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Abstract

Let B, be the Bell numbers, and A4,(n>0), B,(n>1) be the matrices defined by
Ainj) = Bir; (0<i,j<n), Bu(i,j) = Bipj+1 (0<i,j<n). It is shown that (B,) is the unique
sequence of real numbers such that detj,, = detB, = n!! for all n, where n!! = szo(k!)'
© 1999 Elsevier Science B.V. All rights reserved.

The Bell number B, counts the number of partitions of an n-set, with the first values
By=1, Bi=1, B;=2, B3=5, B4=15, Bs=52. The purpose of this note is to provide
a characterization of the sequence (By, B, B>,...) by means of the determinants of the
Hankel matrices

B, B, ... B, B, B, ... By
a8 B By | B B B
Bn Bn+1 BZn Bn+1 Bn+2 BZrH—l

It is clear that any sequence of real numbers is uniquely determined by the determinant
sequence det/]o, det By, det/]l, detB,,... as long as these are different from 0. For
example, the Catalan numbers are the unique sequence such that det/],, =detB, =1
for all n (see e.g. [4]). See also the related problem 36 [3, p. 50].

Theorem. The Bell numbers B, are the unique sequence of real numbers such that
det/],, =detB, = n!!

where n!! = T]_,(k!).
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Table 1
0 1 2 3 4 5
0 1
1 1 1
2 2 3 1
3 5 10 6 1
4 15 37 31 10 1
5 52 151 160 75 15 1

This characterization can be obtained by the continued fraction approach in [1], but
maybe the present short proof is also of interest.

Before proceeding to the proof let us recall some facts on exponential generating
functions. If C(x) =) , . (Cy/n)x", then C'(x) =3 - ((Cyy1/n!)x" where C'(x) is
the derivative of C(x). Further, it is a classical result that the exponential generating
function of the Bell numbers is B(x) =) . ((B,/n!)x" = e 1

On the way to proving the theorem we use the fact that the Bell numbers can be
obtained by a recursive procedure. This goes as follows:

Let A = (a,x) be the infinite lower triangular matrix defined recursively by

app =1, aor =0 (k>0),
Anj = Ap—1j—1 + (kb + Dap_1x + (b + Dap—1p11 (n=1). (1)

The first rows of 4 are given in the Table 1 (omitting the zeroes).

We see that the numbers in the 0-column are the Bell numbers By,...,Bs, and we
proceed to show that this holds in general. For the proof we make use of the Riordan
group method introduced in [2].

Lemma 1. Let Ay(x) be the exponential generating function of the kth column of A,
then

oy (7 — l)k

Ak(x):e A

(k=0).
In particular, Ay(x) = B(x).

Proof. The recursion (1) translates into

A () = A1 () + (b + DA + (b + DA (x)
4,(0) = [k = 0]. @)

It is now easily seen that the functions A;(x) =e° ~'(e* — 1) /k! satisfy precisely the
functional equation (2). [
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Lemma 2. Let r, be the nth row of A= (anx). Define r,or, =73 - aniarsik!, then
PnO¥s =dyyso (=Byis) for all nand ¢.

Proof. For n =0 we have ryor, =as for all /. Suppose that r,, o r; = @y, holds
for m<n—1 and all /. Then by (1) and interchanging the summation

rpors = aprarik! =3 (ap—1x—1 + (k + Day_1x + (k + Day_1x+1)asik!
X X
=> (arj1(k+ D) +asp(k+ 1)+ asp—1kay—1x
3
=> (arj—1 + (k+ Dasg + (k + 1)ag i1 )an—1 k!
3

=3 arpipn—t1jk! =11 0rsp1 = Anigp. O
%

Proof of the theorem. The proof proceeds by providing an LDU decomposition of A,,.
Let 4, be the submatrix of 4 consisting of the rows and columns numbered 0 to x.
Since 4, is lower triangular with diagonal 1, we have det4, = 1. Now multiply the
kth column of 4, by k!, for 0<k <n, and call the new matrix 4,; hence det4, =n!!.
Since ry ory =By, by Lemma 1, we infer for the first Hankel matrix A, :Z,,AZ, and
thus det 4, = n!!.

If we replace recursion (1) by

bop=1, boy=0(k>0),

1/
bug = burpt + (k- Dby + (k4 Dbyrier (131 )

then we derive by the same method
Bi(x) =¢® ¥ (e* — 1) /k!. 2"

In particular, By(x) = e® ~'e* = B/(x). Hence the entries in the 0-column of the new
matrix B are (By,B,B3,...). As in Lemma 2, we find again 7y or, =bjys0=Bris11. If
B,, B, denote the submatrices of B corresponding to 4,,4, as before, then B, = B,B}
and thus det B, =n!!. [

Remark 1. By the same method one can prove

B, B; cer Bup2
B B ... B
det 3 4 "B = (),
Bn+2 Bn+3 ee 32n+2

where ¢, =Y}, nk is the total number of permutations of n things.

Remark 2. Let S, =) /_,aux be the sum of the nth row of 4, with the first values
So=1, S$1=2, §,=6, S3=22, S4=94, S5 =454. The exponential generating function



210 M. Aigner/ Discrete Mathematics 205 (1999) 207-210

of the sequence (S,) is by Lemma 1
et (e* — 1) e
Sry=e'> =
k>0

and we find S,=>"}_ (}) BcBu—x, the convoluted Bell number. Using the same method
as before one can show that

So S .. S,
o L [ G YT
Sn Sn+1 cee S2n
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