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Abstract

With the differential calculus on the Faber polynomials, we calcu-
late the Faber polynomials for powers of inverse functions. We apply
the same methods to obtain majoration of the derivatives of the Faber
polynomials of a univalent function of the class Σ.
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1 Introduction

Let g(z) = z + b1 + b2z
−1 + · · ·+ bnz

1−n + · · ·, the Faber polynomials ψn(t) of
g(z) are given by

zg′(z)
g(z) − t

= 1 +
∞∑

m=1

ψm(t) z−m (1)

Let Fk(b1, b2, .., bk) = ψk(0), k ≥ 1, then ψn(t) = Fn(b1 − t, b2, .., bn). Let

z

g(z) − t
= 1 +

+∞∑

n=1

Gn(b1 − t, b2, · · · , bn) z−n (2)

If h(z) = zg(1z ), then 1
h(z)

=
∑

n≥0Gn(b1, b2, · · · , bn)zn. We have

Gn(b1 − t, b2, · · · , bn) =
1

n+ 1
ψ′

n+1(t) = − 1

k + 1

∂Fk+1

∂b1
(b1 − t, b2, · · · , bk) (3)

h(z)p =
∑

n≥0

Kp
n(b1, b2, · · · , bn) zn ∀p real (4)

(b1z + b2z
2 + · · ·+ bnz

n + · · ·)m =
∑

s≥0

Dm
m+s(b1, b2, · · ·)zs+m ∀m ∈ N (5)
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Then D0
n = 0 if n > 0 and D0

0 = 1, Gn = K−1
n and K0

n = 0 if n > 0. We have

lim
p→0

Kp
n

p
= − Fn

n
(6)

We denote Kp
n for Kp

n(b1, b2, .., bn) and (G1, G2, ..) for (G1(b1), G2(b1, b2), ..).
With h(z)p × h(z) = h(z)p+1, we see that Kp

n satisfies the recurrence

Kp
n + b1K

p
n−1 + b2K

p
n−2 + · · ·+ bn−1K

p
1 + bn = Kp+1

n (7)

We have, see [3], Fn(G1, G2, · · · , Gn) = −Fn(b1, b2, · · · , bn),

K−p
n (G1, G2, · · · , Gn) = Kp

n(b1, b2, · · · , bn) (8)

and see [9], [8] and [1],

1

n
Fn(b1, b2, · · · , bn) =

n∑

m=1

(−1)m

m
Dm

n (b1, b2, · · · , bn−m+1) (9)

The derivatives of Fn(b1, b2, · · · , bn) with respect to any of the variables bj are
given in [3]. With respect to b1,

1

n

∂k

∂bk1
Fn(b1, b2, · · · , bn) = (−1)k (k − 1)!K−k

n−k(b1, · · · , bn−k) (10)

= (−1)k (k − 1)!Kk
n−k(G1, · · · , Gn−k) = (−1)k (k − 1)!Dk

n(1, G1, · · · , Gn−k)

Denote Cp
m =

p(p− 1) · · · (p−m+ 1)
m!

, then for p ≥ 1, p, q ∈ N ,

(−1)qC−p
q =

q∑

k=1

Cp
k

(q − 1)!

(q − k)!(k − 1)!
(11)

Then Dm
n (b1 − t, b2, .., bn−m+1) =

∑m−1
k=0 C

m
k (−1)kDm−k

n−k (b1, b2, .., bn−m+1)t
k for

1 ≤ m < n and Dn
n = bn1 .

2 The Faber polynomials of the inverse func-

tion

Let g(z) as in (1) and denote g−1(z) the inverse function, (g o g−1 = Identity) ,
then, see [2, (I.2.7)-(I.2.8)] and [3, proposition 6.2],

g−1(z) = z − b1 −
∑

n≥1

1

n
Kn

n+1

1

zn
(12)
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1

[g−1(u)]p
=

1

up
+

∑

n≥1

p

n+ p
Kn+p

n (b1, b2, · · · , bn)
1

un+p
(13)

This expansion is valid for any real number p with the convention that when
n + p = 0, we replace the coefficient p

n+ p K
n+p
n by Fn, this is in accordance

with (6). This shows that for any p ∈ R,

K−p
n (−b1,−K1

2 ,−
1

2
K2

3 , · · · ,−
1

n− 1
Kn−1

n ) =
p

n+ p
Kn+p

n (b1, b2, · · ·) (14)

where in the left hand side, Kp
n means Kp

n(b1, b2, · · · , bn). Making p → 0 as in
(6), we deduce from (14),

Fn(−b1,−K1
2 ,−

1

2
K2

3 , · · · ,−
1

n− 1
Kn−1

n ) = Kn
n(b1, b2, · · · , bn) (15)

The Faber polynomials φn(t) in terms of the (bn), for the inverse function g−1

are well known, they are the Taylor part in the Laurent expansion of g(z)n,
see for example the proof of Lemma 1.3 in [8]. We give a different proof of this
fact: In (15), we have the value φn(0) at t = 0. We do a Taylor expansion of

φn(t) = Fn(−b1 − t, −K1
2 (b1, b2), −1

2
K2

3(b1, b2, b3), · · ·) (16)

Using (14) at the last step, we obtain

φ(k)
n (0)

k!
=

(−1)k

k!

∂kFn

∂bk1
(−b1, −K1

2 (b1, b2), −1

2
K2

3 (b1, b2, b3), · · ·) (17)

=
n

k
K−k

n−k (−b1, −K1
2 (b1, b2), −1

2
K2

3 (b1, b2, b3), · · ·) = Kn
n−k(b1, b2, · · ·)

We obtain

φn(t) = Kn
n(b1, b2, · · · , bn) +

n∑

k=1

Kn
n−k(b1, b2, · · · , bn−k)t

k (18)

which is the Taylor part of g(t)n. With the same method,

Theorem 2.1 The Faber polynomials φn(t) of zp+1

[g−1(z)]p
are given in terms

of the (bn) by

φn(t) = − p
n∑

k=0

n

n− k(1 + p)
K

n−k(1+p)
n−k (b1, b2, · · · , bn−k) t

k (19)

with the convention n
n− (p+ 1)k

K
n−(p+1)k
n−k = − (1 + p)

p Fkp if n = (p+ 1)k.
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Proof. We give the proof for p = 1. Then φn(t) = − ∑n
k=0

n
n− 2kK

n−2k
n−k t

k

with the convention n
n− 2kK

n−2k
n−k = − 2Fk if n = 2k. With (13),

Kp
n( b1,

1

3
K3

2(b1, b2), · · · ,
1

n+ 1
Kn+1

n (b1, b2, · · · , bn) ) =
p

n + p
Kn+p

n (20)

With (6), dividing by p and making p→ 0,

φn(0) = Fn(b1,
1

3
K3

2 (b1, b2), ..,
1

n + 1
Kn+1

n (b1, b2, .., bn)) = −Kn
n (b1, b2, .., bn)

Then with (10), we apply Taylor formula to,

φn(t) = Fn( b1 − t,
1

3
K3

2 (b1, b2), · · · , 1

n + 1
Kn+1

n (b1, b2, · · · , bn) ) •

Similarly, let f(z) = z +
∑

n≥1 bnz
n+1 and the inverse f−1(z), (fof−1 = Id),

then for any real p, see [2, (I.2.6)-(I.2.9)],

[f−1(z)]p = zp[1 +
∑

n≥1

p

n+ p
K−(n+p)

n zn] (21)

with the convention that we replace p
p− nK

p−n
n in (21) by −Fn if p = n. In

particular
z

f−1(z)
= 1 + b1z − ∑

n≥2

1

n− 1
K1−n

n zn (22)

Theorem 2.2 Let f(z) = z +
∑

n≥1 bnz
n+1, the Faber polynomials φn(t) of

z1+p [f−1(1z )]p are given in terms of the (bn) by

φn(t) = − p
n∑

k=0

n

n− k(1 + p)
K

−n+k(1+p)
n−k (b1, b2, · · · , bn−k)t

k (23)

Proof. With (21), Kq
n(−pb1, .., p

n + pK
−(n+p)
n ) =

pq
pq + nK

−pq−n
n (b1, b2, .., bn)

if n + pq �= n, otherwise we use (6). As in (6), we divide by q and make
q → 0, Fn(−pb1, · · · , p

n+ pK
−(n+p)
n ) = −pK−n

n (b1, b2, .., bn). We have φn(t) =

Fn(−pb1 − t, .., p
n+ pK

−(n+p)
n ). We calculate its coefficients

φk
n(0)
k!

with (10) •
For p = −1, φn(t) =

∑n
k=0K

−n
n−k(b1, b2, · · · , bn−k)t

k and similarly to (18), this

case can be obtained directly since the inverse of g(z) = 1
f−1(1z )

is g−1(u) =

1
f( 1
u)

. A different proof of (19) and (23) would consist in making a change of

variables in Cauchy integral formula. A succession of manipulations on f(z)
and g(z) as raising to the power and taking the inverse as in Theorems 2.1 and
2.2 brings always series with coefficients in the class of polynomials Kp

n.
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3 Majoration of the derivatives of the Faber

polynomials for g(z) = 1
f(1

z
)

Theorem 3.1 Let f(z) = z +
∑

n≥1 bnz
n+1. The nth Faber polynomial of

g(z) = z1+p[f(1
z
)]p is φn(t) = pFn(b1, b2, .., bn) +

∑n
k=1

n
kK

−pk
n−k(b1, b2, .., bn−k)t

k.

In particular for p = −1, see [9, (30)], let φn(t) be the nth Faber polynomial
of g(z) = [f(1

z
)]−1, then

1

n
φn(t) = − 1

n
Fn(b1, b2, · · · , bn) +

n∑

k=1

tk

k
Dk

n(1, b1, b2, · · · , bn−k) (24)

Proof. We have g(z) = z + pb1 +
Kp

2
z + · · ·+ Kp

n+1
zn + · · ·. Because of (1),

φn(t) = Fn(pb1 − t,Kp
2 , · · · , Kp

n) (25)

By Taylor’s formula, φn(t) = φn(0) +
∑n

k=1
φ(k)(0)
k!

tk. For k ≥ 1, the kth

derivative is

φ(k)
n (t) = (−1)k(

∂k

∂bk1
Fn)(pb1−t,Kp

2 , .., K
p
n) = (k−1)!nK−k

n−k(pb1−t,Kp
2 , .., K

p
n−k)

Thus
φ(k)

n (0)
k! = n

k K
−pk
n−k(b1, b2, .., bn−k). When p = −1, we obtain (24) •

Our proof uses differential calculus whereas the proofs in [9, 10] are combina-
tory. Remark that (24) is also an immediate consequence of (21) since (24) is

the Taylor part of 1
n [f−1(1z )]−n. See (18). When p = −1, the derivatives φ(k)

n

are given by

1

n
φ(k)

n (t) = (k − 1)!K−k
n−k(G1 − t, G2, · · · , Gn−k) =

n−k∑

s=0

k!

s+ k
Ds+k

n ts (26)

In [9], when g(z) = 1
f(1

z
)

and f(z) = z+ b1z
2 + b2z

3 + .. is univalent in |z| ≤ 1,

the positivity of the coefficients of the polynomialsDk
n and De Branges theorem

|bn| ≤ n + 1 permit to obtain a majoration of the first derivative φ′
n(t) for

|t| ≤ 1, the Koebe function is extremal. Because of (26), we can apply the
same method, see Theorem 3.3, to all the derivatives φ(k)

n (t) and the Koebe
function is again extremal.

Let f(z) = z
(1 − z)2 be the Koebe function and g(z) = 1

f(1
z
)

= z−2+ 1
z .

We denote x1(t) and x2(t) the two roots of

x2 − (2 + t) x + 1 = 0 (27)
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As in section 4, the Faber polynomials of g(z) are the Tchebicheff polynomials,
see for example [11]. For n ≥ 1,

πn(t) = x1(t)
n + x2(t)

n = Fn(−(2 + t), 1, 0, · · · , 0, ) (28)

πn(t) =
1

22n−1

n∑

k=0

C2n
2k t

k (4+t)n−k = (
2 + t+

√
4t+ t2

2
)n+(

2 + t−√
4t+ t2

2
)n

π1(t) = 2 + t, π2(t) = 2 + 4t+ t2 = π1(v), π3(t) = (2 + t)(1 + v), · · · with

v = 4t+ t2

If x(t) is a root of (27), then x(t)4 − (2 + v)x(t)2 + 1 = 0; for y(v) = x(t)2, it
gives πn(v) = y1(v)

n + y2(v)
n = x1(t)

2n + x2(t)
2n = π2n(t). Thus

π2n(t) = 21−2n
n∑

k=0

C2n
2k (2 + t)2k(4t+ t2)n−k = 21−2n

n∑

k=0

C2n
2k (4 + v)kvn−k

This proves the validity of the expression of πn(t) following (28). We also have

πn(t) = 2Tn(
t+ 2

2
) (29)

where Tn is the nth Tchebicheff polynomial, see section 4. From (27),

∀n ≥ 3, πn(t) = (2 + t)πn−1(t) − πn−2(t) (30)

Since the polynomial πn(t) has positive coefficients, its maximum value on
|t| ≤ 1 is at t = 1. Since π1(1) = 3, π2(1) = 7, we obtain πn(1) from (30). For
the derivatives π(k)

n (t), we have π′
1(t) = 1, π′

2(t) = 2(2 + t),

1

n
π′

n(t) =
1√

4t+ t2
[ (

2 + t+
√

4t+ t2

2
)n − (

2 + t−√
4t+ t2

2
)n ] (31)

1

n
π′′

n(t) =
n

4t+ t2
πn(t) − 2 + t

4t+ t2
π′

n(t)

n
(32)

1

2p+ 1
π′

2p+1(t) =
1

22p

p∑

j=0

C2p+1
2j+1 (4t+ t2)j(2 + t)2(p−j) (33)

and a similar expression for 1
2pπ

′
2p(t). Remark that (32) is a particular case of

Theorem 9.1 in [3]. On the other hand, (28)-(33) give interesting relations if
we put 2 + t = cos(θ) as in section 4, or 2 + t = cosh θ.

Theorem 3.2 max|t|≤1 |π(k)
n (t)| = π(k)

n (1) for k ≥ 1. Moreover an(k) =
1
n π

(k)
n (1) = (k − 1)!K−k

n−k(−3, 1, 0, · · · , 0) are the coefficients of the series

zk

(1 − 3z + z2)k = zk +
1

(k − 1)!

∑

n≥k+1

an(k)zn (34)

Theorem 3.3 Let f(z) = z+ b1z
2 + · · · be univalent in the disc |z| ≤ 1 and

g(z) = 1
f(1

z
)

as in Theorem 3.1. For |t| ≤ 1, k ≥ 1, we have |φ(k)
n (t)| ≤ π(k)

n (1).



Remarks on Faber polynomials 455

4 Faber polynomials as symmetric functions

of the roots and the Tchebicheff polynomials

The Faber polynomials ψn(t) introduced in [5] for expansions of analytic func-
tions and studied by P. Montel [7] can be obtained by Schiffer’s elimination
procedure [6]. A recent point of view, see [4], [8], is to consider the ψn(t) as
symmetric functions of the roots of an algebraic equation. Let g(z) as in (1)
and

Qm(ξ, t) = ξm + (b1 − t) ξm−1 + · · ·+ bm =
m∏

k=1

(ξ − xk(t)) (35)

where x1(t), x2(t), · · ·, xm(t) are the roots of Qm(ξ, t) and let πj(t) = x1(t)
j +

x2(t)
j + · · ·+xj

m(t) be the symmetric polynomial of the roots of Qm, it satisfies

πm + (b1 − t)πm−1 + · · · + bm−1π1 +mbm = 0 (36)

From (1), the relation (36) is also valid for ψm. Compare (36) with (6)-(7).

Theorem 4.1 We have ψn(t) = πn(t)

Using De Moivre formula, we interpret Theorem 4.1 with the Tchebicheff poly-
nomials Tn(x) and Un(x) where

Tn(cos θ) = cos(nθ) and Un(cos θ) =
sin(n+ 1)θ

sin θ

It is well known that (x2 − 1)U ′
n(x) = (n+ 1)Tn+1(x) − xUn(x),

Tn(x) = Un(x) − xUn−1(x) and (1 − x2)Un−1(x) = xTn(x) − Tn+1(x)

T ′
n(x) = nUn−1(x) (37)

Theorem 4.2 Let g(z) = z+ b1 + 1
z and (ψm(t))m≥1 the Faber polynomials

associated to g(z). Then

ψm(t) = 2Tm(
t− b1

2
) = 2 cos(mθ) with 2 cos(θ) = t− b1 (38)

Proof. Let Qm(ξ, t) = ξm+(b1−t)ξm−1+ξm−2. It has m−2 zero roots and the
two others non zero roots are x1(t) = eiθ and x2(t) = e−iθ with 2 cos θ = t− b1.
From Theorem 4.1, ψm(t) = x1(t)

m + x2(t)
m = eimθ + e−imθ = 2Tm(cos θ) •

Theorem 4.3 Let g(z) = z + b1 + 1
z and Gn(t) = Gn(b1 − t, 1, 0, · · · , 0)

defined by z
g(z) − t

= 1 +
∑+∞

m=1Gm(t)z−m, then

Gm(t) =
sin((m+ 1)θ)

sin θ
with 2 cos θ = t− b1 (39)
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Proof. From (38), Gm(t) = 1
m+ 1ψ

′
m+1(t) = 2

n+ 1 T
′
m+1(

t− b1
2 ) × 1

2. Using

(37), we get Gm(t) = Um(t− b1
2 ), thus (39).
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