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Abstract

Known series of Bessel functions, currently available in handbooks, and many of Neumann type, are generalized to
arbitrary order. The underlying result is a Poisson formula due to Titchmarsh. This formula gives rise to a Neumann
series involving modi2ed Bessel functions of integral order. The latter is the basis of many of the generalized series that
follow. Included are examples of generalized trigonometric identities. The paper concludes by indicating the wide range
of results that can be obtained. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In2nite series involving Bessel functions occur quite frequently in both mathematical and physical
analysis. In his 1922 treatise, Watson [5] refers to a Neumann series as being any series of the type

∞∑
n=0

anJ�+n(z); (1)

where J�+n(z) is the Bessel function of the 2rst kind of order � + n and complex argument z. In
the mid-1860s, Neumann had studied such series for integer values of �. The extension to complex
� was investigated by Gegenbauer. For numerous references to the early works of Neumann and
Gegenbauer, see the extensive bibliography in [5]. In modern usage, a Neumann series may involve
any type of Bessel function.
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2. A generalized Poisson formula

In the following theorem, a function f(x) and its Fourier cosine transform Fc(x) are related by

Fc(x)=

√
2



∫ ∞

0
f(t)cos(xt) dt; f(x)=

√
2



∫ ∞

0
Fc(t)cos(xt) dt: (2)

Titchmarsh theorem [4, Theorem 45, p. 61]. Let �=2
; ¿ 0; and let f(x) be of bounded vari-
ation on (0;∞); and tend to 0 as x → ∞. Then

√
�

∞∑
n=1

Fc(n�)

=
√
 lim
N→∞

[
1
2
f(0+) +

N∑
n=1

f(n−) + f(n+)
2

− 1


∫ (N+1=2)

0
f(t) dt

]
: (3)

If also
∫∞
0 f(t) dt exists as an improper Riemann integral; then

√
�

{
1
2
Fc(0) +

∞∑
n=1

Fc(n�)

}
=
√


[
1
2
f(0+) +

∞∑
n=1

f(n−) + f(n+)
2

]
: (4)

If also f(x) is continuous; then (4) reduces to Poisson’s formula

√
�

{
1
2
Fc(0) +

∞∑
n=1

Fc(n�)

}
=
√


{
1
2
f(0) +

∞∑
n=1

f(n)

}
: (5)

3. A generalized Neumann series

Eqs. (9:1:47); (9:6:38); (9:6:37) and (9:6:39) in [1], and Eqs. (57:1:18); (58:1:4); (58:1:2) and
(58:1:12) in [3], list the Neumann series

∞∑
k=0

(−1)kJ2k(z)=
1
2
J0(z) +

1
2
cos z;

∞∑
k=0

(−1)k Ik(z)=
1
2
I0(z) +

1
2
e−z; (6)

∞∑
k=0

Ik(z)=
1
2
I0(z) +

1
2
ez;

∞∑
k=0

I2k(z)=
1
2
I0(z) +

1
2
cosh(z); (7)

where Jn(z) is the Bessel function of the 2rst kind and In(z) is the modi2ed Bessel function of the
2rst kind. For integer order n and complex argument z, they are the entire complex functions (see
(9:1:21) and (9:6:19) in [1])

Jn(z)=
i−n




∫ 


0
eiz cos � cos(n�) d�; In(z)=

1



∫ 


0
ez cos � cos(n�) d� (8)
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and have the series representations (see (9:1:10) and (9:6:10) in [1])

Jn(z)=
(
1
2
z
)n ∞∑

k=0

(− 1
4z

2)k

k!(n+ k)!
; In(z)=

(
1
2
z
)n ∞∑

k=0

(14z
2)k

k!(n+ k)!
: (9)

Inspection of these series shows that

In(±iz)= (±i)nJn(z); In(−z)= (−1)nIn(z): (10)

Theorem 1. The Neumann series in (7) generalize to
∞∑
k=0

Ink(z)=
1
2
I0(z) +

1
2n

n−1∑
k=0

ez cos(2
k=n); n=1; 2; : : : : (11)

Proof. For � real, let

f(x)=

{
e� cos(2
x); 06 x6 1:

0; x¿ 1:
(12)

This function is continuous on [0; 1], zero elsewhere, and satis2es the conditions of Titchmarsh’s the-
orem above. Choosing =1=n and �=2
n; n a positive integer, and noticing that f(0+)=f(1−),
renders (4) as

n
√
2


{
1
2
Fc(0) +

∞∑
k=1

Fc(2
kn)

}
=f(0+) +

n−1∑
k=1

f
(
k
n

)
: (13)

If m is a nonnegative integer, it follows from (2), (8) and (12) that

Fc(2
m) =

√
2



∫ 1

0
e� cos(2
t) cos(2
mt) dt

=

√
2



1
2


∫ 2


0
e� cos � cos(m�) d�=

√
2


Im(�): (14)

Substituting for f and Fc in (13) gives

∞∑
k=0

Ink(�)=
1
2
I0(�) +

1
2n

n−1∑
k=0

e� cos(2
k=n) (15)

and the general result in (11) follows by analytic continuation; the series in (7) correspond to (11)
with n=1 and 2, respectively.

Corollary 2. The Neumann series in (6) generalize to
∞∑
k=0

(±i)nkJnk(z)=
1
2
J0(z) +

1
2n

n−1∑
k=0

e±iz cos(2
k=n); n=1; 2; : : : ; (16)
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∞∑
k=0

(−1)nkInk(z)=
1
2
I0(z) +

1
2n

n−1∑
k=0

e−z cos(2
k=n); n=1; 2; : : : ; (17)

where

(−1)nk =

{
+1; n even

(−1)k ; n odd:
(18)

Proof. These results follow immediately from (10) and (11); (6a) corresponds to (16) with n=2,
while (6b) corresponds to (17) with n=1.

Corollary 3.

∞∑
k=0

Jnk(z) cos(nk
=2)=
1
2
J0(z) +

1
2n

n−1∑
k=0

cos(z cos(2
k=n)); n=1; 2; : : : ; (19)

∞∑
k=0

Jnk(z) sin(nk
=2)=
1
2n

n−1∑
k=0

sin(z cos(2
k=n)); n=1; 3; : : : : (20)

Proof. Writing (±i)nk as e±ink
=2 then adding and subtracting the two series in (16) gives (19) and
(20). For even n, both sides of (20) are zero.

Putting n=1 or 2 in (19) gives (6a); putting n=1 and 3 in (20) gives the two series:
∞∑
k=0

(−1)kJ2k+1(z)=
1
2
sin z; (21)

∞∑
k=0

(−1)k+1J6k+3(z)=
1
6
sin z − 1

3
sin(z=2); (22)

respectively, the 2rst of which agrees with (9:1:48) in [1] and (57:1:20) in [3].

Corollary 4.

∞∑
k=0

(−1)kJ2mk(z)=
1
2
J0(z) +

1
2m

cos z +
1
m

(m−1)=2∑
k=1

cos(z cos(
k=m)); m=1; 3; : : : ; (23)

∞∑
k=0

J4mk(z)=
1
2
J0(z) +

1
4m

(1 + cos z) +
1
2m

m−1∑
k=0

cos(z cos(
k=2m)); m=1; 2; : : : : (24)

There is no summation on the right-hand side of either identity for m=1.

Proof. Putting n=2m and 4m in (19) gives
∞∑
k=0

(−1)mkJ2mk(z) =
1
2
J0(z) +

1
4m

2m−1∑
k=0

cos(z cos(
k=m)); m=1; 3; : : : ; (25)
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∞∑
k=0

J4mk(z) =
1
2
J0(z) +

1
8m

4m−1∑
k=0

cos(z cos(
k=2m)); m=1; 2; : : : : (26)

The results follow from (18) and symmetry.

Setting m=1 in (23) and (24) gives (6a) and
∞∑
k=0

J4k(z)=
1
2
J0(z) +

1
4
(1 + cos z): (27)

Corollary 5.

∞∑
k=0

(−1)kJ 2
mk(z)=

1
2
J 2
0 (z) +

1
2m

J0(2z) +
1
m

(m−1)=2∑
k=1

J0(2z cos(
k=m)); m=1; 3; : : : ; (28)

∞∑
k=0

J 2
2mk(z)=

1
2
J 2
0 (z) +

1
4m

(1 + J0(2z)) +
1
2m

m−1∑
k=1

J0(2z cos(
k=2m)); m=1; 2; : : : : (29)

Proof. Replacing the argument z in (23) and (24) by 2z sin �, and then integrating the resulting
expressions from 0 to 
=2 with the aid of the three de2nite integrals∫ 
=2

0
[cos(z sin �); J2n(2z sin �); J0(2z sin �)cos(2n�)] d�=



2
[J0(z); J 2

n (z); J
2
n (z)]; (30)

from (9:1:18), (11:4:7) and (11:4:8) in [1], gives (28) and (29). The interchange in the order of
integration and summation is justi2ed by uniform convergence.

Setting m=1 in (28) and (29) gives the series
∞∑
k=0

(−1)kJ 2
k (z)=

1
2
J 2
0 (z) +

1
2
J0(2z); (31)

∞∑
k=0

J 2
2k(z)=

1
2
J 2
0 (z) +

1
4
J0(2z) +

1
4
; (32)

the 2rst of which is (57:17:14) in [3].

Corollary 6.
∞∑

k;‘=0

(−1)‘Ink+2‘+1(z)

=
1
2

∞∑
‘=0

(−1)‘I2‘+1(z) +
1
4n




n−1∑
k=0

k �=n=4; 3n=4

ezcos(2
k=n) − 1
cos(2
k=n)

+ Nz


 ; (33)

where N =2 if n is divisible by 4; otherwise N =0.
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Proof. For integer order n∈Z, (6:511 11:) of Gradshteyn and Ryzhik [2] gives∫ z

0
In(z) dz=2

∞∑
‘=0

(−1)‘In+2‘+1(z): (34)

Since, I−n(z)= In(z), there is no restriction on n. The result in (33) follows directly from (34) and
(11).

Corollary 7. The generalized Neumann series (11) leads in turn to generalized trignometric
identities; namely;

cot
nz
2
=

1
n

n−1∑
k=0

sin z
cos(2
k=n)− cos z

; (35)

21−n(cos nz − 1)=
n−1∏
k=0

[cos z − cos(2
k=n)]: (36)

Identity (36); for z real; is the x=0 case of (91:2:7) in [3].

Proof. The Laplace transform of I�(at), is given by (see Table 17:13 in [2])∫ ∞

0
e−ptI�(at) dt= a−� (p−

√
p2 − a2)�√

p2 − a2
(Rp¿ |Ra|; R�¿− 1): (37)

Let p¿a¿ 0. Then setting z= at in (11), multiplying by e−pt , and integrating from t=0 to t=∞,
gives

1√
p2 − a2

∞∑
k=0

[(
p−

√
p2 − a2

a

)n]k
=

1
2

1√
p2 − a2

+
1
2n

n−1∑
k=0

1
p− a cos(2
k=n)

; (38)

wherein (p−
√
p2 − a2)=a= a=(p+

√
p2 − a2)¡ 1. Summing the geometric series gives

1

1− ((p−
√
p2 − a2)=a)n

=
1
2
+

√
p2 − a2

2n

n−1∑
k=0

1
p− a cos(2
k=n)

: (39)

If p= a cosh x; x¿ 0,
√
p2 − a2 = a sinh x; (p−

√
p2 − a2)=a=cosh x − sinh x=e−x, and (39) be-

comes

1
1− e−nx =

1
2
+

sinh x
2n

n−1∑
k=0

1
cosh x − cos(2
k=n)

(40)

which simpli2es to

1 + e−nx

1− e−nx =coth
nx
2

=
1
n

n−1∑
k=0

sinh x
cosh x − cos(2
k=n)

: (41)

Arguing by analytic continuation,

coth
nz
2
=

1
n

n−1∑
k=0

sinh z
cosh z − cos(2
k=n)

: (42)
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Then coth(iz)=− i cot z; sinh(iz)= i sin z and cosh iz=cos z give

cot
nz
2
=

1
n

n−1∑
k=0

sin z
cos(2
k=n)− cos z

; (43)

which is a generalization of the identity cot(z=2)= sin z=(1− cos z). This is the 2rst result.
Integrating (41) on x¿ 0, for 2xed n, gives

2
n
ln sinh

nx
2

=
1
n

n−1∑
k=0

ln[cosh x − cos(2
k=n)] +
1
n
ln �n; (44)

where ln �n=n is the integration constant. Rearrangement yields

sinh2
nx
2

= �n
n−1∏
k=0

[cosh x − cos(2
k=n)]: (45)

Dividing both sides of this equation by enx and letting x → ∞ shows that �n=22−n, whence

21−n(cosh nx − 1)=
n−1∏
k=0

[cosh x − cos(2
k=n)]: (46)

Again, extending this identity to the complex plane by analytic continuation

21−n(cosh nz − 1)=
n−1∏
k=0

[cosh z − cos(2
k=n)] (47)

and then replacing z by iz gives

21−n(cos nz − 1)=
n−1∏
k=0

[cos z − cos(2
k=n)]: (48)

This is the second result.

Corollary 8. As an indication of the variety of results that can be derived; it is interesting to
observe that; for a¿ 0; y¿ 0; and for m=1; 3; : : : ;

∞∑
k=0

(−1)kJmk(y=2)Ymk(y=2)=
1
2
J0(y=2)Y0(y=2) +

1
2m

Y0(y)

+
1
m

(m−1)=2∑
k=1

Y0[y cos(
k=m)]; (49)

∞∑
k=0

(−1)k Imk(ay=2)Kmk(ay=2)=
1
2
I0(ay=2)K0(ay=2) +

1
2m

K0(ay)

+
1
m

(m−1)=2∑
k=1

K0[ay cos(
k=m)]: (50)

In addition to the Bessel functions already de=ned; these series involve the Bessel function of the
second kind Y�(z); and the modi=ed Bessel function of the second kind K�(z). These functions are
de=ned for arbitrary order � and complex argument z in [1].
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Proof. The 2rst identity follows from (23) and∫ ∞

1

J�(xy) dx√
x2 − 1

=− 

2
J�=2(y=2)Y�=2(y=2) (y¿ 0); (51)

∫ ∞

1

cos(xy) dx√
x2 − 1

=− 

2
Y0(y) (y¿ 0); (52)

which are the tabulated results (6:552 6:) and (3:753 4:), respectively, in [2]. The latter (with y¿ 0)
is the �=0 case of (9:1:24b) in [1]. The second identity follows from (23) and∫ ∞

0

J�(xy) dx√
x2 + a2

= I�=2(ay=2)K�=2(ay=2) (Ra¿ 0; y¿ 0; R�¿− 1); (53)

∫ ∞

0

cos(xy) dx√
x2 + a2

=K0(ay) (Ra¿ 0; y¿ 0); (54)

which are the tabulated results (6:552 1:) and (3:754 2:), respectively, in [2]. Again, the interchange
in the order of integration and summation is justi2ed by uniform convergence.

4. Summary

The central result is a Neumann series that expresses an in2nite sum of modi2ed Bessel functions
as a 2nite sum of exponentials. This in turn leads to several generalized series of Bessel functions
that con2rm, extend and add to known identities in handbooks and the literature.
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