Note
 A Characterization of the bell numbers

Martin Aigner
II. Math. Institut, Freie Universität Berlin, Arnimallee 3, D-14195 Berlin, Germany

Received 27 July 1998; revised 12 January 1999; accepted 25 January 1999

Abstract

Let B_{n} be the Bell numbers, and $\tilde{A}_{n}(n \geqslant 0), \tilde{B}_{n}(n \geqslant 1)$ be the matrices defined by $\tilde{A}_{n}(i, j)=B_{i+j}(0 \leqslant i, j \leqslant n), \tilde{B}_{n}(i, j)=B_{i+j+1}(0 \leqslant i, j \leqslant n)$. It is shown that $\left(B_{n}\right)$ is the unique sequence of real numbers such that $\operatorname{det} \tilde{A}_{n}=\operatorname{det} \tilde{B}_{n}=n!$! for all n, where $n!!=\prod_{k=0}^{n}(k!)$. (c) 1999 Elsevier Science B.V. All rights reserved.

The Bell number B_{n} counts the number of partitions of an n-set, with the first values $B_{0}=1, B_{1}=1, B_{2}=2, B_{3}=5, B_{4}=15, B_{5}=52$. The purpose of this note is to provide a characterization of the sequence $\left(B_{0}, B_{1}, B_{2}, \ldots\right)$ by means of the determinants of the Hankel matrices

$$
\tilde{A}_{n}=\left(\begin{array}{cccc}
B_{0} & B_{1} & \ldots & B_{n} \\
B_{1} & B_{2} & \ldots & B_{n+1} \\
& & \ldots & \\
B_{n} & B_{n+1} & \ldots & B_{2 n}
\end{array}\right), \quad \tilde{B}_{n}=\left(\begin{array}{cccc}
B_{1} & B_{2} & \ldots & B_{n+1} \\
B_{2} & B_{3} & \ldots & B_{n+2} \\
& & \ldots & \\
B_{n+1} & B_{n+2} & \ldots & B_{2 n+1}
\end{array}\right) .
$$

It is clear that any sequence of real numbers is uniquely determined by the determinant sequence $\operatorname{det} \tilde{A}_{0}$, $\operatorname{det} \tilde{B}_{0}$, $\operatorname{det} \tilde{A}_{1}$, $\operatorname{det} \tilde{B}_{1}, \ldots$ as long as these are different from 0 . For example, the Catalan numbers are the unique sequence such that $\operatorname{det} \tilde{A}_{n}=\operatorname{det} \tilde{B}_{n}=1$ for all n (see e.g. [4]). See also the related problem 36 [3, p. 50].

Theorem. The Bell numbers B_{n} are the unique sequence of real numbers such that

$$
\operatorname{det} \tilde{A}_{n}=\operatorname{det} \tilde{B}_{n}=n!!
$$

where $n!!=\prod_{i=0}^{n}(k!)$.

[^0]Table 1

	0	1	2	3	4	5
0	1					
1	1	1				
2	2	3	1			
3	5	10	6	1		
4	15	37	31	10	1	
5	52	151	160	75	15	1

This characterization can be obtained by the continued fraction approach in [1], but maybe the present short proof is also of interest.

Before proceeding to the proof let us recall some facts on exponential generating functions. If $C(x)=\sum_{n \geqslant 0}\left(C_{n} / n!\right) x^{n}$, then $C^{\prime}(x)=\sum_{n \geqslant 0}\left(C_{n+1} / n!\right) x^{n}$ where $C^{\prime}(x)$ is the derivative of $C(x)$. Further, it is a classical result that the exponential generating function of the Bell numbers is $B(x)=\sum_{n \geqslant 0}\left(B_{n} / n!\right) x^{n}=\mathrm{e}^{\mathrm{e}^{x}-1}$.

On the way to proving the theorem we use the fact that the Bell numbers can be obtained by a recursive procedure. This goes as follows:

Let $A=\left(a_{n, k}\right)$ be the infinite lower triangular matrix defined recursively by

$$
\begin{align*}
& a_{0,0}=1, \quad a_{0, k}=0(k>0), \\
& a_{n, k}=a_{n-1, k-1}+(k+1) a_{n-1, k}+(k+1) a_{n-1, k+1} \quad(n \geqslant 1) . \tag{1}
\end{align*}
$$

The first rows of A are given in the Table 1 (omitting the zeroes).
We see that the numbers in the 0 -column are the Bell numbers B_{0}, \ldots, B_{5}, and we proceed to show that this holds in general. For the proof we make use of the Riordan group method introduced in [2].

Lemma 1. Let $A_{k}(x)$ be the exponential generating function of the k th column of A, then

$$
A_{k}(x)=\mathrm{e}^{\mathrm{e}^{x}-1} \frac{\left(\mathrm{e}^{x}-1\right)^{k}}{k!} \quad(k \geqslant 0)
$$

In particular, $A_{0}(x)=B(x)$.

Proof. The recursion (1) translates into

$$
\begin{align*}
& A_{k}^{\prime}(x)=A_{k-1}(x)+(k+1) A_{k}(x)+(k+1) A_{k+1}(x) \\
& A_{k}(0)=[k=0] . \tag{2}
\end{align*}
$$

It is now easily seen that the functions $A_{k}(x)=\mathrm{e}^{\mathrm{e}^{x}-1}\left(\mathrm{e}^{x}-1\right)^{k} / k$! satisfy precisely the functional equation (2).

Lemma 2. Let r_{n} be the nth row of $A=\left(a_{n, k}\right)$. Define $r_{n} \circ r_{\ell}:=\sum_{k \geqslant 0} a_{n, k} a_{\ell, k} k$!, then $r_{n} \circ r_{\ell}=a_{n+\ell, 0}\left(=B_{n+\ell}\right)$ for all n and ℓ.

Proof. For $n=0$ we have $r_{0} \circ r_{\ell}=a_{\ell, 0}$ for all ℓ. Suppose that $r_{m} \circ r_{\ell}=a_{m+\ell, 0}$ holds for $m \leqslant n-1$ and all ℓ. Then by (1) and interchanging the summation

$$
\begin{aligned}
r_{n} \circ r_{\ell} & =\sum_{k} a_{n, k} a_{\ell, k} k!=\sum_{k}\left(a_{n-1, k-1}+(k+1) a_{n-1, k}+(k+1) a_{n-1, k+1}\right) a_{\ell, k} k! \\
& =\sum_{k}\left(a_{\ell, k+1}(k+1)!+a_{\ell, k}(k+1)!+a_{\ell, k-1} k!\right) a_{n-1, k} \\
& =\sum_{k}\left(a_{\ell, k-1}+(k+1) a_{\ell, k}+(k+1) a_{\ell, k+1}\right) a_{n-1, k} k! \\
& =\sum_{k} a_{\ell+1, k} a_{n-1, k} k!=r_{n-1} \circ r_{\ell+1}=a_{n+\ell, 0} .
\end{aligned}
$$

Proof of the theorem. The proof proceeds by providing an LDU decomposition of \tilde{A}_{n}. Let A_{n} be the submatrix of A consisting of the rows and columns numbered 0 to n. Since A_{n} is lower triangular with diagonal 1, we have $\operatorname{det} A_{n}=1$. Now multiply the k th column of A_{n} by k !, for $0 \leqslant k \leqslant n$, and call the new matrix \bar{A}_{n}; hence $\operatorname{det} \bar{A}_{n}=n!$!. Since $r_{k} \circ r_{\ell}=B_{k+\ell}$ by Lemma 1, we infer for the first Hankel matrix $\tilde{A}_{n}=\bar{A}_{n} A_{n}^{\mathrm{T}}$, and thus $\operatorname{det} \tilde{A}_{n}=n!!$.

If we replace recursion (1) by

$$
\begin{align*}
& b_{0,0}=1, \quad b_{0, k}=0(k>0), \\
& b_{n, k}=b_{n-1, k-1}+(k+2) b_{n-1, k}+(k+1) b_{n-1, k+1} \quad(n \geqslant 1)
\end{align*}
$$

then we derive by the same method

$$
B_{k}(x)=\mathrm{e}^{\mathrm{e}^{x}-1+x}\left(\mathrm{e}^{x}-1\right)^{k} / k!.
$$

In particular, $B_{0}(x)=\mathrm{e}^{\mathrm{e}^{x}-1} \mathrm{e}^{x}=B^{\prime}(x)$. Hence the entries in the 0 -column of the new matrix B are ($B_{1}, B_{2}, B_{3}, \ldots$). As in Lemma 2, we find again $r_{k} \circ r_{\ell}=b_{k+\ell, 0}=B_{k+\ell+1}$. If B_{n}, \bar{B}_{n} denote the submatrices of B corresponding to A_{n}, \bar{A}_{n} as before, then $\tilde{B}_{n}=\bar{B}_{n} B_{n}^{\mathrm{T}}$ and thus $\operatorname{det} \tilde{B}_{n}=n!!$.

Remark 1. By the same method one can prove

$$
\operatorname{det}\left(\begin{array}{cccc}
B_{2} & B_{3} & \ldots & B_{n+2} \\
B_{3} & B_{4} & \ldots & B_{n+3} \\
& & \ldots & \\
B_{n+2} & B_{n+3} & \ldots & B_{2 n+2}
\end{array}\right)=c_{n+1}(n!!),
$$

where $c_{n}=\sum_{k=0}^{n} n^{k}$ is the total number of permutations of n things.
Remark 2. Let $S_{n}=\sum_{k=0}^{n} a_{n, k}$ be the sum of the nth row of A, with the first values $S_{0}=1, S_{1}=2, S_{2}=6, S_{3}=22, S_{4}=94, S_{5}=454$. The exponential generating function
of the sequence $\left(S_{n}\right)$ is by Lemma 1

$$
S(x)=\mathrm{e}^{\mathrm{e}^{x}-1} \sum_{k \geqslant 0} \frac{\left(\mathrm{e}^{x}-1\right)^{k}}{k!}=\left(\mathrm{e}^{\mathrm{e}^{x}-1}\right)^{2}
$$

and we find $S_{n}=\sum_{k=0}^{n}\binom{n}{k} B_{k} B_{n-k}$, the convoluted Bell number. Using the same method as before one can show that

$$
\operatorname{det}\left(\begin{array}{cccc}
S_{0} & S_{1} & \ldots & S_{n} \\
S_{1} & S_{2} & \ldots & S_{n+1} \\
& & \ldots & \\
S_{n} & S_{n+1} & \ldots & S_{2 n}
\end{array}\right)=2^{\binom{n+1}{2}}(n!!)
$$

References

[1] P. Flajolet, Combinatorial aspects of continued fractions, Discrete Math. 32 (1980) 125-161.
[2] L.W. Shapiro, S. Getu, W.-J. Woan, L.C. Woodson, The Riordan group, Discrete Appl. Math. 34 (1991) 229-239.
[3] R. Stanley, Ennumerative Combinatorics, vol. I, Cambridge Studies in Advanced Mathematics 49, Cambridge University Press, Cambridge, 1997.
[4] R. Stanley, Enumerative Combinatorics, vol. II, in press.

[^0]: E-mail address: aigner@math.fu.berlin.de (M. Aigner)

