The log-concavity and log-convexity properties associated to hyperpell and hyperpell-lucas sequences

Moussa Ahmia ${ }^{a b}$, Hacène Belbachir ${ }^{b}$, Amine Belkhir ${ }^{b}$
${ }^{a}$ UFAS, Dep. of Math., DG-RSDT, Setif 19000, Algeria ahmiamoussa@gmail.com
${ }^{b}$ USTHB, Fac. of Math., RECITS Laboratory, DG-RSDT, BP 32, El Alia 16111, Bab Ezzouar, Algiers, Algeria hacenebelbachir@gmail.com or hbelbachir@usthb.dz ambelkhir@gmail.com or ambelkhir@usthb.dz

Submitted July 22, 2014 - Accepted December 12, 2014

Abstract

We establish the log-concavity and the log-convexity properties for the hyperpell, hyperpell-lucas and associated sequences. Further, we investigate the q-log-concavity property.

Keywords: hyperpell numbers; hyperpell-lucas numbers; log-concavity; q-logconcavity, log-convexity.

MSC: 11B39; 05A19; 11B37.

1. Introduction

Zheng and Liu [13] discuss the properties of the hyperfibonacci numbers $F_{n}^{[r]}$ and the hyperlucas numbers $L_{n}^{[r]}$. They investigate the log-concavity and the \log convexity property of hyperfibonacci and hyperlucas numbers. In addition, they extend their work to the generalized hyperfibonacci and hyperlucas numbers.

The hyperfibonacci numbers $F_{n}^{[r]}$ and hyperlucas numbers $L_{n}^{[r]}$, introduced by Dil and Mező [9] are defined as follows. Put

$$
\begin{aligned}
& F_{n}^{[r]}=\sum_{k=0}^{n} F_{k}^{[r-1]}, \quad \text { with } \quad F_{n}^{[0]}=F_{n}, \\
& L_{n}^{[r]}=\sum_{k=0}^{n} L_{k}^{[r-1]}, \quad \text { with } \quad L_{n}^{[0]}=L_{n},
\end{aligned}
$$

where r is a positive integer, and F_{n} and L_{n} are the Fibonacci and Lucas numbers, respectively.

Belbachir and Belkhir [1] gave a combinatorial interpretation and an explicit formula for hyperfibonacci numbers,

$$
\begin{equation*}
F_{n+1}^{[r]}=\sum_{k=0}^{\lfloor n / 2\rfloor}\binom{n+r-k}{k+r} . \tag{1.1}
\end{equation*}
$$

Let $\left\{U_{n}\right\}_{n \geq 0}$ and $\left\{V_{n}\right\}_{n \geq 0}$ denote the generalized Fibonacci and Lucas sequences given by the recurrence relation

$$
\begin{equation*}
W_{n+1}=p W_{n}+W_{n-1} \quad(n \geq 1), \quad \text { with } \quad U_{0}=0, U_{1}=1, V_{0}=2, V_{1}=p \tag{1.2}
\end{equation*}
$$

The Binet forms of U_{n} and V_{n} are

$$
\begin{equation*}
U_{n}=\frac{\tau^{n}-(-1)^{n} \tau^{-n}}{\sqrt{\Delta}} \text { and } V_{n}=\tau^{n}+(-1)^{n} \tau^{-n} \tag{1.3}
\end{equation*}
$$

with $\Delta=p^{2}+4, \tau=(p+\sqrt{\Delta}) / 2$, and $p \geq 1$.
The generalized hyperfibonacci and generalized hyperlucas numbers are defined, respectively, by

$$
\begin{aligned}
& U_{n}^{[r]}:=\sum_{k=0}^{n} U_{k}^{[r-1]}, \quad \text { with } \quad U_{n}^{[0]}=U_{n}, \\
& V_{n}^{[r]}:=\sum_{k=0}^{n} V_{k}^{[r-1]}, \quad \text { with } \quad V_{n}^{[0]}=V_{n} .
\end{aligned}
$$

The paper of Zheng and Liu [13] allows us to exploit other relevant results. More precisely, we propose some results on log-concavity and log-convexity in the case of $p=2$ for the hyperpell sequence and the hyperpell-lucas sequence.

Definition 1.1. Hyperpell numbers $P_{n}^{[r]}$ and hyperpell-lucas numbers $Q_{n}^{[r]}$ are defined by

$$
P_{n}^{[r]}:=\sum_{k=0}^{n} P_{k}^{[r-1]}, \quad \text { with } \quad P_{n}^{[0]}=P_{n}
$$

$$
Q_{n}^{[r]}:=\sum_{k=0}^{n} Q_{k}^{[r-1]}, \quad \text { with } \quad Q_{n}^{[0]}=Q_{n}
$$

where r is a positive integer, and $\left\{P_{n}\right\}$ and $\left\{Q_{n}\right\}$ are the Pell and the Pell-Lucas sequences respectively.

Now we recall some formulas for Pell and Pell-Lucas numbers. It is well know that the Binet forms of P_{n} and Q_{n} are

$$
\begin{equation*}
P_{n}=\frac{\alpha^{n}-(-1)^{n} \alpha^{-n}}{2 \sqrt{2}} \text { and } Q_{n}=\alpha^{n}+(-1)^{n} \alpha^{-n} \tag{1.4}
\end{equation*}
$$

where $\alpha=(1+\sqrt{2})$. The integers

$$
\begin{equation*}
P(n, k)=2^{n-2 k}\binom{n-k}{k} \text { and } Q(n, k)=2^{n-2 k} \frac{n}{n-k}\binom{n-k}{k} \tag{1.5}
\end{equation*}
$$

are linked to the sequences $\left\{P_{n}\right\}$ and $\left\{Q_{n}\right\}$. It is established [2] that for each fixed n these two sequences are log-concave and then unimodal. For the generalized sequence given by (1.2), also the corresponding associated sequences are log-concave and then unimodal, see $[3,4]$.

The sequences $\left\{P_{n}\right\}$ and $\left\{Q_{n}\right\}$ satisfy the recurrence relation (1.2), for $p=2$, and for $n \geq 0$ and $n \geq 1$ respectively, we have

$$
\begin{equation*}
P_{n+1}=\sum_{k=0}^{\lfloor n / 2\rfloor} 2^{n-2 k}\binom{n-k}{k} \text { and } Q_{n}=\sum_{k=0}^{\lfloor n / 2\rfloor} 2^{n-2 k} \frac{n}{n-k}\binom{n-k}{k} . \tag{1.6}
\end{equation*}
$$

It follows from (1.4) that the following formulas hold

$$
\begin{align*}
& P_{n}^{2}-P_{n-1} P_{n+1}=(-1)^{n+1} \tag{1.7}\\
& Q_{n}^{2}-Q_{n-1} Q_{n+1}=8(-1)^{n} \tag{1.8}
\end{align*}
$$

It is easy to see, for example by induction, that for $n \geq 1$

$$
\begin{equation*}
P_{n} \geq n \text { and } Q_{n} \geq n \tag{1.9}
\end{equation*}
$$

Let $\left\{x_{n}\right\}_{n \geq 0}$ be a sequence of nonnegative numbers. The sequence $\left\{x_{n}\right\}_{n \geq 0}$ is log-concave (respectively log-convex) if $x_{j}^{2} \geq x_{j-1} x_{j+1}$ (respectively $x_{j}^{2} \leq x_{j-1} x_{j+1}$) for all $j>0$, which is equivalent (see [5]) to $x_{i} x_{j} \geq x_{i-1} x_{j+1}$ (respectively $\left.x_{i} x_{j} \leq x_{i-1} x_{j+1}\right)$ for $j \geq i \geq 1$.

We say that $\left\{x_{n}\right\}_{n \geq 0}$ is log-balanced if $\left\{x_{n}\right\}_{n \geq 0}$ is log-convex and $\left\{x_{n} / n!\right\}_{n \geq 0}$ is log-concave.

Let q be an indeterminate and $\left\{f_{n}(q)\right\}_{n \geq 0}$ be a sequence of polynomials of q. If for each $n \geq 1, f_{n}^{2}(q)-f_{n-1}(q) f_{n+1}(q)$ has nonnegative coefficients, we say that $\left\{f_{n}(q)\right\}_{n \geq 0}$ is q-log-concave.

In section 2, we give the generating functions of hyperpell and hyperpell-lucas sequences. In section 3, we discuss their log-concavity and log-convexity. We investigate also the q-log-concavity of some polynomials related to hyperpell and hyperpell-lucas numbers.

2. The generating functions

The generating function of Pell numbers and Pell-Lucas numbers denoted $G_{P}(t)$ and $G_{Q}(t)$, respectively, are

$$
\begin{equation*}
G_{P}(t):=\sum_{n=0}^{+\infty} P_{n} t^{n}=\frac{t}{1-2 t-t^{2}}, \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{Q}(t):=\sum_{n=0}^{+\infty} Q_{n} t^{n}=\frac{2-2 t}{1-2 t-t^{2}} \tag{2.2}
\end{equation*}
$$

So, we establish the generating function of hyperpell and hyperpell-lucas numbers using respectively

$$
\begin{equation*}
P_{n}^{[r]}=P_{n-1}^{[r]}+P_{n}^{[r-1]} \text { and } Q_{n}^{[r]}=Q_{n-1}^{[r]}+Q_{n}^{[r-1]} \tag{2.3}
\end{equation*}
$$

The generating functions of hyperpell numbers and hyperlucas numbers are

$$
\begin{equation*}
G_{P}^{[r]}(t)=\sum_{n=0}^{\infty} P_{n}^{[r]} t^{n}=\frac{t}{\left(1-2 t-t^{2}\right)(1-t)^{r}} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{Q}^{[r]}(t)=\sum_{n=0}^{\infty} Q_{n}^{[r]} t^{n}=\frac{2-2 t}{\left(1-2 t-t^{2}\right)(1-t)^{r}} \tag{2.5}
\end{equation*}
$$

3. The log-concavity and log-convexity properties

We start the section by some useful lemmas.
Lemma 3.1. [12] If the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are log-concave, then so is their ordinary convolution $z_{n}=\sum_{k=0}^{n} x_{k} y_{n-k}, \quad n=0,1, \ldots$.

Lemma 3.2. [12] If the sequence $\left\{x_{n}\right\}$ is log-concave, then so is the binomial convolution $z_{n}=\sum_{k=0}^{n}\binom{n}{k} x_{k}, \quad n=0,1, \ldots$

Lemma 3.3. [8] If the sequence $\left\{x_{n}\right\}$ is log-convex, then so is the binomial convolution $z_{n}=\sum_{k=0}^{n}\binom{n}{k} x_{k}, \quad n=0,1, \ldots$

The following result deals with the log-concavity of hyperpell numbers and hyperlucas sequences.

Theorem 3.4. The sequences $\left\{P_{n}^{[r]}\right\}_{n \geq 0}$ and $\left\{Q_{n}^{[r]}\right\}_{n \geq 0}$ are log-concave for $r \geq 1$ and $r \geq 2$ respectively.

Proof. We have

$$
\begin{equation*}
P_{n}^{[1]}=\frac{1}{4}\left(Q_{n+1}-2\right) \quad \text { and } \quad Q_{n}^{[1]}=2 P_{n+1} \tag{3.1}
\end{equation*}
$$

When $n=1,\left(P_{n}^{[1]}\right)^{2}-P_{n-1}^{[1]} P_{n+1}^{[1]}=1>0$. When $n \geq 2$, it follows from (3.1) and (1.8) that

$$
\begin{aligned}
\left(P_{n}^{[1]}\right)^{2}-P_{n-1}^{[1]} P_{n+1}^{[1]} & =\frac{1}{16}\left[\left(Q_{n+1}-2\right)^{2}-\left(Q_{n}-2\right)\left(Q_{n+2}-2\right)\right] \\
& =\frac{1}{16}\left(Q_{n+1}^{2}-Q_{n} Q_{n+2}-4 Q_{n+1}+2 Q_{n}+2 Q_{n+2}\right) \\
& =\frac{1}{4}\left(2(-1)^{n-1}+Q_{n+1}\right) \geq 0
\end{aligned}
$$

Then $\left\{P_{n}^{[1]}\right\}_{n \geq 0}$ is log-concave. By Lemma 3.1, we know that $\left\{P_{n}^{[r]}\right\}_{n \geq 0}$ $(r \geq 1)$ is log-concave.

It follows from (3.1) and (1.7) that

$$
\begin{equation*}
\left(Q_{n}^{[1]}\right)^{2}-Q_{n-1}^{[1]} Q_{n+1}^{[1]}=4\left(P_{n+1}^{2}-P_{n} P_{n+2}\right)=4(-1)^{n}= \pm 4 \tag{3.2}
\end{equation*}
$$

Hence $\left\{Q_{n}^{[1]}\right\}_{n \geq 0}$ is not log-concave.
One can verify that

$$
\begin{equation*}
Q_{n}^{[2]}=\frac{1}{2}\left(Q_{n+2}-2\right)=2 P_{n+1}^{[1]} . \tag{3.3}
\end{equation*}
$$

Then $\left\{Q_{n}^{[2]}\right\}_{n \geq 0}$ is log-concave. By Lemma 3.1, we know that $\left\{Q_{n}^{[r]}\right\}_{n \geq 0}$
\square $(r \geq 2)$ is log-concave. This completes the proof of Theorem 3.4.

Then we have the following corollary.
Corollary 3.5. The sequences $\left\{\sum_{k=0}^{n}\binom{n}{k} P_{k}^{[r]}\right\}_{n \geq 0}$ and $\left\{\sum_{k=0}^{n}\binom{n}{k} Q_{k}^{[r]}\right\}_{n \geq 0}$ are log-concave for $r \geq 1$ and $r \geq 2$ respectively.

Proof. Use Lemma 3.2.
Now we establish the log-concavity of order two of the sequences $\left\{P_{n}^{[1]}\right\}_{n \geq 0}$ and $\left\{Q_{n}^{[2]}\right\}_{n \geq 0}$ for some special sub-sequences.
Theorem 3.6. Let be for $n \geq 1$

$$
T_{n}:=\left(P_{n}^{[1]}\right)^{2}-P_{n-1}^{[1]} P_{n+1}^{[1]} \quad \text { and } \quad R_{n}:=\left(Q_{n}^{[2]}\right)^{2}-Q_{n-1}^{[2]} Q_{n+1}^{[2]}
$$

Then $\left\{T_{2 n}\right\}_{n \geq 1},\left\{R_{2 n+1}\right\}_{n \geq 0}$ are log-concave, and $\left\{T_{2 n+1}\right\}_{n \geq 0},\left\{R_{2 n}\right\}_{n \geq 1}$ are logconvex.

Proof. Using respectively (3.3) and (1.8), we get

$$
\left(Q_{n}^{[2]}\right)^{2}-Q_{n-1}^{[2]} Q_{n+1}^{[2]}=2(-1)^{n}+Q_{n+1}
$$

and thus, for $n \geq 1$,

$$
\begin{equation*}
T_{n}=\frac{1}{4}\left(2(-1)^{n-1}+Q_{n}\right) \quad \text { and } \quad R_{n}=2(-1)^{n}+Q_{n+1} \tag{3.4}
\end{equation*}
$$

By applying (3.4) and (1.8), for $n \geq 1$ we get

$$
\begin{equation*}
Q_{2 n}^{2}-Q_{2 n-2} Q_{2 n+2}=-32 \text { and } Q_{2 n+1}^{2}-Q_{2 n-1} Q_{2 n+3}=32 \tag{3.5}
\end{equation*}
$$

Then

$$
\begin{aligned}
T_{2 n}^{2}-T_{2(n-1)} T_{2(n+1)} & =\frac{1}{16}\left(Q_{2 n}^{2}-Q_{2 n-2} Q_{2 n+2}-4 Q_{2 n}+2 Q_{2 n-2}+2 Q_{2 n+2}\right) \\
& =4\left(Q_{2 n}-4\right)>0
\end{aligned}
$$

and

$$
\begin{aligned}
R_{2 n+1}^{2}-R_{2 n-1} R_{2 n+3} & =\left(Q_{2 n+2}^{2}-Q_{2 n} Q_{2 n+2}-4 Q_{2 n+2}+2 Q_{2 n}+2 Q_{2 n+4}\right) \\
& =64\left(Q_{2 n+2}-4\right)>0
\end{aligned}
$$

Then $\left\{T_{2 n}\right\}_{n \geq 1}$ and $\left\{R_{2 n+1}\right\}_{n \geq 0}$ are log-concave.
Similarly by applying (3.4) and (3.5), we have

$$
T_{2 n+1}^{2}-T_{2 n-1} T_{2 n+3}=-\frac{1}{2} Q_{2 n+1}<0
$$

and

$$
R_{2 n}^{2}-R_{2(n-1)} R_{2(n+1)}=-8 Q_{2 n+1}<0
$$

Then $\left\{T_{2 n+1}\right\}_{n \geq 0}$ and $\left\{R_{2 n}\right\}_{n \geq 1}$ are log-convex. This completes the proof.
Corollary 3.7. The sequences $\left\{\sum_{k=0}^{n}\binom{n}{k} T_{2 k}\right\}_{n \geq 0}$ and $\left\{\sum_{k=0}^{n}\binom{n}{k} R_{2 k+1}\right\}_{n \geq 0}$ are log-concave.

Proof. Use Lemma 3.2.
Corollary 3.8. The sequences $\left\{\sum_{k=0}^{n}\binom{n}{k} T_{2 k+1}\right\}_{n \geq 1}$ and $\left\{\sum_{k=0}^{n}\binom{n}{k} R_{2 k}\right\}_{n \geq 1}$ are log-convex.
Proof. Use Lemma 3.3.
Lemma 3.9. Let $a_{n}:=\sum_{k=0}^{n}\binom{n}{k} P_{k+1}$, where $\left\{P_{n}\right\}_{n \geq 0}$ is the Pell sequence. Then $\left\{a_{n}\right\}_{n \geq 0}$ satisfy the following recurrence relations

$$
a_{n}=3 a_{n-1}+\sum_{k=0}^{n-2} a_{k} \quad \text { and } \quad a_{n}=4 a_{n-1}-2 a_{n-2}
$$

Proof. Let be $b_{n}:=\sum_{k=0}^{n}\binom{n}{k} P_{k}$, where $\left\{P_{n}\right\}_{n \geq-1}$ is the Pell sequence extended to $P_{-1}=1$.

Using Pascal formula and the recurrence relation of Pell sequence together into the development $\sum_{k=0}^{n}\binom{n}{k} P_{k+1}$ we get $a_{n}=3 a_{n-1}+b_{n-1}$, then by $b_{n}=b_{n-1}+$ a_{n-1}. By iterated use of this relation with the precedent one, we get $a_{n}=3 a_{n-1}+$ $\sum_{k=0}^{n-2} a_{k}$ (with $b_{0}=0$ and $a_{0}=1$), thus $a_{n}=4 a_{n-1}-2 a_{n-2}$.

Theorem 3.10. The sequences $\left\{n Q_{n}^{[1]}\right\}_{n \geq 0}$ and $\left\{\sum_{k=0}^{n}\binom{n}{k} Q_{k}^{[1]}\right\}_{n \geq 0}$ are logconcave and log-convex, respectively.
Proof. Let be

$$
S_{n}:=n^{2}\left(Q_{n}^{[1]}\right)^{2}-\left(n^{2}-1\right) Q_{n-1}^{[1]} Q_{n+1}^{[1]} \text { and } K_{n}:=\sum_{k=0}^{n}\binom{n}{k} Q_{k}^{[1]}
$$

with the convention that $K_{<0}=0$.
From (3.2), we have

$$
\begin{aligned}
S_{n} & =4\left(n^{2}-1\right)(-1)^{n}+\left(Q_{n}^{[1]}\right)^{2} \\
& =4\left[\left(n^{2}-1\right)(-1)^{n}+P_{n+1}^{2}\right] \geq 4\left[\left(n^{2}-1\right)(-1)^{n}+(n+1)^{2}\right]>0
\end{aligned}
$$

Then $\left\{n Q_{n}^{[1]}\right\}_{n \geq 0}$ is log-concave.
Using Lemma 3.9, we can verify that

$$
\begin{equation*}
K_{n}=4 K_{n-1}-2 K_{n-2} \tag{3.6}
\end{equation*}
$$

The associated Binet-formula is

$$
K_{n}=\frac{(1+\sqrt{2}) \alpha^{n}-(1-\sqrt{2}) \beta^{n}}{\alpha-\beta}, \text { with } \alpha, \beta=2 \pm \sqrt{2}
$$

which provides

$$
K_{n}^{2}-K_{n-1} K_{n+1}=-2^{n+1}<0
$$

Then $\left\{\sum_{k=0}^{n}\binom{n}{k} Q_{k}^{[1]}\right\}_{n \geq 0}$ is log-convex.
Remark 3.11. The terms of the sequence $\left\{K_{n}\right\}_{n}$ satisfy $K_{n}=2^{(n+2) / 2} P_{n+1}$ if n is even, and $K_{n}=2^{(n-1) / 2} Q_{n+1}$ if n is odd.
Theorem 3.12. The sequences $\left\{n!P_{n}^{[1]}\right\}_{n \geq 0}$ and $\left\{n!Q_{n}^{[2]}\right\}_{n \geq 0}$ are log-balanced. Proof. By Theorem 3.4, in order to prove the log-balanced property of $\left\{n!P_{n}^{[1]}\right\}_{n \geq 0}$ and $\left\{n!Q_{n}^{[2]}\right\}_{n \geq 0}$ we only need to show that they are log-convex. It follows from the proof of Theorem 3.4 that

$$
\begin{equation*}
\left(P_{n}^{[1]}\right)^{2}-P_{n-1}^{[1]} P_{n+1}^{[1]}=\frac{1}{4}\left(2(-1)^{n-1}+Q_{n+1}\right) \tag{3.7}
\end{equation*}
$$

and from the proof of Theorem 3.6 that

$$
\begin{equation*}
\left(Q_{n}^{[2]}\right)^{2}-Q_{n-1}^{[2]} Q_{n+1}^{[2]}=2(-1)^{n}+Q_{n+1} \tag{3.8}
\end{equation*}
$$

Let

$$
\begin{aligned}
M_{n} & :=n\left(P_{n}^{[1]}\right)^{2}-(n+1) P_{n-1}^{[1]} P_{n+1}^{[1]}, \\
B_{n} & :=n\left(Q_{n}^{[2]}\right)^{2}-(n+1) Q_{n-1}^{[2]} Q_{n+1}^{[2]},
\end{aligned}
$$

from (3.3), (3.7) and (3.8), we get

$$
\begin{aligned}
M_{n} & =\frac{(n+1)}{4}\left(2(-1)^{n-1}+Q_{n+1}\right)-\frac{1}{4}\left(Q_{n+1}-2\right)^{2} \\
B_{n} & =(n+1)\left(2(-1)^{n}+Q_{n+1}\right)-\frac{1}{4}\left(Q_{n+2}-2\right)^{2}
\end{aligned}
$$

Clearly $B_{n} \leq 0$ for $n=0,1,2$. We have by induction that for $n \geq 1, Q_{n} \geq n+1$. This gives

$$
B_{n} \leq\left(Q_{n+1}-1\right)\left(2(-1)^{n}+Q_{n+1}\right)-\frac{1}{4}\left(2 Q_{n+1}+Q_{n}-2\right)^{2}<0
$$

Also, $M_{n} \leq 0$ for $n=2$ and for $n \geq 3, Q_{n} \geq n+6$. This gives $n+1 \leq Q_{n+1}-6$, and

$$
\begin{aligned}
M_{n} & \leq \frac{1}{4}\left[\left(Q_{n+1}-6\right)\left(2(-1)^{n-1}+Q_{n+1}\right)-\left(Q_{n+1}-2\right)^{2}\right] \\
& =\frac{1}{4}\left[\left(-2+2(-1)^{n-1}\right) Q_{n+1}-4-12(-1)^{n-1}\right]<0 .
\end{aligned}
$$

Hence $\left\{n!P_{n}^{[1]}\right\}_{n \geq 0}$ and $\left\{n!Q_{n}^{[2]}\right\}_{n \geq 0}$ are log-convex. As the sequences $\left\{P_{n}^{[1]}\right\}_{n \geq 0}$ and $\left\{Q_{n}^{[2]}\right\}_{n \geq 0}$ are log-concave, so the sequences $\left\{n!P_{n}^{[1]}\right\}_{n \geq 0}$ and $\left\{n!Q_{n}^{[2]}\right\}_{n \geq 0}$ are log-balanced.

Theorem 3.13. Define, for $r \geq 1$, the polynomials

$$
P_{n, r}(q):=\sum_{k=0}^{n} P_{k}^{[r]} q^{k} \quad \text { and } \quad Q_{n, r}(q):=\sum_{k=0}^{n} Q_{k}^{[r]} q^{k}
$$

The polynomials $P_{n, r}(q)(r \geq 1)$ and $Q_{n, r}(q)(r \geq 2)$ are q-log-concave.
Proof. When $n \geq 1, r \geq 1$,

$$
\begin{aligned}
& P_{n, r}^{2}(q)-P_{n-1, r}(q) P_{n+1, r}(q) \\
& =\left(\sum_{k=0}^{n} P_{k}^{[r]} q^{k}\right)^{2}-\left(\sum_{k=0}^{n-1} P_{k}^{[r]} q^{k}\right)\left(\sum_{k=0}^{n+1} P_{k}^{[r]} q^{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\sum_{k=0}^{n} P_{k}^{[r]} q^{k}\right)^{2}-\left(\sum_{k=0}^{n} P_{k}^{[r]} q^{k}-P_{n}^{[r]} q^{n}\right)\left(\sum_{k=0}^{n} P_{k}^{[r]} q^{k}+P_{n+1}^{[r]} q^{n+1}\right) \\
& =\left(P_{n}^{[r]} q^{n}-P_{n+1}^{[r]} q^{n+1}\right) \sum_{k=0}^{n} P_{k}^{[r]} q^{k}+P_{n}^{[r]} P_{n+1}^{[r]} q^{2 n+1} \\
& =\sum_{k=1}^{n}\left(P_{k}^{[r]} P_{n}^{[r]}-P_{k-1}^{[r]} P_{n+1}^{[r]}\right) q^{k+n} .
\end{aligned}
$$

When $n \geq 1, r \geq 2$, through computation, we get

$$
Q_{n, r}^{2}(q)-Q_{n-1, r}(q) Q_{n+1, r}(q)=\sum_{k=1}^{n}\left(Q_{k}^{[r]} Q_{n}^{[r]}-Q_{k-1}^{[r]} Q_{n+1}^{[r]}\right) q^{k+n}+Q_{n}^{[r]} q^{n}
$$

As $\left\{P_{n}^{[r]}\right\}$ and $\left\{Q_{n}^{[r]}\right\}(r \geq 2)$ are log-concave, then the polynomials $P_{n, r}(q)$ $(r \geq 1)$ and $Q_{n, r}(q)(r \geq 2)$ are q-log-concave.

Acknowledgements. We would like to thank the referee for useful suggestions and several comments witch involve the quality of the paper.

References

[1] Belbachir, H., Belkhir, A., Combinatorial Expressions Involving Fibonacci, Hyperfibonacci, and Incomplete Fibonacci Numbers, J. Integer Seq., Vol. 17 (2014), Article 14.4.3.
[2] Belbachir, H., Bencherif, F., Unimodality of sequences associated to Pell numbers, Ars Combin., 102 (2011), 305-311.
[3] Belbachir, H., Bencherif, F., Szalay, L., Unimodality of certain sequences connected with binomial coefficients, J. Integer Seq., 10 (2007), Article 07. 2. 3.
[4] Belbachir, H., Szalay, L., Unimodal rays in the regular and generalized Pascal triangles, J. Integer Seq., 11 (2008), Article. 08.2.4.
[5] Brenti, F., Unimodal, log-concave and Pólya frequency sequences in combinatorics, Mem. Amer. Math. Soc., no. 413 (1989).
[6] Cao, N. N., Zhao, F. Z, Some Properties of Hyperfibonacci and Hyperlucas Numbers, J. Integer Seq., 13 (8) (2010), Article 10.8.8.
[7] Chen, W. Y. C., Wang, L. X. W., Yang, A. L. B., Schur positivity and the q-log-convexity of the Narayana polynomials, J. Algebr. Comb., 32 (2010), 303-338.
[8] Davenport, H., Pólya, G., On the product of two power series, Canadian J. Math., 1 (1949), 1-5.
[9] Dil, A., Mezô, I., A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput., 206 (2008), 942-951.
[10] Liu, L., Wang, Y., On the log-convexity of combinatorial sequences, Advances in Applied Mathematics, vol. 39, Issue 4, (2007), 453-476.
[11] Sloane, N. J. A., On-line Encyclopedia of Integer Sequences, http://oeis.org, (2014).
[12] Wang, Y., Yeh, Y. N., Log-concavity and LC-positivity, Combin. Theory Ser. A, 114 (2007), 195-210.
[13] Zheng, L. N., Liu, R., On the Log-Concavity of the Hyperfibonacci Numbers and the Hyperlucas Numbers, J. Integer Seq., Vol. 17 (2014), Article 14.1.4.

