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Abstract

Known series of Bessel functions, currently available in handbooks, and many of Neumann type, are generalized to
arbitrary order. The underlying result is a Poisson formula due to Titchmarsh. This formula gives rise to a Neumann
series involving modified Bessel functions of integral order. The latter is the basis of many of the generalized series that
follow. Included are examples of generalized trigonometric identities. The paper concludes by indicating the wide range
of results that can be obtained. (© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Infinite series involving Bessel functions occur quite frequently in both mathematical and physical
analysis. In his 1922 treatise, Watson [5] refers to a Neumann series as being any series of the type
o0
Zan-]v+n(z)a (1)
n=0
where J,,,(z) is the Bessel function of the first kind of order v 4+ » and complex argument z. In
the mid-1860s, Neumann had studied such series for integer values of v. The extension to complex
v was investigated by Gegenbauer. For numerous references to the early works of Neumann and
Gegenbauer, see the extensive bibliography in [5]. In modern usage, a Neumann series may involve
any type of Bessel function.
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2. A generalized Poisson formula

In the following theorem, a function f(x) and its Fourier cosine transform F¢(x) are related by

Fc(x)—\/z /O - f(t)cos(xt) dt, f(x)—\/z /0 h Fo(t)cos(xt) dt. 2)

Titchmarsh theorem [4, Theorem 45, p. 61]. Let aff=2n, a > 0, and let f(x) be of bounded vari-
ation on (0,00), and tend to 0 as x — oco. Then

VB Fu(np)
n=1

1 N _ | [N+12)x
:\/&ngnoo lzf(o+)+;f(noc );—f(noch)_Oc/0 f(t)dt] ‘ 3)

If also fooo f(t)dt exists as an improper Riemann integral, then

! = ! = f(02=) + f(nat)
ﬁ{ZFC(OH;Fc(nﬂ)}:\/& lzf(0+)+; - -

. . 4)

If also f(x) is continuous, then (4) reduces to Poisson’s formula

JB{;FC(OHZFC(nﬁ)} =\/&{;f(0)+2f(na)}. 5)
n=1 n=1

3. A generalized Neumann series

Egs. (9.1.47), (9.6.38), (9.6.37) and (9.6.39) in [1], and Egs. (57.1.18), (58.1.4), (58.1.2) and
(58.1.12) in [3], list the Neumann series

S D)= g g eosz S0 (D) = Shol) + e ©)
k=0 k=0

— 1 1 - 1 1

S )= )+ 3¢ D Ialz)= 30e) + 5 cosh(z), ™
k=0 k=0

where J,(z) is the Bessel function of the first kind and /,(z) is the modified Bessel function of the
first kind. For integer order n and complex argument z, they are the entire complex functions (see
(9.1.21) and (9.6.19) in [1])

i*}’l

T i 1 T
Ju(z)=— / eZ¢ % cos(nf) do, Liz)=- / &% cos(nd)do (8)
0 0

T
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and have the series representations (see (9.1.10) and (9.6.10) in [1])

12k 12)k

()= (Z) Z k'(n4+k)', )= (z) Z s )

Inspection of these series shows that

L(+iz) = (£i)"J.(2), L(—2)=(—1)"L(z). (10)
Theorem 1. The Neumann series in (7) generalize to

00 1 1 n—1
D Ia(@)=h() + 52y ECH =12, (11)
k=0 k=0

Proof. For & real, let

eécos(an), 0 <x< 1.
Sx)= (12)
0, x> 1.

This function is continuous on [0, 1], zero elsewhere, and satisfies the conditions of Titchmarsh’s the-
orem above. Choosing o= 1/n and f =2nn, n a positive integer, and noticing that f(0+)= f(1-),
renders (4) as

[e%s) n—1
2n {;FC(O) + ZFC(ann)} =fOH)+> f (i) . (13)
k=1 k=1

If m is a nonnegative integer, it follows from (2), (8) and (12) that

1
F.(2mm) = \/z/ e¢ 2™ cos(2mmt ) dt
\F / e <% cos(mb) dh = \/zlm(f). (14)

Substituting for f and F, in (13) gives

o] n—1

1 1
Zlnk(€)=§10(5)+ %Zefcos(hk/n) (15)
k=0 k=0

and the general result in (11) follows by analytic continuation; the series in (7) correspond to (11)
with =1 and 2, respectively. O

Corollary 2. The Neumann series in (6) generalize to

o) n—1
S\ 1 1 iz cos(2mtk/n
> () kJ,,k(z)ziJo(z)—FﬂZei @rkim - =1,2,..., (16)
k=0

k=0



4 A. Al-Jarrah et al. | Journal of Computational and Applied Mathematics 143 (2002) 1-8

) n—1
1 1
DD hi(z) = Shoz) + 52D e =12, (17)
k=0 n k=0
where
( l)nk +1, n even (18)
| (=1, nodd.

Proof. These results follow immediately from (10) and (11); (6a) corresponds to (16) with n=2,
while (6b) corresponds to (17) with n=1. O

Corollary 3.
[e’s) 1 1 n—1
> Ju(z)cos(nkm/2) = 2Jo(z) + o~ > _ cos(zcos(2mk/n)), n=1,2,..., (19)
2 2n

k=0 k=0

'] 1 n—1

> Ju(z)sin(nkn/2) = — 3 " sin(zcos(2mk/n)), n=1,3,... . (20)
k=0 2n k=0

Proof. Writing (&i)" as e™”#"/? then adding and subtracting the two series in (16) gives (19) and
(20). For even n, both sides of (20) are zero. [

Putting n=1 or 2 in (19) gives (6a); putting n=1 and 3 in (20) gives the two series:

> (=DM () = % sin z, 21)
k=0
Z (=) Jgeis3(z) = é sinz — % sin(z/2), (22)
k=0

respectively, the first of which agrees with (9.1.48) in [1] and (57.1.20) in [3].

Corollary 4.
0o 1 1 (m—1)/2
D (=Dfhui(z)=5Jo(z) + 5—cosz+ — Y cos(zcos(nk/m)), m=1,3,..., (23)
— 2 2m m =
[e’e] 1 1 1 m—1
> Jamk(2)=5Jo(z) + (1 + cosz) + =— > _cos(zcos(nk/2m)), m=1,2,... . (24)
= 2 4dm 2m —

There is no summation on the right-hand side of either identity for m=1.

Proof. Putting n=2m and 4m in (19) gives

2m—1

> (=1 Jomi(z) = %Jo(z) + .- )~ cos(zcos(mk/m)), m=1.3,..., (25)
k=0 k=0
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4m—1

- 1 1
> Jami(z) = J0(@) + o > cos(zcos(nk/2m)), m=1,2,... . (26)
k=0 k=0

The results follow from (18) and symmetry. [

Setting m=1 in (23) and (24) gives (6a) and

= 1 1
> Ju(z) = 570(2) + 7 (1 + cosz). (27)
k=0

Corollary 5.
[e’s) 1 1 (m—1)/2
;(—l)kJ,ik(z)zng(z)—i- 5 J022) + k; Jo(2z cos(nk/m)), m=1,3,..., (28)
[e’s) m—1
> 7 (z)zljz(z)—k i(l + Jo(22)) + LZJ (2z cos(nk/2m)), m=1,2 (29)
pa 2mk 2 0 4m 0 zmk:1 0 5 s Ly o

Proof. Replacing the argument z in (23) and (24) by 2zsin0, and then integrating the resulting
expressions from 0 to 7/2 with the aid of the three definite integrals

/2
/ [cos(z sin 0),J5,(2z sin 0), Jy(2z sin 0)cos(2n0)] d0 = g[Jo(z),an(z),an(z)], (30)
0

from (9.1.18), (11.4.7) and (11.4.8) in [1], gives (28) and (29). The interchange in the order of
integration and summation is justified by uniform convergence. [J

Setting m =1 in (28) and (29) gives the series

> 1 1

]; (-1 J2(z)= 5Jg(z) + EJo(zz), (31)
> 1 1 1

;Jfk@) = 375(2) + 3(22) + 7. (32)

the first of which is (57.17.14) in [3].
Corollary 6.

> (Y Lisara(2)

k=0
1 o 1 n—1 ezcos(27zk/n) -1
=N (1Y hy - c TN 33
2;( Vbra2) + o ,; sosmm T (33)
o k;én/z,3n/4

where N =2 if n is divisible by 4, otherwise N =0.
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Proof. For integer order n€ Z, (6.511 11.) of Gradshteyn and Ryzhik [2] gives
z oo
| 1@ =23 1 s (34)
0 /=0

Since, I_,(z)=1,(z), there is no restriction on n. The result in (33) follows directly from (34) and
(1. O

Corollary 7. The generalized Neumann series (11) leads in turn to generalized trignometric
identities, namely,

n—1 .
nz 1 sin z
(21 35
R ; cos(2mk/n) — cosz’ (35)

n—1
217" (cosnz — 1) = H[cosz — cos(27k/n)]. (36)
k=0
Identity (36), for z real, is the x=0 case of (91.2.7) in [3].

Proof. The Laplace transform of /,(at), is given by (see Table 17.13 in [2])

[e%¢) —_ 42\
/ e hatydi—a PV =) g Ral, Ry > — 1). (37)
0 RV p -

Let p > a > 0. Then setting z=at in (11), multiplying by e~ #, and integrating from =0 to /=00
gives

k n—1
p?—a? 1 1 1 1
e N — 38
NTZ _a2zl< )] 2 p2_a2+2n;p—acos(2nk/n)’ (38)
wherein (p — v/ p* —a?)/a=a/(p + v/ p*> — @*) < 1. Summing the geometric series gives

znl

1 p —a 1
= + 39
1 — ((p —_— /p2 — (12)/(1)” 2 Z — aCOS(zTCk/l’l) ( )
If p=acoshx,x >0, \/p* —a?=asinhx, (p — \/p? — a?)/a=coshx — sinhx=¢™*, and (39) be-

comes

. n—1
1 1 sinh 1
==+ 0 (40)
k

l—e™ 2 2n — coshx — cos(2nk/n)
which simplifies to

n—1 .

I 4+e™™ nx 1 sinh x
—————=coth—=- .
I —e™™ ot n E% coshx — cos(2nk/n)

(41)
Arguing by analytic continuation,

sinh z
th —=- 42
c0 Z coshz — cos(2mk/n) (42)
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Then coth(iz) = — icotz,sinh(iz) =isinz and coshiz =cosz give
n—1 .
nz 1 sin z
e 2 43
T Z cos(2nk/n) — cosz’ (43)

k=0
which is a generalization of the identity cot(z/2)=sinz/(1 — cosz). This is the first result.
Integrating (41) on x > 0, for fixed n, gives

n—1
2 1 1
“lnsinh X =~ > " In[coshx — cos(27k/n)] + — In K, (44)
n 2 n Pt n
where Ink,/n is the integration constant. Rearrangement yields
n—1
sinh? % =K, g [coshx — cos(27k/n)]. (45)
Dividing both sides of this equation by e™ and letting x — oo shows that x, =22"", whence
n—1
2" (coshnx — 1) = H[coshx — cos(2mk/n)]. (46)
k=0

Again, extending this identity to the complex plane by analytic continuation
n—1
217" (coshnz — 1) = H[coshz — cos(2mk/n)] (47)
k=0
and then replacing z by iz gives
n—1
2'""(cosnz — 1) = H[cosz — cos(2nk/n)]. (48)
k=0
This is the second result. [

Corollary 8. As an indication of the variety of results that can be derived, it is interesting to
observe that, for a >0, y > 0, and for m=1,3,...,

- 1 1
> (D (/2 Yui(3/2) = SJo(3/2)Yo(9/2) + 5~ Yo()

k=0
(m—1)/2
+— > Yolycos(nk/m)), (49)
k=1
ad 1 1
> (=D Luay/2)Kuay/2) = lo(ay/2)Ko(ay/2) + 5 Ko(ay)
k=0
1 (m—1)/2
+— > Kolay cos(mk/m)]. (50)

k=1
In addition to the Bessel functions already defined, these series involve the Bessel function of the
second kind Y,(z), and the modified Bessel function of the second kind K,(z). These functions are
defined for arbitrary order v and complex argument z in [1].
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Proof. The first identity follows from (23) and

< J, d

A TIaGRYAG) (5> 0) (51)
& d

I Th0) >0 (52)

which are the tabulated results (6.552 6.) and (3.753 4.), respectively, in [2]. The latter (with y > 0)
is the v=0 case of (9.1.24b) in [1]. The second identity follows from (23) and

> Jy(xy)dx R —
% — v/z(a)’/2)Kv/z(a)’/2) (fRa >0, y > 0, v > 1), (53)
0 X a

oo

cos(xy)dx

0o Vx*+d?
which are the tabulated results (6.552 1.) and (3.754 2.), respectively, in [2]. Again, the interchange
in the order of integration and summation is justified by uniform convergence. [J

=Ko(ay) (Ra>0,y>0), (54)

4. Summary

The central result is a Neumann series that expresses an infinite sum of modified Bessel functions
as a finite sum of exponentials. This in turn leads to several generalized series of Bessel functions
that confirm, extend and add to known identities in handbooks and the literature.
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