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Abstract

We establish the log-concavity and the log-convexity properties for the
hyperpell, hyperpell-lucas and associated sequences. Further, we investigate
the q-log-concavity property.
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1. Introduction

Zheng and Liu [13] discuss the properties of the hyperfibonacci numbers F [r]
n and

the hyperlucas numbers L[r]
n . They investigate the log-concavity and the log convex-

ity property of hyperfibonacci and hyperlucas numbers. In addition, they extend
their work to the generalized hyperfibonacci and hyperlucas numbers.
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The hyperfibonacci numbers F [r]
n and hyperlucas numbers L[r]

n , introduced by
Dil and Mező [9] are defined as follows. Put

F [r]
n =

n∑

k=0

F
[r−1]
k , with F [0]

n = Fn,

L[r]
n =

n∑

k=0

L
[r−1]
k , with L[0]

n = Ln,

where r is a positive integer, and Fn and Ln are the Fibonacci and Lucas numbers,
respectively.

Belbachir and Belkhir [1] gave a combinatorial interpretation and an explicit
formula for hyperfibonacci numbers,

F
[r]
n+1 =

bn/2c∑

k=0

(
n+ r − k
k + r

)
. (1.1)

Let {Un}n≥0 and {Vn}n≥0 denote the generalized Fibonacci and Lucas se-
quences given by the recurrence relation

Wn+1 = pWn +Wn−1 (n ≥ 1), with U0 = 0, U1 = 1, V0 = 2, V1 = p. (1.2)

The Binet forms of Un and Vn are

Un =
τn − (−1)nτ−n√

∆
and Vn = τn + (−1)nτ−n; (1.3)

with ∆ = p2 + 4, τ = (p+
√

∆)/2, and p ≥ 1.
The generalized hyperfibonacci and generalized hyperlucas numbers are defined,

respectively, by

U [r]
n :=

n∑

k=0

U
[r−1]
k , with U [0]

n = Un,

V [r]
n :=

n∑

k=0

V
[r−1]
k , with V [0]

n = Vn.

The paper of Zheng and Liu [13] allows us to exploit other relevant results.
More precisely, we propose some results on log-concavity and log-convexity in the
case of p = 2 for the hyperpell sequence and the hyperpell-lucas sequence.

Definition 1.1. Hyperpell numbers P [r]
n and hyperpell-lucas numbers Q[r]

n are
defined by

P [r]
n :=

n∑

k=0

P
[r−1]
k , with P [0]

n = Pn,
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Q[r]
n :=

n∑

k=0

Q
[r−1]
k , with Q[0]

n = Qn,

where r is a positive integer, and {Pn} and {Qn} are the Pell and the Pell-Lucas
sequences respectively.

Now we recall some formulas for Pell and Pell-Lucas numbers. It is well know
that the Binet forms of Pn and Qn are

Pn =
αn − (−1)nα−n

2
√

2
and Qn = αn + (−1)nα−n, (1.4)

where α = (1 +
√

2). The integers

P (n, k) = 2n−2k
(
n− k
k

)
and Q(n, k) = 2n−2k

n

n− k

(
n− k
k

)
, (1.5)

are linked to the sequences {Pn} and {Qn} . It is established [2] that for each fixed
n these two sequences are log-concave and then unimodal. For the generalized se-
quence given by (1.2) , also the corresponding associated sequences are log-concave
and then unimodal, see [3, 4].

The sequences {Pn} and {Qn} satisfy the recurrence relation (1.2), for p = 2,
and for n ≥ 0 and n ≥ 1 respectively, we have

Pn+1 =

bn/2c∑

k=0

2n−2k
(
n− k
k

)
and Qn =

bn/2c∑

k=0

2n−2k
n

n− k

(
n− k
k

)
. (1.6)

It follows from (1.4) that the following formulas hold

P 2
n − Pn−1Pn+1 = (−1)n+1, (1.7)

Q2
n −Qn−1Qn+1 = 8(−1)n. (1.8)

It is easy to see, for example by induction, that for n ≥ 1

Pn ≥ n and Qn ≥ n. (1.9)

Let {xn}n≥0 be a sequence of nonnegative numbers. The sequence {xn}n≥0 is
log-concave (respectively log-convex ) if x2j ≥ xj−1xj+1 (respectively x2j ≤ xj−1xj+1

) for all j > 0, which is equivalent (see [5]) to xixj ≥ xi−1xj+1 (respectively
xixj ≤ xi−1xj+1) for j ≥ i ≥ 1.

We say that {xn}n≥0 is log-balanced if {xn}n≥0 is log-convex and {xn/n!}n≥0
is log-concave.

Let q be an indeterminate and {fn(q)}n≥0 be a sequence of polynomials of q.
If for each n ≥ 1, f2n(q)− fn−1(q)fn+1(q) has nonnegative coefficients, we say that
{fn(q)}n≥0 is q-log-concave.

In section 2, we give the generating functions of hyperpell and hyperpell-lucas
sequences. In section 3, we discuss their log-concavity and log-convexity. We
investigate also the q-log-concavity of some polynomials related to hyperpell and
hyperpell-lucas numbers.
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2. The generating functions

The generating function of Pell numbers and Pell-Lucas numbers denoted GP (t)
and GQ(t), respectively, are

GP (t) :=

+∞∑

n=0

Pnt
n =

t

1− 2t− t2 , (2.1)

and

GQ(t) :=

+∞∑

n=0

Qnt
n =

2− 2t

1− 2t− t2 . (2.2)

So, we establish the generating function of hyperpell and hyperpell-lucas num-
bers using respectively

P [r]
n = P

[r]
n−1 + P [r−1]

n and Q[r]
n = Q

[r]
n−1 +Q[r−1]

n . (2.3)

The generating functions of hyperpell numbers and hyperlucas numbers are

G
[r]
P (t) =

∞∑

n=0

P [r]
n tn =

t

(1− 2t− t2) (1− t)r , (2.4)

and

G
[r]
Q (t) =

∞∑

n=0

Q[r]
n t

n =
2− 2t

(1− 2t− t2) (1− t)r . (2.5)

3. The log-concavity and log-convexity properties

We start the section by some useful lemmas.

Lemma 3.1. [12] If the sequences {xn} and {yn} are log-concave, then so is their
ordinary convolution zn =

∑n
k=0 xkyn−k, n = 0, 1, ....

Lemma 3.2. [12] If the sequence {xn} is log-concave, then so is the binomial
convolution zn =

∑n
k=0

(
n
k

)
xk, n = 0, 1, ....

Lemma 3.3. [8] If the sequence {xn} is log-convex, then so is the binomial con-
volution zn =

∑n
k=0

(
n
k

)
xk, n = 0, 1, ....

The following result deals with the log-concavity of hyperpell numbers and
hyperlucas sequences.

Theorem 3.4. The sequences
{
P

[r]
n

}
n≥0

and
{
Q

[r]
n

}
n≥0

are log-concave for r ≥ 1

and r ≥ 2 respectively.
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Proof. We have

P [1]
n =

1

4
(Qn+1 − 2) and Q[1]

n = 2Pn+1. (3.1)

When n = 1,
(
P

[1]
n

)2
− P [1]

n−1P
[1]
n+1 = 1 > 0. When n ≥ 2, it follows from (3.1)

and (1.8) that
(
P [1]
n

)2
− P [1]

n−1P
[1]
n+1 =

1

16

[
(Qn+1 − 2)

2 − (Qn − 2) (Qn+2 − 2)
]

=
1

16

(
Q2

n+1 −QnQn+2 − 4Qn+1 + 2Qn + 2Qn+2

)

=
1

4

(
2(−1)n−1 +Qn+1

)
≥ 0.

Then
{
P

[1]
n

}
n≥0

is log-concave. By Lemma 3.1, we know that
{
P

[r]
n

}
n≥0

(r ≥ 1) is log-concave.
It follows from (3.1) and (1.7) that

(
Q[1]

n

)2
−Q[1]

n−1Q
[1]
n+1 = 4

(
P 2
n+1 − PnPn+2

)
= 4 (−1)

n
= ±4 (3.2)

Hence
{
Q

[1]
n

}
n≥0

is not log-concave.

One can verify that

Q[2]
n =

1

2
(Qn+2 − 2) = 2P

[1]
n+1. (3.3)

Then
{
Q

[2]
n

}
n≥0

is log-concave. By Lemma 3.1, we know that
{
Q

[r]
n

}
n≥0

(r ≥ 2) is log-concave. This completes the proof of Theorem 3.4.

Then we have the following corollary.

Corollary 3.5. The sequences
{∑n

k=0

(
n
k

)
P

[r]
k

}
n≥0

and
{∑n

k=0

(
n
k

)
Q

[r]
k

}
n≥0

are

log-concave for r ≥ 1 and r ≥ 2 respectively.

Proof. Use Lemma 3.2.
Now we establish the log-concavity of order two of the sequences

{
P

[1]
n

}
n≥0

and
{
Q

[2]
n

}
n≥0

for some special sub-sequences.

Theorem 3.6. Let be for n ≥ 1

Tn :=
(
P [1]
n

)2
− P [1]

n−1P
[1]
n+1 and Rn :=

(
Q[2]

n

)2
−Q[2]

n−1Q
[2]
n+1.

Then {T2n}n≥1, {R2n+1}n≥0 are log-concave, and {T2n+1}n≥0, {R2n}n≥1 are log-
convex.
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Proof. Using respectively (3.3) and (1.8) , we get
(
Q[2]

n

)2
−Q[2]

n−1Q
[2]
n+1 = 2(−1)n +Qn+1,

and thus, for n ≥ 1,

Tn =
1

4

(
2 (−1)

n−1
+Qn

)
and Rn = 2(−1)n +Qn+1. (3.4)

By applying (3.4) and (1.8), for n ≥ 1 we get

Q2
2n −Q2n−2Q2n+2 = −32 and Q2

2n+1 −Q2n−1Q2n+3 = 32. (3.5)

Then

T 2
2n − T2(n−1)T2(n+1) =

1

16

(
Q2

2n −Q2n−2Q2n+2 − 4Q2n + 2Q2n−2 + 2Q2n+2

)

= 4(Q2n − 4) > 0.

and

R2
2n+1 −R2n−1R2n+3 =

(
Q2

2n+2 −Q2nQ2n+2 − 4Q2n+2 + 2Q2n + 2Q2n+4

)

= 64(Q2n+2 − 4) > 0.

Then {T2n}n≥1 and {R2n+1}n≥0 are log-concave.
Similarly by applying (3.4) and (3.5), we have

T 2
2n+1 − T2n−1T2n+3 = −1

2
Q2n+1 < 0,

and
R2

2n −R2(n−1)R2(n+1) = −8Q2n+1 < 0.

Then {T2n+1}n≥0 and {R2n}n≥1 are log-convex. This completes the proof.

Corollary 3.7. The sequences
{∑n

k=0

(
n
k

)
T2k
}
n≥0 and

{∑n
k=0

(
n
k

)
R2k+1

}
n≥0 are

log-concave.

Proof. Use Lemma 3.2.

Corollary 3.8. The sequences
{∑n

k=0

(
n
k

)
T2k+1

}
n≥1 and

{∑n
k=0

(
n
k

)
R2k

}
n≥1 are

log-convex.

Proof. Use Lemma 3.3.

Lemma 3.9. Let an :=
∑n

k=0

(
n
k

)
Pk+1, where {Pn}n≥0 is the Pell sequence. Then

{an}n≥0 satisfy the following recurrence relations

an = 3an−1 +
n−2∑

k=0

ak and an = 4an−1 − 2an−2.
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Proof. Let be bn :=
∑n

k=0

(
n
k

)
Pk, where {Pn}n≥−1 is the Pell sequence extended

to P−1 = 1.
Using Pascal formula and the recurrence relation of Pell sequence together into

the development
∑n

k=0

(
n
k

)
Pk+1 we get an = 3an−1 + bn−1, then by bn = bn−1 +

an−1. By iterated use of this relation with the precedent one, we get an = 3an−1 +∑n−2
k=0 ak (with b0 = 0 and a0 = 1), thus an = 4an−1 − 2an−2.

Theorem 3.10. The sequences
{
nQ

[1]
n

}
n≥0

and
{∑n

k=0

(
n
k

)
Q

[1]
k

}
n≥0

are log-

concave and log-convex, respectively.

Proof. Let be

Sn := n2
(
Q[1]

n

)2
− (n2 − 1)Q

[1]
n−1Q

[1]
n+1 and Kn :=

n∑

k=0

(
n

k

)
Q

[1]
k ,

with the convention that K<0 = 0.
From (3.2), we have

Sn = 4(n2 − 1) (−1)
n

+
(
Q[1]

n

)2

= 4
[
(n2 − 1) (−1)

n
+ P 2

n+1

]
≥ 4

[
(n2 − 1) (−1)

n
+ (n+ 1)2

]
> 0.

Then
{
nQ

[1]
n

}
n≥0

is log-concave.

Using Lemma 3.9, we can verify that

Kn = 4Kn−1 − 2Kn−2. (3.6)

The associated Binet-formula is

Kn =

(
1 +
√

2
)
αn −

(
1−
√

2
)
βn

α− β , with α, β = 2±
√

2,

which provides
K2

n −Kn−1Kn+1 = −2n+1 < 0.

Then
{∑n

k=0

(
n
k

)
Q

[1]
k

}
n≥0

is log-convex.

Remark 3.11. The terms of the sequence {Kn}n satisfy Kn = 2(n+2)/2Pn+1 if n is
even, and Kn = 2(n−1)/2Qn+1 if n is odd.

Theorem 3.12. The sequences
{
n!P

[1]
n

}
n≥0

and
{
n!Q

[2]
n

}
n≥0

are log-balanced.

Proof. By Theorem 3.4, in order to prove the log-balanced property of
{
n!P

[1]
n

}
n≥0

and
{
n!Q

[2]
n

}
n≥0

we only need to show that they are log-convex. It follows from

the proof of Theorem 3.4 that
(
P [1]
n

)2
− P [1]

n−1P
[1]
n+1 =

1

4

(
2 (−1)

n−1
+Qn+1

)
, (3.7)

The log-concavity and log-convexity properties . . . 9



and from the proof of Theorem 3.6 that
(
Q[2]

n

)2
−Q[2]

n−1Q
[2]
n+1 = 2 (−1)

n
+Qn+1. (3.8)

Let

Mn := n
(
P [1]
n

)2
− (n+ 1)P

[1]
n−1P

[1]
n+1,

Bn := n
(
Q[2]

n

)2
− (n+ 1)Q

[2]
n−1Q

[2]
n+1,

from (3.3), (3.7) and (3.8), we get

Mn =
(n+ 1)

4

(
2 (−1)

n−1
+Qn+1

)
− 1

4
(Qn+1 − 2)2,

Bn = (n+ 1) (2 (−1)
n

+Qn+1)− 1

4
(Qn+2 − 2)2.

Clearly Bn ≤ 0 for n = 0, 1, 2. We have by induction that for n ≥ 1, Qn ≥ n + 1.
This gives

Bn ≤ (Qn+1 − 1) (2 (−1)
n

+Qn+1)− 1

4
(2Qn+1 +Qn − 2)2 < 0.

Also, Mn ≤ 0 for n = 2 and for n ≥ 3, Qn ≥ n + 6. This gives n + 1 ≤ Qn+1 − 6,
and

Mn ≤
1

4

[
(Qn+1 − 6)

(
2 (−1)

n−1
+Qn+1

)
− (Qn+1 − 2)2

]

=
1

4

[(
−2 + 2 (−1)

n−1
)
Qn+1 − 4− 12 (−1)

n−1
]
< 0.

Hence {n!P
[1]
n }n≥0 and {n!Q

[2]
n }n≥0 are log-convex. As the sequences {P [1]

n }n≥0
and {Q[2]

n }n≥0 are log-concave, so the sequences {n!P
[1]
n }n≥0 and {n!Q

[2]
n }n≥0 are

log-balanced.

Theorem 3.13. Define, for r ≥ 1, the polynomials

Pn,r(q) :=
n∑

k=0

P
[r]
k qk and Qn,r(q) :=

n∑

k=0

Q
[r]
k q

k.

The polynomials Pn,r(q) (r ≥ 1) and Qn,r(q) (r ≥ 2) are q-log-concave.

Proof. When n ≥ 1, r ≥ 1,

P 2
n,r(q)− Pn−1,r(q)Pn+1,r(q)

=

(
n∑

k=0

P
[r]
k qk

)2

−
(

n−1∑

k=0

P
[r]
k qk

)(
n+1∑

k=0

P
[r]
k qk

)

10 M. Ahmia, H. Belbachir, A. Belkhir



=

(
n∑

k=0

P
[r]
k qk

)2

−
(

n∑

k=0

P
[r]
k qk − P [r]

n qn

)(
n∑

k=0

P
[r]
k qk + P

[r]
n+1q

n+1

)

=
(
P [r]
n qn − P [r]

n+1q
n+1
) n∑

k=0

P
[r]
k qk + P [r]

n P
[r]
n+1q

2n+1

=
n∑

k=1

(
P

[r]
k P [r]

n − P [r]
k−1P

[r]
n+1

)
qk+n.

When n ≥ 1, r ≥ 2, through computation, we get

Q2
n,r(q)−Qn−1,r(q)Qn+1,r(q) =

n∑

k=1

(
Q

[r]
k Q

[r]
n −Q[r]

k−1Q
[r]
n+1

)
qk+n +Q[r]

n q
n.

As
{
P

[r]
n

}
and

{
Q

[r]
n

}
(r ≥ 2) are log-concave, then the polynomials Pn,r(q)

(r ≥ 1) and Qn,r(q) (r ≥ 2) are q-log-concave.
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