx)(C + Bx) = 0.



Matrix valued basic hypergeometric series

Suppose we want to solve

F (q−1x)(1− x) + F (x)(−I − C + Ax) + F (qx)(C + Bx) = 0,

where F : qN → CN (row-valued!). Use the Frobenius method.
Suppose F (x) =

∑∞
k=0 F kxk , F k ∈ CN (rows). Then

F k(C − qk I ) =
q

1− qk
F k−1(I − qk−1A− q2k−2B), k ≥ 1.

If C − qk I non-singular, then

F k =
q

1− qk
F k−1(I − qk−1A− q2k−2B)(C − qk I )−1, k ≥ 1.



Matrix valued basic hypergeometric series

Let A,B,C ∈ MatN(C). Suppose that the eigenvalues of C are
not in q−N\{0}. Define

(A,B; C ; q)0 = I ,

(A,B; C ; q)k = (A,B; C ; q)k−1(I − qk−1A− q2k−2B)(I − qkC )−1,

and

2η1

[
A,B

C
; q, x

]
=
∞∑
k=0

xk

(q; q)k
(A,B; C ; q)k .



Matrix valued basic hypergeometric series

Theorem

F (x) = F0 2η1

[
A,B

C
; q, qx

]
= F0

∞∑
k=0

qk

(q; q)k
xk(A,B; C ; q)k ,

where F0 ∈ CN , is a solution of

F (q−1x)(1− x) + F (x)(−I − C + Ax) + F (qx)(C + Bx) = 0.



Matrix valued basic hypergeometric series

We had

P̃i ,n(q−1x)(1− x) + P̃i ,n(x)(−I − aA2 + (KA− Λ̃i ,nI )x)

+ P̃i ,n(qx)(aA2 − abqA2x) = 0.

and therefore by the previous theorem

P̃i ,n(x) = P̃i ,n(0) 2η1

[
KA− Λ̃i ,nI ,−abqA2

aA2
; q, qx

]
.



Gracias!
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