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A class of numbers, called Catalan-like numbers, are introduced which unify
many well-known counting coefficients, such as the Catalan numbers, the Motzkin
numbers, the middle binomial coefficients, the hexagonal numbers, and many more.
Generating functions, recursions and determinants of Hankel matrices are com-
puted, and some interpretations are given as to what these numbers count. � 1999

Academic Press

1. INTRODUCTION

The starting point for this paper is the observation that the Catalan
numbers Cn and the Motzkin numbers Mn enjoy several common proper-
ties, informally sketched in (A) and (B) below. Recall that the numbers Cn

are defined by the recursion Cn=�n&1
k=0 CkCn&1&k , C0=1, and the numbers

Mn by Mn=Mn&1+�n&2
k=0 MkMn&2&k , M0=1, with generating functions

C(x)=(1&- 1&4x)�2x and M(x)=(1&x&- 1&2x&3x2)�2x2.

(A) A beautiful (and not so well-known) description of the Catalan
numbers is the following (see [8]): The numbers Cn are the unique
sequence of real numbers such that the Hankel matrices

\
C0

C1

b
Cn

C1

C2

Cn+1

} } }
} } }

} } }

Cn

Cn+1

C2n
+ and \

C1

C2

b
Cn

C2

C3

Cn+1

} } }
} } }

} } }

Cn

Cn+1

C2n&1
+

each have determinant 1, for all n. It was shown in [1] that, for the
Motzkin numbers, the determinant of the first Hankel matrix is again 1 for
all n, while the determinant of the second matrix is 1, 0, &1, &1, 0, 1 for
n=1, ..., 6, repeating modulo 6 thereafter.
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(B) There are several classical formulae for the Catalan numbers
involving binomial coefficients (see, e.g., [6]), such as

Cn+1=:
k \

n
2k+ 2n&2kCk , Cn+1=:

k

(&1)k \n
k+ 4n&kCk+1 ,

\ n
wn�2x+=:

k

(&1)k \n
k+ 2n&kCk .

Similarly, we have, for example

Mn=:
k

(&1)k \n
k+ 2n&k Mk ,

Mn=:
k \

n
2k+ Ck , Cn+1=:

k \
n
k+ Mk .

The purpose of the present paper is to provide a common framework for
a series of coefficients (called Catalan-like numbers), with Cn and Mn as
special cases, which show these common features. A major source of
inspiration, especially for Section 3, was the paper [7] discussing the Riordan
group. In Section 2 we introduce a class of infinite matrices which lead to
the Catalan-like numbers. In Section 3 we look at the most interesting
special cases, giving the generating functions and recursions. Section 4 is
devoted to the Hankel matrices of Catalan-like numbers, and Section 5
briefly deals with some interpretations as to what these numbers count.

Apart from Cn and Mn we need the middle binomial coefficients, which
we denote by Wn=( n

wn�2x) and the central binomial coefficients Bn=( 2n
n ).

Their generating functions are W(x)=(1&2x&- 1&4x2)�(&2x+4x2)
and B(x)=1�- 1&4x. For all terms not defined the reader may consult
any of the standard texts such as [3, 6, 8].

2. A CLASS OF MATRICES

We consider infinite matrices A=(an, k), indexed by [0, 1, 2, ...], and
denote by rm=(am, 0 , am, 1 , ...) the m th row.

Definition. A=(an, k) is called admissible if

(i) an, k=0 for n<k, an, n=1 for all n (that is, A is lower triangular
with main diagonal equal to 1),

(ii) rm } rn=am+n, 0 for all m, n, where rm } rn=�k am, kan, k is the
usual inner product.
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The numbers an, 0 of the first column will be our Catalan-like numbers.
Our first result describes these matrices.

Lemma 1. An admissible matrix A=(an, k) is uniquely determined by the
sequence (a1, 0 , a2, 1 , ...an+1, n , ...). Conversely, to every sequence (b0 , b1 , ...,
bn , ...) of real numbers there exists an (and therefore precisely one) admissible
matrix (an, k) with an+1, n=bn for all n.

Proof. It suffices to show that the sequence (b0 , b1 , ...) uniquely deter-
mines an admissible matrix (an, k) with an+1, n=bn for all n.

The rows r0 and r1 are given. Then a2, 0=r1 } r1 , and so row r2 has been
found. Now a3, 0=r1 } r2 , a4, 0=r2 } r2 , and then the equation r1 } r3=a4, 0

determines a3, 1 , and so row r3 has been found. Assume inductively that we
know rows r0 , r1 , ..., rn and the entries a0, 0 , a1, 0 , ..., a2n&2, 0 . Then we find

a2n&1, 0=rn&1 } rn , a2n, 0=rn } rn ,

and then the equations

rk } rn+1=ak+n+1, 0 (k=1, ..., n&1)

determine an+1, k , k=1, ..., n&1, that is, the row rn+1 . K

Proposition 1. Let A=(an, k) be an admissible matrix with an+1, n=bn

for all n. Set s0=b0 , s1=b1&b0 , ..., sn=bn&bn&1 , ... . Then we have

an, k=an&1, k&1+sk an&1, k+an&1, k+1 (n�1)
(1)

a0, 0=1, a0, k=0 for k>0.

Conversely, if an, k is given by the recursion (1), then (an, k) is an admissible
matrix with an+1, n=s0+ } } } +sn .

Proof. By the uniqueness (Lemma 1) it suffices to verify the second
part. That is, we have to show that if an, k is defined according to (1), then

(i) an, k=0 for n<k, an, n=1

(ii) an+1, n=s0+ } } } +sn

(iii) rn } rl=an+l, 0 .

(i) Suppose (i) is true up to n&1. Then

an, k=an&1, k&1+skan&1, k+an&1, k+1

={0,
1,

n<k
n=k.
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(ii) We have a1, 0=s0a0, 0=s0 , and hence by induction an+1, n=an, n&1

+snan, n+an, n+1=(s0+ } } } +sn&1)+sn .

(iii) By (i) we have r0 } rl=a0, 0al, 0=al, 0 . Suppose the assertion is
true for all m�n&1 and all l. Then

rn } rl= :
n

j=0

an, jal, j= :
n

j=0

(an&1, j&1+sjan&1, j+an&1, j+1)al, j

= :
n&1

j=0

(al, j+1+sjal, j+al, j&1)an&1, j

= �
n&1

j=0

al+1, jan&1, j=rn&1 } rl+1=an+l, 0 . K

According to the proposition we may (and will do so from now on)
consider an admissible matrix (an, k) as given by the sequence _=(s0 , s1 ,
s2 , ...) via the recursion (1). We will then write shortly A=A(_) and call
C (_)

n =an, 0 the Catalan-like numbers of type _.

Example 1. Consider the following three matrices determined by the
sequences written on top:

(1, 0, 0, ...) (1, 1, 1, ...) (1, 2, 2, ...)
1 1 1
1 1 1 1 1 1
2 1 1 2 2 1 2 3 1
3 3 1 1 4 5 3 1 5 9 5 1
6 4 4 1 1 9 12 9 4 1 14 28 20 7 1

10 10 5 5 1 1 21 30 25 14 5 1 42 90 75 35 9 1
} } } } } } } } }

We will see that the Catalan-like numbers are Wn , Mn and Cn , respec-
tively. (It is, of course, well known that these numbers can be generated in
this way via the recursion (1).)

Our next result deals with two basic properties of the admissible
matrices A(_).

Proposition 2. Let A(_)=(an, k) be determined by _=(s0 , s1 , ...).

(i) Set bn, k=(&1)n+k an, k , then (bn, k)=A(&_), where &_=
(&s0 , &s1 , &s2 , ...).

(ii) Let P=(( n
k)) be the binomial matrix with ( n

k) as its (n, k)-entry.
Then A(_+1)=PA(_), where _+1=(s0+1, s1+1, s2+1, ...).
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Proof. (i) We have to verify the recursion (1) for the coefficients bn, k

with sequence &_. With b0, 0=a0, 0=1, we find by induction

bn, k=(&1)n+k an, k=(&1)n+k (an&1, k&1+sk an&1, k+an&1, k+1)

=bn&1, k&1&sk bn&1, k+bn&1, k+1 .

(ii) The (n, l)-entry of PA(_) is cn, l=�k ( n
k) ak, l . Hence we have to

verify the recursion (1) for cn, l with sequence _+1. By induction on n,

cn, l=:
k \

n
k+ ak, l=:

k \
n&1
k&1+ ak, l+:

k \
n&1

k + ak, l

=:
k \

n&1
k + ak+1, l+:

k \
n&1

k + ak, l

=:
k \

n&1
k + (ak, l&1+slak, l+ak, l+1)+:

k \
n&1

k + ak, l

=:
k \

n&1
k + (ak, l&1+(sl+1) ak, l+ak, l+1)

=cn&1, l&1+(sl+1) cn&1, l+cn&1, l+1 . K

It is well known (and immediately seen) that the power Pt (t # Z) of the
binomial matrix P has ( n

k) tn&k as its (n, k)-entry. Hence we obtain from
Proposition 2:

Corollary 1. Let A(_)=(an, k), t # Z. Then the (n, l)-entry bn, l of
A(_+t) is given by bn, l=�k ( n

k) tn&kak, l .

3. THE SPECIAL CASE _=(a, s, s, ...)

The most important special cases arise when _=(s0 , s1 , ...) has constant
s1=s2= } } } =s with s0=a. We then write shortly _=(a, s) and A(_)=A(a, s).
Let Ck(x)=�n�0 an, kxn be the generating function of the k th column
of A(a, s). The recursion (1) translates to

Ck(x)=x(Ck&1(x)+sCk(x)+Ck+1(x)) (k�1)
(2)

C0(x)=x(aC0(x)+C1(x))+1.
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In this case it is easy to compute the generating function C0(x). Let f (x)
satisfy

f (x)=x(1+sf (x)+ f (x)2), (3)

then we claim that Ck(x)= f (x)k C0(x). Indeed, by (3),

f (x)k C0(x)=x( f (x)k&1 C0(x)+sf (x)k C0(x)+ f (x)k+1 C0(x))

which means that the functions f (x)k C0(x) satisfy precisely the recursion
(2) for k�1, implying Ck(x)= f (x)k C0(x).

Matrices of this type were introduced in [7] via the so-called Riordan
group. In the framework of Riordan groups we have A(a, s)=(C0(x), f (x)).

In the sequel we concentrate on the generating function C0(x) of the
Catalan-like numbers associated with the sequence _=(a, s), and write
C (a, s)(x)=C0(x)=�n�0 C (a, s)

n xn. To determine C (a, s)(x), we find from (3)
by an easy computation

f (x)=
1&sx&- 1&2sx+(s2&4) x2

2x
.

Substituting f (x) into Eq. (2)

C (a, s)(x)=x(aC (a, s)(x)+ f (x) C (a, s)(x))+1

yields the following result:

Proposition 3. The generating function C (a, s)(x) of the Catalan-like
numbers C (a, s)

n is given by

C (a, s)(x)=
1&(2a&s)x&- 1&2sx+(s2&4) x2

2(s&a) x+2(a2&as+1)x2 . (5)

Now let us look at some examples. It turns out that the cases a=s,
a=s+1 and a=s&1 yield the most interesting sequences.

3.1. Examples

(1) a=s,

C (s, s)(x)=
1&sx&- 1&2sx+(s2&4) x2

2x2 .

For s=0 we obtain C (0, 0)(x)=(1&- 1&4x2)�2x2=C(x2) with sequence
(C0 , 0, C1 , 0, C2 , 0, C3 , ...).
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For s=1, C (1, 1)(x)=(1&x&- 1&2x&3x2)�2x2=M(x), the Motzkin
series with sequence (M0 , M1 , ...).

For s=2, C (2, 2)(x)=(1&2x&- 1&4x)�2x2=(1�x)(C(x)&1) with
sequence (C1 , C2 , C3 , ...).

For s=3, C (3, 3)(x)=(1&3x&- 1&6x+5x2)�2x2 which is the generat-
ing function of the restricted hexagonal numbers Hn described in [4]. The
first terms are (1, 3, 10, 36, 137, 543, ...).

(2) a=s+1,

C (s+1, s)(x)=
1&(s+2)x&- 1&2sx+(s2&4)x2

&2x+2(s+2)x2 .

For s=0, this gives C(1, 0)(x)=(1&2x&- 1&4x2)�(&2x+4x2)=W(x)
as announced in Example 1.

For s=1, C (2, 1)(x)=(1&3x&- 1&2x&3x2)�(&2x+6x2) with the
first terms (1, 2, 5, 13, 35, 96, ...). We will return to this sequence in 3.4.

For s=2, C (3, 2)=(1&4x&- 1&4x)�(&2x+8x2)=(1�2x)(B(x)&1).
Hence C (3, 2)

n = 1
2 ( 2n+2

n+1 )=( 2n+1
n ).

(3) a=s&1,

C (s&1, s)(x)=
1&(s&2)x&- 1&2sx+(s2&4) x2

2x&2(s&2) x2 .

For s=1, C (0, 1)(x)=(1+x&- 1&2x&3x2)�(2x+2x2) with coefficients
(1, 0, 1, 1, 3, 6, 15, 36, ...). We will consider these numbers in 3.4.

For s=2, C (1, 2)(x)=(1&- 1&4x)�2x=C(x), the Catalan function.
For s=3, C (2, 3)(x)=(1&x&- 1&6x+5x2)�(2x&2x2) with first terms

(1, 2, 5, 15, 51, 188, ...). We will return to this sequence in Section 5.

3.2. Binomial Formulae

To illustrate our approach we will apply Corollary 1 to some examples.
If we set l=0 in Corollary 1, then we obtain

C (_+t)
n =:

k \
n
k+ tn&kC (_)

k . (6)

Thus, we obtain as examples the binomial formulae mentioned in the
Introduction by taking _=(0, 0), t=1, _=(1, 1), t=1; _=(0, 0), t=2,
respectively.

Mn=:
k \

n
2k+ Ck , Cn+1=:

k \
n
k+ Mk , Cn+1=:

k \
n

2k+ 2n&2kCk .
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Furthermore, the values _=(0, 0), t=3; _=(1, 1), t=2; _=(2, 2), t=1
yield for the hexagonal numbers

Hn=:
k \

n
2k+ 3n&2kCk=:

k \
n
k+ 2n&kMk=:

k \
n
k+ Ck+1 .

The values _=(&1, &1), t=2; _=(&1, &1), t=3; _=(&2, &2), t=4
produce the formulae

Mn=:
k

(&1)k \n
k+ 2n&kMk , Cn+1=:

k

(&1)k \n
k+ 3n&k Mk ,

Cn+1=:
k

(&1)k \n
k+ 4n&k Ck+1 .

The value _=(&1, 0), t=2 in (6) gives

Cn=:
k

(&1)k \n
k+ 2n&k \ k

wk�2x+
and _=(&1, &2), t=4 yields

\2n+1
n +=:

k

(&1)k \n
k+ 4n&kCk .

3.3. Recursions

Formula (5) leads by an easy computation to the equation

C (a, s)(x)=(2a&s) xC (a, s)(x)+((s&a)x+(a2&as+1) x2) C (a, s)(x)2+1.

In particular, this yields the following recursions for the Catalan-like
numbers of our main examples:

C (s, s)
n =sC (s, s)

n&1+ :
n&2

k=0

C (s, s)
k C (s, s)

n&2&k (n�1) (7)

C (s+1, s)
n =(s+2)n& :

n&1

k=0

C (s+1, s)
k C (s+1, s)

n&1&k (n�1) (8)

C (s&1, s)
n =(s&2)n+ :

n&1

k=0

C (s&1, s)
k C (s&1, s)

n&1&k (n�1). (9)

For a=s=1 and a=1, s=2 this gives the recursions for the Motzkin
number and Catalan numbers, respectively. For the hexagonal numbers Hn

we obtain Hn=3Hn&1+�n&2
k=0 HkHn&2&k described in [4].
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3.4. Connecting C (s+1, s)(x) and C (s&1, s)(x) to C (s, s)(x)

Looking at (5) again, the following formulae are easily derived:

C (s+1, s)(x)=&
xC (s, s)(x)

1&(s+2)x
+

1
1&(s+2)x

C (s&1, s)(x)=
xC (s, s)(x)

1&(s&2)x
+

1
1&(s&2)x

.

This yields, for example,

C (1, 0)
n =\ n

wn�2x+=2n& :
w(n&1)�2x

k=0

2n&1&2kCk (10)

C (2, 1)
n =3n& :

n&1

k=0

3n&1&k Mk (11)

C (0, 1)
n = :

n&1

k=0

(&1)n&1&k Mk+(&1)n=Mn&1&Mn&2\ } } } +(&1)n M1 .

(12)

Considering the instance _=(&1, &2), t=3 in (6) we therefore obtain

3n& :
n&1

k=0

3n&1&k Mk= :
n

k=0

(&1)k \n
k+ 3n&kCk

and therefore another equation relating the Catalan and Motzkin numbers:

:
n

k=1
\(&1)k \n

k+ Ck+Mk&1+ 3n&k=0 (n�1).

3.5. The Sum Coefficients

Several further interesting coefficients arise by considering the row sums
of admissible matrices. Consider an arbitrary admissible matrix A(_)=(an, k)
with sequence _=(s0 , s1 , s2 , ...). The sum matrix B(_)=(bn, k) is defined by

bn, k= :
i�k

an, i for all n and k.

By introducing the infinite lower triangular matrix E of 1's, we can thus
succinctly write

B(_)=A(_) E.
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Example. The sequence _=(0, 1) gives rise to

A(0, 1) B(0, 1)

1 1
0 1 1 1
1 1 1 3 2 1
1 3 2 1 7 6 3 1
3 6 6 3 1 19 16 10 4 1
6 15 15 10 4 1 51 45 30 15 5 1

} } } } } }

Since by Proposition 2, B(_+1)=A(_+1) E=PA(_)E=PB(_) we obtain:

Proposition 4. Let A(_) be an admissible matrix, B(_) its sum matrix
and P the binomial matrix. Then

B(_+1)=PB(_).

Now let us look again at the special case _=(a, s).

Lemma 2. Let _=(a, s), A(a, s)=(an, k), and B(a, s)=(bn, k) the sum
matrix. Then

bn, k=bn&1, k&1+sbn&1, k+bn&1, k+1 (k�1)
(13)

bn, 0=(a+1) bn&1, 0+(s&a+1) bn&1, 1 .

Proof. We have for k�1

bn, k= :
i�k

an, i= :
i�k

(an&1, i&1+san&1, i+an&1, i+1)

=bn&1, k&1+sbn&1, k+bn&1, k+1 .

Similarly, we obtain

bn, 0= :
i�0

an, i

= :
i�1

(an&1, i&1+san&1, i+an&1, i+1)+(aan&1, 0+an&1, 1)

=bn&1, 0+sbn&1, 1+bn&1, 2+aan&1, 0+an&1, 1

=(a+1) bn&1, 0+(s&a) bn&1, 1+bn&1, 1 . K
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Let Sk(x) be the generating function of the k th column of B(a, s). Then
we find from (13) with f (x) as in (4)

Sk(x)=f (x)k S0(x)

S0(x)=x((a+1) S0(x)+(s&a+1) f (x) S0(x))+1,

and by substituting f (x) we arrive at the following expression for the
generating function S (a, s)(x)=S0(x)=�n�0 S (a, s)

n xn of the sum coefficients
S (a, s)

n =bn, 0 .

Proposition 5. Let S (a, s)(x) be the generating function of the sum coef-
ficients S (a, s)

n associated with _=(a, s). Then

S (a, s)(x)=
2

(1&s+a)(1&(s+2)x)+(1+s&a) - 1&2sx+(s2&4) x2
.

(14)

Examples. For a=s, we obtain by an easy computation

S (s, s)(x)=C (s+1, s)(x),

hence S (s, s)
n =C (s+1, s)

n .

For a=s+1, Eq. (14) gives

S (s+1, s)(x)=
1

1&(s+2)x
,

hence S (s+1, s)
n =(s+2)n.

For a=s&1, we obtain

S (s&1, s)(x)=
1

- 1&2sx+(s2&4) x2
.

This last expression leads to some interesting coefficients. For s=0, we find
S (&1, 0)(x)=1�- 1&4x2=B(x2), thus

S (&1, 0)
n ={\

n
n�2+ ,

0,

n even

n odd.
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With Proposition 4 we thus obtain

S (0, 1)
n =:

k \
n

2k+\
2k
k +=:

k \
n
k+\

n&k
k + .

For s=2, we find S (1, 2)(x)=1�- 1&4x=B(x), hence

S (1, 2)
n =\2n

n + ,

and this yields with Proposition 4 again

S (2, 3)
n =:

k \
n
k+\

2k
k + .

Applying Proposition 4 once again we arrive at some well-known binomial
formulae such as, with (&1, 0) � (2, 3)

:
k \

n
k+\

2k
k +=:

k \
n

2k+\
2k
k + 3n&2k.

There is no general relationship for the sum matrix B(_) replacing _ by &_
as in Proposition 2. However, there is one interesting instance which is
immediately derived from (14):

S (&s&1, &s)(x)=S (s&1, s)(&x). (15)

Applying Proposition 4 we thus find via _=(&s&1, &s), t=2s,

S (s&1, s)
n =:

k

(&1)k \n
k+ (2s)n&k S (s&1, s)

k . (16)

For our examples, this yields

:
k \

n
2k+\

2k
k +=:

k

(&1)k \n
k+ 2n&k :

i \
k
2i+\

2i
i +

\2n
n +=:

k

(&1)k \n
k+ 4n&k \2k

k +
:
k \

n
k+\

2k
k +=:

k

(&1)k \n
k+ 6n&k :

i \
k
i +\

2i
i + .
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4. DETERMINANTS OF HANKEL MATRICES

Let us return to general admissible matrices A(_)=(an, k) associated with the
sequence _=(s0 , s1 , s2 , ...), and let C (_)

n be the Catalan-like numbers appearing
in the 0th column. Our goal is to compute the determinants of the matrices

A� n=\
C (_)

0

C (_)
1

b
C (_)

n

C (_)
1

C (_)
2

C (_)
n+1

} } }
} } }

} } }

C (_)
n

C (_)
n+1

C (_)
2n
+ , B� n=\

C (_)
1

C (_)
2

b
C (_)

n

C (_)
2

C (_)
3

C (_)
n+1

} } }
} } }

} } }

C (_)
n

C (_)
n+1

C (_)
2n&1

+ .

Proposition 6. Let C (_)
n be the Catalan-like numbers associated with _.

Then det A� n=1 for all n.

Proof. Let A(_)=(an, k) and An be the submatrix of A(_) consisting
of the rows and columns with index 0, 1, ..., n. Since A� n has as (k, l)-entry
C (_)

k+l=ak+l, 0=rk } rl , we find A� n=AnAT
n , and thus det A� n=1, since An

is lower triangular with diagonal 1. K

Of course, this anticipated result was the motivation for the definition of
admissible matrices to begin with.

To compute det B� n we have to do a little more work. The following
approach which is nicer than the original proof was suggested by the
referee. Let Pn , Qn , Jn be the following n_n-matrices:

a0, 0 0 } } } 0

a1, 0 a1, 1 0 } } } 0

Pn= \ a2, 0 a2, 1 a2, 2 } } } 0 + ,

} } }

an&1, 0 an&1, 1 an&1, 2 } } } an&1, n&1

a1, 0 a1, 1 0 } } } } } } 0

a2, 0 a2, 1 a2, 2 } } } } } } 0

Qn= \ a3, 0 a3, 1 a3, 2 a3, 3 } } } 0 + ,

} } }

an, 0 an, 1 an, 3 } } } an, n&1

s0 1 0 } } } 0

1 s1 1 } } } 0

Jn= \ 0 1 s2 } } } 0 + .

} } }

0 0 0 } } } sn&1
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Then, by C (_)
k+l=rk } rl , we have

B� n=QnPT
n . (17)

Note that (17) holds in spite of the fact that the last row of Qn does not
contain the last entry an, n of rn , since the missing an, n does not affect the
products rn } rj for j=0, ..., n&1.

Recursion (1) of Proposition 1 implies Qn=Pn Jn , whence we obtain

B� n=Pn JnPT
n ,

and thus

det B� n=det Jn (18)

since det Pn=1.
By expanding the determinant of Jn with respect to the last column we

therefore find the following result on B� n .

Proposition 7. Let C (_)
n be the Catalan-like numbers associated with

_=(_i). Then det B� n=dn (n�1), where dn satisfies the recursion

dn=sn&1 dn&1&dn&2 , d0=1. (19)

Taking all things together we can therefore state: The Catalan-like
numbers C (_)

n are the unique sequence of real numbers with det A� n=1 and
det B� n=dn for all n, whenever dn{0 for all n.

Examples. Let us look at some of our main examples _=(a, s) dis-
cussed in the previous sections. First, all matrices A� n have determinant 1.
For a=1, s=2, and a=s=2, respectively, we thus obtain our initial
example concerning the Catalan numbers. Now let us consider the sequences
dn=det B� n defined according to (19).

For a=s=2, we obtain dn=2dn&1&dn&2 , d0=1, which yields
dn=n+1 by induction. Hence we find for the Catalan numbers

det \
C2

C3

b
Cn+1

C3

C4

Cn+2

} } }
} } }

} } }

Cn+1

Cn+2

C2n
+=n+1.
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For a=s=3, we have dn=3dn&1&dn&2 , d0=1, which yields dn=F2n+2

(the Fibonacci number), since d0=F2=1, d1=F4=3 and F2n+2=
3F2n&F2n&2 . The hexagonal numbers Hn are thus the unique sequence
with det A� n=1, det B� n=F2n+2 for all n.

For a=3, s=2, this gives d1=3, d2=5, dn=2dn&1&dn&2 from which
dn=2n+1 results. Hence the binomial numbers ( 2n+1

n ) are the unique
sequence with det A� n=1, det B� n=2n+1.

Finally, for a=2, s=3, we compute d0=1, d1=2, dn=3dn&1&dn&2 ,
from which dn=F2n+1 results.

Remark. Consider the case when _=(s, s) is constant. It is known and
easy to prove by induction that

2 cos � 1 0 } } } 0

1 2 cos � 1

det\ 0 1 2 cos � } } } 0 +=
sin(n+1)�

sin �
,

} } }

0 0 1 2 cos �

where n is the size of the determinant. Setting s=2 cos �, we therefore
obtain

dn=Un \s
2+ , (20)

where Un(x)=sin(n+1)��sin �, cos �=x, is the Tchebychev polynomial of
the second kind. Since Un(x�2)=�k (&1)k ( n&k

k ) xn&2k (see [6]), we infer
from (20)

dn=:
k

(&1)k \n&k
k + sn&2k. (21)

Applying (21) to our examples, we obtain for s=2

n+1=:
k

(&1)k \n&k
k + 2n&2k

(a result of Coxeter, see [6, p. 76]), and for s=3 the curious formula

F2n+2=:
k

(&1)k \n&k
k + 3n&2k.
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In analogy we have

cos � 1 0 } } } 0

1 2 cos � 1 } } } 0

det\ 0 1 2 cos � } } } 0 +=cos n�

} } } } } }

0 0 1 2 cos �

Setting cos �=a we thus obtain for the sequence _=(a, 2a)

dn=Tn(a),

where Tn(x) is the Tchebychev polynomial of the first kind. In particular,
for a=1 (the Catalan numbers), we obtain again dn=1 for all n.

Let us, finally, take a look at the Hankel matrices A� n for the sum coef-
ficients. Let _=(a, s) and let as before S (a, s)

n be the coefficients of S (a, s)(x).
The matrix A� n is again defined as (suppressing (a, s))

A� n=\
S0

S1

b
Sn

S1

S2

Sn+1

} } }
} } }

} } }

Sn

Sn+1

S2n
+ .

By an analogous argument as the one leading up to Proposition 7, the
following result can be shown.

Proposition 8. Let S (a, s)
n be the sum coefficients associated with the

sequence _=(a, s). Then for all n,

det A� n=(s&a+1)n.

As an example, we obtain det A� n=2n whenever a=s&1. Looking up
our list in Subsection 3.5, we thus find, for example (s=2),

\0
0+ \2

1+ } } } \2n
n +

det \ b +=2n.

\2n
n + } } } \4n

2n+
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5. INTERPRETATIONS

In his book [8] R. Stanley lists a wealth of combinatorial settings which
are counted by the Catalan numbers. In addition, he gives several instances
counted by the Motzkin numbers, drawing mostly from the survey [2]. In
this final section we make a few remarks as to what the Catalan-like
numbers C (_)

n and the sum numbers S (_)
n count. There are three sources:

The matrices A(_) via the recursion (1), the binomial formulae in Proposi-
tions 2 and 3, and the recursions in Subsection 3.3, in particular (7), (8), (9).

Lattice Paths

Consider A(_)=(an, k) with _=(s0 , s1 , s2 , ...) consisting of non-negative
integers. By rotating A(_) counterclockwise by 90% we place an, k at the
lattice point (n, k). Recursion (1) immediately implies the following result:
Consider all paths starting from the origin (0, 0) never falling below the
x-axis with diagonal steps (1, 1), (1, &1) and si types of horizontal steps
(1, 0) on the line y=i. Then an, k counts the number of these paths ending
at (n, k).

For _=(0, 0) we therefore obtain the classical result that C (0, 0)
2n =Cn

counts the number of paths with n steps (1, 1) and n steps (1, &1) (so-
called Dyck paths) starting at (0, 0) and ending at (2n, 0). Furthermore,
S (0, 0)

n =( n
wn�2x)=�n

k=0 an, k implies that ( n
wn�2x) is the number of paths with

n diagonal steps. By extending these paths symmetrically (that is, if step i
is (1, 1), then step 2n+1&i is (1, &1) and vice versa), we can express this
result also in the following form: ( n

wn�2x) counts the number of symmetric
Dyck paths with 2n diagonal steps.

For _=(1, 1) we similarly obtain that the Motzkin number Mn counts
the number of paths with n steps (1, 1), (1, &1) or (1, 0) starting at (0, 0)
and ending at (n, 0). As before, S (1, 1)

n =C (2, 1)
n counts the number of

symmetric Motzkin paths with 2n steps.
A final example: C (0, 1)

n counts the number of paths with n steps (1, 1),
(1, &1), (1, 0) without horizontal edges at the x-axis, and S (0, 1)

n counts the
number of symmetric paths with 2n steps. For example, S (0, 1)

3 =7 gives the
paths:
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B. Paths along the Integers

Consider paths on the non-negative integers. We call a path admissible
if it starts and ends at 0 and never enters the negative integers. By inter-
preting a diagonal step (1, 1) as 1 and (1, &1) as &1, we find from (A)
that C (0, 0)

n counts the admissible paths with n steps 1 or &1. Using (A) or
Proposition 2 this yields the well�known result (see [2]) that Mn counts
the admissible paths with n steps 1, &1 or 0 (=loop). Similarly, C (2, 2)

n =
Cn+1 counts these paths with n steps 1, &1 and two kinds of loops, C (3, 3)

n

the paths with n steps 1, &1 and three kinds of loops, and so on. There are
analogous interpretations for general C (_)

n .
Let us now look at the sum coefficients S (s&1, s)

n . We know

S (&1, 0)
n ={\

n
n�2+ ,

0,

n even

n odd.

Hence S (&1, 0)
n counts the paths starting at 0, ending at n, with n steps 2 or

0. Applying Proposition 3, we find that S (0, 1)
n =�k ( n

2k)( 2k
k ) counts the paths

starting at 0, ending at n, with n steps 2, 1, or 0 (a result which goes back
to Euler according to [7]). S (1, 2)

n =( 2n
n ) is then the number of these paths with

n steps 2, 1, 0, where the 1-steps may be carried out above or below the line.

C. Trees

The recursion (7) or the lattice paths considered in (A) lead immediately
to the counting of rooted binary trees. We have s possible directions when
the out-degree is 1, and left�right for out�degree 2. Hence Mn=C (1, 1)

n

counts the rooted binary trees on n edges where we draw a single edge
(out-degree 1) vertically (called Motzkin trees), Cn+1=C (2, 2)

n counts all
rooted binary trees on n edges. The hexagonal number Hn&1=C (3, 3)

n&1 count
the binary trees on n edges with the single root edge at angles 30%, 90%, or
150%, the double root edges at 120%, and all other edges at angles 120% or
180%. This interpretation leads directly to the hexagonal animals as counted
in [4] by regarding the vertices as the centers of the hexagons. A similar
analysis leads to the enumeration of certain octagonal animals, and so on.

There is also a nice interpretation for C (2, 3)
n which can be immediately

derived from (9) or Proposition 2. C (2, 3)
n counts the complete binary trees

with positive labels at the leaves summing to n+1. Thus for n=2 we
obtain the following C (2, 3)

2 =5 trees:
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Finally, using (12) we find that C (0, 1)
n counts the number of Motzkin

trees on n vertices with an even number of vertices of out-degree 1 or 0 at
the beginning. For example, we obtain for n=5 the C (0, 1)

5 =6 trees:
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