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A Characterization of the bell numbers
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Abstract

Let Bn be the Bell numbers, and Ãn (n¿0), B̃n (n¿1) be the matrices de�ned by
Ãn(i; j) = Bi+j (06i; j6n); B̃n(i; j) = Bi+j+1 (06i; j6n). It is shown that (Bn) is the unique
sequence of real numbers such that det Ãn = det B̃n = n!! for all n, where n!! =

∏n
k=0(k!).

c© 1999 Elsevier Science B.V. All rights reserved.

The Bell number Bn counts the number of partitions of an n-set, with the �rst values
B0 =1; B1 =1; B2 =2; B3 =5; B4 =15; B5 =52. The purpose of this note is to provide
a characterization of the sequence (B0; B1; B2; : : :) by means of the determinants of the
Hankel matrices

Ãn =




B0 B1 : : : Bn
B1 B2 : : : Bn+1

: : :
Bn Bn+1 : : : B2n


; B̃n =




B1 B2 : : : Bn+1
B2 B3 : : : Bn+2

: : :
Bn+1 Bn+2 : : : B2n+1


:

It is clear that any sequence of real numbers is uniquely determined by the determinant
sequence det Ã0; det B̃0; det Ã1; det B̃1; : : : as long as these are di�erent from 0. For
example, the Catalan numbers are the unique sequence such that det Ãn = det B̃n = 1
for all n (see e.g. [4]). See also the related problem 36 [3, p. 50].

Theorem. The Bell numbers Bn are the unique sequence of real numbers such that

det Ãn = det B̃n = n!!

where n!! =
∏n
i=0(k!):
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Table 1

0 1 2 3 4 5

0 1
1 1 1
2 2 3 1
3 5 10 6 1
4 15 37 31 10 1
5 52 151 160 75 15 1

This characterization can be obtained by the continued fraction approach in [1], but
maybe the present short proof is also of interest.
Before proceeding to the proof let us recall some facts on exponential generating

functions. If C(x) =
∑

n¿0(Cn=n!)x
n, then C′(x) =

∑
n¿0(Cn+1=n!)x

n where C′(x) is
the derivative of C(x). Further, it is a classical result that the exponential generating
function of the Bell numbers is B(x) =

∑
n¿0(Bn=n!)x

n = ee
x−1.

On the way to proving the theorem we use the fact that the Bell numbers can be
obtained by a recursive procedure. This goes as follows:
Let A= (an;k) be the in�nite lower triangular matrix de�ned recursively by

a0;0 = 1; a0;k = 0 (k ¿ 0);

an;k = an−1;k−1 + (k + 1)an−1;k + (k + 1)an−1;k+1 (n¿1): (1)

The �rst rows of A are given in the Table 1 (omitting the zeroes).
We see that the numbers in the 0-column are the Bell numbers B0; : : : ; B5, and we

proceed to show that this holds in general. For the proof we make use of the Riordan
group method introduced in [2].

Lemma 1. Let Ak(x) be the exponential generating function of the kth column of A;
then

Ak(x) = ee
x−1 (e

x − 1)k
k!

(k¿0):

In particular; A0(x) = B(x).

Proof. The recursion (1) translates into

A′k(x) = Ak−1(x) + (k + 1)Ak(x) + (k + 1)Ak+1(x)

Ak(0) = [k = 0]: (2)

It is now easily seen that the functions Ak(x) = ee
x−1(e x − 1)k =k! satisfy precisely the

functional equation (2).
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Lemma 2. Let rn be the nth row of A= (an;k). De�ne rn ◦ r‘ :=
∑

k¿0 an;ka‘;kk!; then
rn ◦ r‘ = an+‘;0 (=Bn+‘) for all n and ‘.

Proof. For n= 0 we have r0 ◦ r‘ = a‘;0 for all ‘. Suppose that rm ◦ r‘ = am+‘;0 holds
for m6n− 1 and all ‘. Then by (1) and interchanging the summation

rn ◦ r‘ =
∑
k
an;ka‘;kk! =

∑
k
(an−1;k−1 + (k + 1)an−1;k + (k + 1)an−1;k+1)a‘;kk!

=
∑
k
(a‘;k+1(k + 1)! + a‘;k(k + 1)! + a‘;k−1k!)an−1;k

=
∑
k
(a‘;k−1 + (k + 1)a‘;k + (k + 1)a‘;k+1)an−1;k k!

=
∑
k
a‘+1;kan−1;k k! = rn−1 ◦ r‘+1 = an+‘;0:

Proof of the theorem. The proof proceeds by providing an LDU decomposition of Ãn.
Let An be the submatrix of A consisting of the rows and columns numbered 0 to n.
Since An is lower triangular with diagonal 1, we have det An = 1. Now multiply the
kth column of An by k!, for 06k6n, and call the new matrix An; hence det An = n!!.
Since rk ◦ r‘ = Bk+‘ by Lemma 1, we infer for the �rst Hankel matrix Ãn = AnATn , and
thus det Ãn = n!!.
If we replace recursion (1) by

b0;0 = 1; b0;k = 0 (k ¿ 0);
bn;k = bn−1;k−1 + (k + 2)bn−1;k + (k + 1)bn−1;k+1 (n¿1)

(1′)

then we derive by the same method

Bk(x) = ee
x−1+x(e x − 1)k =k!: (2′)

In particular, B0(x) = ee
x−1e x = B′(x). Hence the entries in the 0-column of the new

matrix B are (B1; B2; B3; : : :). As in Lemma 2, we �nd again rk ◦ r‘=bk+‘;0 =Bk+‘+1. If
Bn; Bn denote the submatrices of B corresponding to An; An as before, then B̃n = BnBTn
and thus det B̃n = n!!.

Remark 1. By the same method one can prove

det




B2 B3 : : : Bn+2
B3 B4 : : : Bn+3

: : :
Bn+2 Bn+3 : : : B2n+2


= cn+1(n!!);

where cn =
∑n

k=0 n
k is the total number of permutations of n things.

Remark 2. Let Sn =
∑n

k=0 an;k be the sum of the nth row of A, with the �rst values
S0 =1; S1 =2; S2 =6; S3 =22; S4 =94; S5 =454. The exponential generating function
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of the sequence (Sn) is by Lemma 1

S(x) = ee
x−1∑

k¿0

(e x − 1)k
k!

= (ee
x−1)2

and we �nd Sn=
∑n

k=0

( n
k

)
BkBn−k , the convoluted Bell number. Using the same method

as before one can show that

det




S0 S1 : : : Sn
S1 S2 : : : Sn+1

: : :
Sn Sn+1 : : : S2n


= 2(

n+1
2 )(n!!):
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