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Fibonacci, Chebyshev, and 
Orthogonal Polynomials 

Dov Aharonov, Alan Beardon, and Kathy Driver 

1. INTRODUCTION. In 1202 Leonardo of Pisa, otherwise known as Fibonacci, 
published the text Liber abaci in which he posed the the following problem: A man 
puts one pair of rabbits in a certain place entirely surrounded by a wall. How many 
pairs of rabbits can be produced from that pair in a year if the nature of these rabbits 
is such that every month each pair bears a new pair which from the second month 
on becomes productive? Assuming that the initial pair starts breeding only in the sec- 
ond month, the solution of this problem leads to what is now known as the Fibonacci 
sequence (Fn) defined by 

F_1 = l, Fo = O, Fi = 1, Fn+2 = Fn + Fn+i (n 0). 

It is well known that the Fn satisfy many remarkable identities; for example, 

F,+1iF_1 - F2 = (-1)", (1.1) 

Fm+n+i = Fm+iF+i + FmF, (1.2) 

Fn+2 1 + F + F2+--+F. (1.3) 

The first of these was proved by Cassini in 1680, and the second, which is the basis of 
many other identities, is sometimes called the Fibonacci shift formula. The Fibonacci 
numbers are also known to have many interesting divisibility properties, the simplest 
of which is 

gcd(Fn+2, Fn+1) = gcd(Fn+1, F,) = .. = gcd(F2, F1) = 1. 

Also, when r > 1 but r Z 2, Fr divides Fs if and only if r divides s. 
In this paper we ask to what extent the identities and the divisibility properties 

enjoyed by the Fibonacci numbers are also shared by solutions of other recurrence 
relations. Our discussion encompasses recurrence relations whose coefficients depend 
on n, recurrence relations whose coefficients are independent of n but depend on a 
parameter x (and so have polynomial solutions), and a combination of both of these. 
Among the best known examples of polynomial solutions are the Chebyshev polyno- 
mials, namely, the polynomials Tn (x) and Un (x) for which 

sin[(n + 1)0] 
T,(cos 0) = cos(nO), U,(cos 0) = 

sin 0 

and the Legendre polynomials, which are given by the recurrence relation 

(n + 1)p+l1(x) = (2n + 1)xp,(x) + npn-l(x). (1.4) 

More generally, as any sequence of orthogonal polynomials satisfies some second- 
order recurrence relation, we consider these as well. We shall see that, although the 
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Fibonacci sequence is simpler than other recurrence relations, it is perhaps not quite 
so special as is sometimes made to appear. Throughout, we shall pay special attention 
to the primary solution of a recurrence relation: this is the solution x, (n > 0) of a 
recurrence relation with initial values xo = 0 and xl = 1. If we consider a second- 
order recurrence relation with constant coefficients in C and if the auxiliary equation 
has roots a and /, then the primary solution is (a" - /"3)/(a - 3) if a # =/ and no"-1 
when a = /3. 

In section 2 we examine the general solution of the Fibonacci relation Xn+2 = 
xn+l + x, and, while this section could be omitted, we feel that it will help the reader to 
appreciate some of the ideas in the paper. Section 3 is a short discussion of Chebyshev 
polynomials; these play a fundamental role in this work. In section 4 we introduce 
our main result, which gives the shift formula for solutions of recurrence relations 
whose coefficients depend on n, and we prove this in section 5. Sections 6, 7, and 8 
are concerned with divisibility properties of solutions of recurrence relations. Finally, 
section 9 contains a brief summary of the theory of orthogonal polynomials. 

2. THE FIBONACCI RELATION. Instead of restricting ourselves to the Fibonacci 
sequence, we shall consider all solutions of the Fibonacci relation 

Xn+2 = Xn X+1. (2.1) 

The Fibonacci sequence F, is the primary solution of this relation; that is (by defini- 
tion), the solution with initial values xo = 0 and xl = 1. It is easy to see that, given 
any xo and xl, we have 

Xn = xoFn-1 + x1 F,, (2.2) 

for the right-hand side satisfies (2.1) and takes the values xo and xl when n is 0 and 1, 
respectively. The converse result (namely, the expression that gives F, in terms of two 
consecutive xj from a given solution xn) is more subtle. If xox2 x, then a similar 
argument gives 

Fn = --- Xn+1 - K 2 Xn. (2.3) 
xox2 - X1 XoX2 - X1 

The condition xox2 - x2 = 0 is precisely the condition that the two sequences (xn) 
and (yn), where y, = X,+l, be linearly independent solutions of (2.1). If xoX2 = x4 
then, since x2 = x0 + x, we see that x, = ac, where a is either the golden ratio or its 
negative reciprocal, in which case Fn cannot be expressed as a linear combination of 
Xn and x,+1. 

In the nineteenth century Edouard Lucas studied the Fibonacci sequence and in- 
troduced what are now known as the Lucas numbers L, which are given by Lo = 2, 
Li = 1, and Ln+2 = Ln + Ln+l. (On a historical note, Lucas died a somewhat bizarre 
death as the result of a freak accident at a banquet when a plate was dropped and a 
piece flew up and cut his cheek. He died a few days later of erysipelas, an acute infec- 
tion of the skin.) The relationship between the Lucas numbers Ln and the Fibonacci 
numbers F, is given by Ln = Fn-1 + Fn+1 and 5Fn = L+1 + Ln-1, so it is easy to 
transfer information between F, and Ln. More generally, it is obvious (by induction) 
that the analogue of (1.3) for any solution of (2.1) is 

Xn+2 = X2 + (X1 + X2 + ''' + Xn). 
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In general, however, the identities satisfied by an arbitrary solution x, of (2.1) tend to 
be more complicated than the corresponding identity for the Fibonacci numbers, and 
we shall soon see why this is so. For a discussion of the very many identities satisfied 
by any solution (Xn) of (2.1), see [10]. 

It is instructive to see the identities (1.1), (1.2), and (1.3) proved for general solu- 
tions of the general constant coefficient recurrence relation 

Xn+2 = a Xn+l + b Xn (n > 0) (2.4) 

using ideas from dynamical systems rather than by the proofs based on induction or 
combinatorics (see, for example, [2]) that are usually used for the Fibonacci numbers. 
First, any solution (Xn) of (2.4) satisfies 

(xn+2 Xn+) _(a b (Xn+i Xn 
Xn+1 Xn 1 0) Xn Xn-1 ' 

so that 

Xn+, Xn _ a b x ( 1 
Xn Xn-1 1 0 X l X( ) 

This provides the generalization of (1.1) to any solution of (2.4), namely, 

Xn+1Xn-1 - X = (-b)" (x0x2 - X). 

Identity (2.5) also shows why the Fibonacci sequence (along with certain other primary 
solutions) plays a special role here. The primary solution (xn) of (2.4) satisfies 

(x2 xi\ (a 1\ 
xl x0) 1 0, 

When b = 1, the primary solution is the only solution for which the matrix of initial 
values coincides with the iterated matrix, that is, for which 

(x2 xl _ a b) 
xl xo 1 0 ' 

and when this happens we have the simpler formula 

(Xn+ x _ a ) (2.6) 

For example, whereas 

(F-i F_ (1 )n (2.7) 

we have 

Ln+l Ln _( 1 -1 3 1 

Ln Ln-1 1 0 1 2 " 
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The identity (2.7) contains the shift formula (1.2) for the Fibonacci sequence, for it 
implies that 

( Fn+q+ Fn+q _( q Fn+ l Fn ( Fq Fq 

Fn+q Fn+q-1 0 1 0 1 Fn Fn,_ Fq Fq_ ' 

By (2.6), the same reasoning holds for the primary solution of (2.4) when b = 1. 
There is also a shift formula for an arbitrary solution (Xn) of (2.4), provided that 

XoX2 - x\ f: 0. Indeed, from (2.5) we obtain the identity 

I' \ (a \ m+n / SXm+n+2 Xm+n+1 a b m+n x2 Xl 

Xm+n+1 xm+n 1 0 X1 X0 

Xn+2 Xn+1 2 X1 m+2 Xm+1 

xn+1 Xn x1 xo Xm+l Xm 

which yields 

(Xo2 )(Xm+n+2 _ ( Xn+2 Xn+l XO -X1 (Xm+2 *) 

This gives the shift formula for the general solution (xn) of (2.4), namely (with q = 
m+l1), 

(xox2 - 1)Xn+q+1 = -b[xixn+xq -ln+l + xixnx] + bxo[XnXq+ + XqXn+]. 

If xo = 0 and xl = 1, then xoX2 - x = -1 and x-1 = 1/b, which yields 

Xq+n+1 = Xq+lXn+1 + bXqXn. (2.8) 

This is the shift formula for the primary solution of the general constant coefficient 
recurrence relation (2.4). Obviously, there are even more identities that can be derived 
in a similar way from the identity Ae+m+n = AAm An, and so on, for any matrix A. 

Finally, we obtain the analogue of (1.3) for the general solution of (2.4). We write 

P = 0 Qe = a-'P, 

and use the identity 

(I + Q + + QmI - Q) = I - Qm+ 

The Cayley-Hamilton theorem gives (I - Q)-' = -(a/b)P = -(a2/b)Q, so 

I + Q + . + = (a /b)(Qm+2 - Q). (2.9) 

We now rewrite (2.5) in the form 

Xn+2 = pnX2= an nX2, Xn+2 - n+2 Xn+1 
Xfn+1 Xn / 
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and infer from (2.9) that 

m 

a-Xk+2 = (/ab)Xm+4 - (a/b)X3. 
k=0 

We let m = n - 2 and consider only the (1, 1)-entries; this gives 

x2 + a-3 + " a-(n-2)n = (1/a-2b)x+2 - (1/ab)x3. 

We next divide through by a2 and use x3 = ax2 + bxl to obtain 

ax2 + bxl X2 n Xn+2 

ab a2 a" anb' 

which we express as a generalized version of (1.3), specifically, 

Xn+2 _2 ( 1 X 2 X, 

anb b a a an 

For completeness, we end this section with a proof that, for positive integers r and 
s with r - 2, Fr divides Fs if and only if r divides s. First, we extend the definition 
of Fn in the obvious way to all integers n. Then any divisor of Fm and Fm+1 is also a 
divisor of Fm-1 and Fm+2, hence a divisor of all Fn. As Fi = 1, we see that Fm and 
Fm+1 are coprime. Next, choose a positive integer k. We claim that the set Z(k) of 
integers n such that F, is a multiple of k is a subgroup of Z. Because Fo = 0, which is 
a multiple of k, we see that 0 belongs to Z(k). Next, we write (1.2) in the form 

Fm+n = FmFn+i + Fm 1Fn, 

and this shows that m + n lies in Z(k) whenever m and n do. The same formula demon- 
strates that, if m and m + n are members of Z(k), then k divides Fm-1F,. However, 
k divides F,, and Fm and Fm+i are coprime. We conclude that k divides Fn, which 
proves that Z(k) is closed under differences. Thus Z(k) is a subgroup of Z and so is 
of the form dZ for some positive integer d. We have now shown that for each k there 
exists a d such that k divides F, if and only if d divides n. Now let k = Fs, and let q be 
the corresponding value of d. Then Fs divides F, if and only if q divides n. Clearly this 
implies that q divides s and that F, divides Fq. These observations imply that s > q 
and that, unless s = 2, q > s. We have now verified that, when s f 2, F, divides F, if 
and only if s divides n. 

3. CHEBYSHEV POLYNOMIALS. There is a good reason why we should expect 
solutions of different constant coefficient recurrence relations to have similar prop- 
erties, and to see this we must look at Chebyshev polynomials. Recall from the in- 
troduction that the nth Chebyshev polynomials of the first and second kinds are the 
polynomials T, (x) and U, (x), respectively, such that 

sin[(n + 1)0] T,(cos0) = cos(n0), Un(cos0) = s 
sin0 

The formulas for cos(n0 ± 0) and sin(n0 ± 0) show that both (T,) and (U,) satisfy 
the constant coefficient recurrence relation (see section 4 for clarification of our use of 
"constant coefficient" in this context) 

y+l(x) = 2xy,(x) - y,-l1(x), (3.1) 
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with the respective initial conditions 

T_1(x) = x, To(x) = 1, Ti(x) = x; U-_(x) = 0, Uo(x) = 1, Ui(x) = 2x. 

We now show that the Chebyshev polynomials of the second kind are the universal 
primary solution of any constant coefficient second-order recurrence relation in an 
arbitrary integral domain. Put more simply, this means that every constant coefficient 
recurrence relation can be identified with the relation satisfied by the Chebyshev poly- 
nomials of the second kind with parameter x at a particular value of the parameter x. 

It is more convenient to consider the polynomials Unj, where Un,(x) = Un-(x), 
for Un, is the primary solution of the recurrence relation (3.1). We also put Tn (x) = 
Tn 1(x). We then have 

Tn+q+ (X) = Uq+ (X)Tn+i(X) - Uq(x)Tn(x) 

and 

Un+q+i (X) = Uq+(X)Un+1(X) - Uq(X) Un(X). 

These two equations are just the shift formula (2.8) when we work (as we shall do 
later) in the ring of complex polynomials rather than in C. In fact, these equations are 
equivalent to the trigonometric identities 

sin0 cos[(n + q + 1)0] = sin[(q + 1)0] cos[(n + 1)0] - sin(q0) cos(n0), 

sin 8 sin[(n + q + 1)0] = sin[(q + 1)0] sin[(n + 1)0] - sin(q0) sin(n0). 

Let us now consider the primary solution (z) of the constant coefficient relation 
xn+2 = axn+1 + bx, (n > 0). We assume that b = 0 and also that we are working in 
an algebraically closed field F. Then there exists a p in F such that p2 = -b, and since 
p = 0, we see that p-1 exists. We write y, = p1-nzn and note that 

Yn+2 = (a/p)yn+l - n, Yo = O, y1 = 1. 

On the basis of (3.1) we conclude that y, = Un(a/p). Thus Zn = p"-i^Un(a/2p), 
which establishes the next result. 

Theorem 3.1. The primary solution (Zn) of the constant coefficient recurrence re- 
lation Xn+2 = aXn+ + bx, (n > 0) in an integral domain D is given by zn+l = 
pnUn (a/2p), where p is the solution of p2 = -b in the algebraic closure of the field 
of fractions of D. 

In view of Theorem 3.1 it is of interest to note that 

[n/2] - 

Un(x) = Z(-1) xn-2 . 
j=0 J 

As an example, the Fibonacci sequence is the primary solution when a = b = 1 and 
p = i, so Fn+i = iUn(-i/2), which simplifies to 

Fn+1 = J). 

j=0 J 
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More generally, we see that the primary solution (zn) of the relation Xn+2 = axn+l + bxn 

is given by 

[n/2] n - 
Zn+ = (-1) an-j j. 

j=0 J 

4. SOME NOTATION AND TERMINOLOGY. We now consider second-order 
recurrence relations of the type 

Xn+2 = an(x)X,+l + bn (x)Xn, (4.1) 

where the coefficients an and b, may depend on n but may also be polynomials in 
the variable x. We say that this relation has constant coefficients when an and bn are 
independent of n, but not necessarily independent of x. For example, the relation 

Xn+2(X) = (X4 - 3x)Xn+1(x) + (x2 + x) Xn(X) 

has constant coefficients. Of course, from an analytic point of view these coefficients 
are not constant, but from a dynamical point of view they are, for the process by which 
we construct an xj from the previous xi is independent of j. Moreover, from an alge- 
braic point of view, if we work within the ring of polynomials in x and if the coeffi- 
cients are independent of n, then they are fixed elements in this ring. By contrast, the 
recurrence relation (1.4) satisfied by the Legendre polynomials does not have constant 
coefficients. Throughout the discussion that follows, we always extend a solution (xn) 
of a constant coefficient recurrence relation to all integers n by using the fact that if we 
have two consecutive values Xn and xn+i, the constant coefficient recurrence relation 
generates all previous values x,-1, Xn-2, ... and all subsequent values Xn+2, X,+3,.... 
If a recurrence relation has variable coefficients, then such an extension will depend 
on how we extend the sequences of coefficients to all values of n. 

From now on we shall write the coefficients in (4.1) as an and bn with the implicit 
understanding that these may be polynomials in some variable x. Each choice of values 
for xo and xl (which may also be polynomials in x) provides a solution xo, x1, x2, ... 
of (4.1) that is defined inductively by (4.1). The solution with initial values xo = 0 and 
xl = 1 has a special role to play in our discussion; this is the primary solution of (4.1). 
Throughout, we reserve the symbol Zn for the primary solution. 

Sometimes it will be helpful to refer explicitly to the sequences A = (ao, al, ...) 
and B = (bo, b\,...) of coefficients in (4.1). In this case, the primary solution, for 
example, will be denoted by (zn (x; A, B)) and the general solution by (xn(x; A, B)). 
Later we shall have reason to pass from the given recurrence relation (4.1) to the related 
recurrence relation 

Xn+2 = an+l (x)xn+ + bn+ (x)xn, (4.2) 

a process that is best described in terms of the shift map a on the space of sequences. 

The map a is defined by 

(UO, UI, U2, .. .) (U1, U2, U3 . . .), 

and if we write Ar = ar (A), and similarly for B, we find that the primary solution of 
(4.2) is (zn (x; A1, B1)). More generally, we can apply the shift map any number of 
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times and in this way arrive at the primary solution (z, (x; Ar, Br)) of the recurrence 
relation 

Xn+2 = an+r(X)Xn+1 + bn+r(X)Xn. 

To avoid possible confusion, we note that A1 7 A (unless A is a constant sequence); 
in fact, Ao = A. 

Our major objective in this paper is to obtain a far-reaching generalization of the 
Fibonacci shift formula (1.2) that is applicable to any linear second-order recurrence 
relation. Our generalization of (1.2) involves terms of the form (Zn (x; Ar, Br)) (which 
is why we have just introduced them), and the result that we prove is as follows: 

Theorem 4.1. If R is an integral domain, if the coefficients in (4.1) belong to the 
polynomial ring R[x], and if (x,(x; A, B)) is a solution of (4.1) in R[x] with initial 
values xo and x , then 

Xn+q+i(A, B) = Zq+i(A, Bn) xn+i(A, B) + b, Zq(A"+1, Bn+l)Xn(A, B), 

where (z,(x; A, B)) is the primary solution of (4.1). 

Of course, in the constant coefficient case, say an = a and b, = b for all n, this shift 
map has no effect and we obtain a general form of the shift formula that involves two 
solutions, namely, 

Xn+q+1 = Zq+l Xn+ 1 bZq X,n. 

This shows, for example, that the Lucas numbers L satisfy the relation 

Ln+q+1 = Lq+1 F+1 + Lq Fq. 

For example, 76 = L9 = L5F5 + L4F4 = (11 x 5) + (7 x 3). Moreover, if we take 
x, = Zn and b = 1 in Theorem 4.1, we obtain 

Zn+q+1 = Zq+1 Zn+ 1 Zq Zn, 

and even this is more general than (1.2) because z, = F, only if a = 1. 
Since any orthogonal sequence of polynomials satisfies a linear second-order 

recurrence relation with polynomial coefficients (see section 9), it follows that 
Theorem 4.1 is applicable to any sequence of orthogonal polynomials. In partic- 
ular, Theorem 4.1 provides us with a "shift formula" for sequences of orthogonal 
polynomials, and these include the Chebyshev and Legendre polynomials. It is an 
intriguing observation that obtaining a new recurrence relation by translating the se- 
quences of coefficients is known to be a fruitful idea in other contexts within the theory 
of orthogonal polynomials, where the solutions of the new relations are known as the 
associated polynomials. 

We now comment on the algebraic structures that underlie our discussion. If we are 
studying the Fibonacci sequence we can work entirely within the ring Z of integers. 
However, Z is embedded in the algebraically closed field C of complex numbers, and 
if we work in C we can establish such results as Binet's formula (published in 1843): 

F,- 
a- f 
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where a = (1 + v/5)/2 and /3 = (1 - x/5)/2. This gives an explicit expression for 
Fn in terms of elements in C that are not in Z; nevertheless, we know that the F, 
are in Z, despite the fact that a and 3 are not. In the general case we can take a 
given ring R and work within the ring R[x] of polynomials in the variable x whose 
coefficients lie in R. Throughout, we assume that "ring" signifies a commutative ring 
with a multiplicative identity 1. An integral domain D is a ring with no zero divisors, 
and if D is an integral domain, then so is D[x]. Now it is known (i) that every integral 
domain can be embedded in a field and (ii) that every field can be embedded in an 
algebraically closed field (see [5, pp. 213, 317]). Thus, from this perspective, we may 
consider an integral domain D to be embedded in an algebraically closed field F, and 
we may work within F. This means that the standard elementary methods for solving 
difference equations are valid in these more general circumstances; in particular, they 
hold when the coefficients of (4.1) are, say, complex polynomials in x. 

5. RECURRENCE RELATIONS IN A RING. We now study the second-order 
recurrence relation 

Xn+2 = a(x) Xn+l + bn(x) xn (n > 0), (5.1) 

(with variable coefficients) in the context of a ring R[x] of polynomials in a variable x 
in the sense indicated earlier, and prove Theorem 4.1. Although in general we cannot 
"solve" the recurrence relation (5.1) with variable coefficients, Theorem 4.1 does give 
some valuable information about its solutions. 

Proof of Theorem 4.1. The relation (5.1) is equivalent to 

Xn+2 Xn+ =- MnK Xn l Mn - n 

Xn+l Xn xn Xn_ 1 1 0 ) 

SO 

( Xn+2 n+1 -_ 2 X 
Xn+1 Xn - lV X1 X 9 

For a fixed n and for q = 1, 2,... we write 

Mn+q-l '.Mn. ( q q f) 

Then 

( Xn+q+l Xn+q c ( iq q +1 Xn 

n+q Xn+q- 1 Yq 8q Xn X ) ' 

ensuring that any solution (x,) satisfies 

Xn+q+1 = Olq Xn+1 + /fq Xn. (5.2) 

We now identify aq and flq in terms of the primary solution (zn) of (5.1). Recall that 
the latter satisfies 

Zo = 0, Zl = 1, Zn+2 = a(x) n+l + bn(x)Zn (n = 0, 1, ...), 
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and 

Zn+2 Z+l -= Mn "M (2 ) Mn .MO ° , 
Z\ ,z )n / 1 0 0 V ° z-1 ) 

where we set z-1 = 0. This shows that 

( Zn+2 \ (Zn+2 Zn+1 V 1 (1 ( 1 

Zn+ lI Zn+l Zn 0/ 0 

We have already introduced the notation z,,(Ar, Br) in section 4. In a similar way 
we write My(A, B) for M, so that Mj(A", B") = Mjy+(A, B). As 

q q =Mn+q1 (A, B) Mn(A, B)(1 0o 

we see that 

Y Oq ) _ q yq q 0  

= Mn+q-(A,B)-- Mn(A,B) 

= Mq-1 (An, B")... Mo(An, Bn) 

- zq+i(A", Bn) 
- Zq(A", B) ' 

whence 

aq = Zq+i(An, Bn). (5.3) 

Similarly, 

,q q 9= Mn+q- (A, B)- -Mn+(A, B) an bn ) 

which leads to 

( ^ \_ ( ^q)(°) 

=bnM ,_(A,B)---Mn+(A, B)( 0 

bn Mq_2(Anl, Bn+l)"'" Mo(An~l, Bn+l) ( 

Sbn ( Zq 1(AL', BN) ,J 
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We conclude that f, = b z, (An+l, B"+l). This, along with (5.2) and (5.3), completes 
the proof of Theorem 4.1. U 

As we have already mentioned in section 4, Theorem 4.1 has the following corol- 
lary: 

Corollary 5.1. Let (Zn) be the primary solution and (Xn) an arbitrary solution of the 
recurrence relation Yn+2 = ayn+i + byn in a ring R. Then Xn+q+1 = zq+l xn+l + b Zq x, 
for q 1. 

6. DIVISIBILITY PROPERTIES. The ideas in this second part of the paper origi- 
nated in a study of the divisibility properties of sequences of orthogonal polynomials, 
especially the Chebyshev polynomials of the second kind. We know that for the Fi- 
bonacci sequence Fr divides Fs if r divides s. Surely it is not an accident that this 
property is also shared by the modified sequence Un of Chebyshev polynomials of the 
second kind? We now examine these divisibility properties in detail and, once again, 
we derive a general result that applies to certain linear second-order recurrence rela- 
tions with variable coefficients and, in particular, to orthogonal polynomials. We focus 
on the property given in the following definition: 

Definition 6.1. A solution (x,) of (5.1) in a ring R has the divisibility property if Xr 

divides Xs whenever r divides s. 

Our objective is to find conditions under which the primary solution of (5.1) has 
the divisibility property and, to a lesser extent, when the converse property (namely, if 
Zr divides Zs then r divides s) holds. For the Fibonacci sequence, if Fr divides Fs, then 
r divides s, except possibly when Fr = ±1. 

As the motivation for this investigation came from known results on the Chebyshev 
polynomials of the second kind, we consider these first. Suppose that m + 1 divides 
n + 1, say n + 1 = k(m + 1). It is evident that 

Un(cos0) = U,(cos 0)Uk-l (cos[(m + 1)0]) 

and this identity translates to 

Un (x) = U, (X)Uk-1 (Tm+(x)). 

Thus U, divides U,. Conversely, suppose that Um divides U,. Then 

sin[(n + 1)0] = sin[(m + 1)0] Q(cos 0) 

for some polynomial Q. Put 0 = rr/(m + 1); then (n + 1)0 = kr for some k, hence 
m + 1 divides n + 1. Thus U, divides U, if and only if m + 1 divides n + 1. This was 
the reason for introducing U,, in section 3: in parallel with the Fibonacci sequence, Um 

divides U, if and only if m divides n. Thus we obtain the formula 

Umn(x) = Umr(x)Un,(T(x)). (6.1) 

Our first result shows that the primary solution of any recurrence relation with con- 
stant coefficients (in a ring R) has the divisibility property. 
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Theorem 6.2. Let (Zn) be the primary solution of the recurrence relation Xn+2 = 
axn+l + bxn (n >_ 0) in a ring R. If r divides s, then Zr divides Zs. 

Proof It is sufficient to show that zn divides Zkn for k = 1, 2,.... We prove this 
by induction, noting that it is trivially true when k = 1. Now put xj = zj and q = 
(m - 1)n - 1 in Theorem 4.1. As we are in the constant coefficient case, this result 
gives 

Zmn = Z(m-1)n Zn+1 + b Z(m-l)n-lZn, 

where all terms involve the constant sequences A = (a, a,...) and B = (b, b, ....). It 
is now clear that, if z, divides z(m- )n, then it also divides Zmn, so the proof is complete. 

Finally (6.1), together with Theorem 3.1, leads immediately to the next result, which 
establishes the universality of the Chebyshev polynomials with respect to divisibility 
for second-order recurrence relations with constant coefficients. 

Theorem 6.3. The primary solution (Zn) of the recurrence relation Xn+2 = axn+l + 
bxn in an integral domain D satisfies 

Zmn = zmpm(n-1)U^I(Tm(a/2p)). 

7. PERIODIC COEFFICIENTS. We now give an example to show that the conclu- 
sion of Theorem 6.2 does not hold for second-order recurrence relations in which both 
sequences (an) and (bn) are periodic with period two. 

Example 7.1. We consider the primary solution (Zn) of (5.1) in Z + iZ, where 

S1 if n is even, f 1 ifniseven, 
an = 1 + i ifn is odd; b = i ifnis odd. 

As zo = 0 and zi = 1, we find that Z3 = 1 + 2i and Z6 = 7i, so that z3 does not di- 
vide Z6. Thus (zn) does not possess the divisibility property. 1 

Theorem 6.2 and Example 7.1 together raise the question of divisibility when one 
of the sequences is periodic with period two, and the other sequence is constant. The 
next result deals with one of these two possible cases. 

Theorem 7.2. Consider the relation (5.1) in a ring R. If the sequence (an) is periodic 
with period two and bn = b, a nonzero constant from R, for all n, then the primary 
solution of (5.1) has the divisibility property. 

Example 7.1 shows that, in some sense, Theorem 7.2 is best possible. As an example 
of the situation covered by Theorem 7.2, consider the primary solution (z,) of (5.1) in 
the ring of Gaussian integers, where bn = i for all n and 

1 if n is even, 
an -2i if n is odd. 

Then zo, zl, z2, z3, z4, and z5 are 0, 1, 1, -i, 0, 1, respectively, so the sequence zn 
has period four. It is easy to see that here zn has the divisibility property. Indeed, it 
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is obvious that Zr divides any zs whenever r is not a multiple of four. If r = 4k and 
r divides s, then Zr = zs = 0, so again zr divides z. Finally, we prove the following 
partial converse to Theorem 7.2: 

Theorem 7.3. If the primary solution (zn) of (5.1) in the ring R[x] of real polynomials 
has the divisibility property, then (an) is periodic with period two and (b,) is a constant 
sequence. 

We take a slightly broader view and consider the recurrence relation (5.1) in the 
situation where both of the sequences an and b, have period two. First, we give an 
explicit formula for the primary solution in this case. 

Lemma 7.4. Let (zn) be the primary solution of the recurrence relation (5.1) when 

an = a, b, = b ifn is even; 
a, = a', bn = b' ifn is odd. 

Then Z2m = awm and Z2m+l = Wm+1 - bWm, where w, is the primary solution of 
the constant coefficient relation Yn+2 = U Yn+l + V yn, with U = aa' + b + b' and 
V = -bb'. In particular, 

(Z2m+l) (1 -b )( Wr+i) 

1m-b UV 

(1 b)(U V )m() (7.2) 

Proof We define the sequence (',) by 2m = awm and 2m+1 = Wm+1 - bwm, and we 
show that z,n = n. As o = 0 = Zo and 1 = 1 = zi, it is necessary to show only that 
the n satisfy the recurrence relation (5.1), and this is easy. First, we have 

2m+2 = awm+1 

= a(wm+l - bwm) + abwm 

= a 2m+ 1 + b2m; 

second, we obtain 

'2m+l = Wm+1 - bwm 

= Uwm + Vwm-_ - bwm 

= Uwm - bwm - bb'wm-i 

= a'(awm) + b'(wm - bwm-1) 

= a'<2m + b' 2m-1. 

Since the last statement in Lemma 7.4 is obvious, the proof is complete. U 

For instance, in Example 7.1 considered earlier, each of the sequences (an) and (b,) 
has period two with, in the notation of Lemma 7.4, a = b = 1, a' = 1 + i, and b' = i. 
Thus in this example, 

Z2m+I_ 1 --1 2(1 + i) -i )m(1 ) 
m 0 ) o 1 1 0 0° " 
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We can now give the proof of Theorem 7.2. 

Proof of Theorem 7.2. We use the notation z(A, B) introduced earlier, and we take 
xj = zj, n = vm, and q = m - 1 in Theorem 4.1. This gives 

Z(v+l)m(A, B) = Zm(Avm, Bvm) zvm+i(A, B) 

+ bv zm -1(AVm+l, Bm+l) Zvm(A, B), 

from which it becomes clear (by induction) that, if 

Zm(A, B) = zm(Akm, Bkm) (7.3) 

for all k and all m, then Zm(A, B) divides Zm(Akm, Bkm) for k = 1, 2, .... Therefore 
the sequence (zn) has the divisibility property. 

We now prove that (7.3) holds. Under the assumptions in Theorem 7.2, we have, 
say, A = (a, a', a, a',...) and B = (b, b, b, ....). Obviously, B' = B and A2' = A for 
every r, so (7.3) holds when km is even. We may assume, then, that m is odd and write 
m = 2k + 1. Now (7.2) holds with U = aa' + 2b and V = -b2, and from this it is 
evident that Z2m+1 (A, B) is a polynomial in the variables a, a', and b that is symmetric 
in a and a'. Because the change from A' to Ar+l is achieved by interchanging a and a', 
it is now clear that Z2m+l(A, B) = Z2m+l(Ar, Br) for every r. We conclude that (7.3) 
holds for all k and m, completing the proof of Theorem 7.2. U 

We recall that Example 7.1 shows that, if the sequences A and B are periodic with 
period two, then the primary solution of (5.1) does not have the divisibility property. 
However, the next result demonstrates that it does have a partial divisibility property. 

Theorem 7.5. Let (zn) be the primary solution of the relation (5.1) in an integral 
domain D, where the sequences (an) and (ba) are both periodic with period two and 
no bn is zero. Then Zr divides Zrs for every even r and every s. 

Proof The discussion at the start of this section showed that if we take 

A = (a, a', a, a', ...), B = (b, b', b, b', ...), 

then Z2m = aWm, where Wn is the primary solution of the constant coefficient relation 
Xn+2 = U Xn+\ + V xn, with U = aa' + b + b' and V = -bb'. By Theorem 6.2, Wr 
divides Wrs for every s, and as a is not a divisor of zero, this implies that Z2r divides 
Z2rs for every s. U 

It is natural to ask whether a result similar to Theorem 7.5 holds for periodic se- 
quences (an) and (bn) with other periods. The proof of Theorem 7.5 is based on the 
fact that if the two sequences have period two, then the subsequence (x2n) of the so- 
lution (xn) satisfies the second-order recurrence relation with constant coefficients. A 
result analogous to this holds for larger periods but, as the resulting recurrence rela- 
tion has order greater than two, it is not relevant to this discussion. For a related result, 
see [6]. 

8. THE PROOF OF THEOREM 7.3. In this section we restrict our attention to 
recurrence relations in the ring R[x] of real polynomials in the variable x, and our sole 
objective is to give a proof of Theorem 7.3. We begin with two lemmas, after which we 
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prove the theorem. The first lemma is (when an (x) is a linear polynomial and b < 0) a 
standard result in the theory of orthogonal polynomials, although it has nothing per se 
to do with orthogonality. 

Lemma 8.1. Let (zn) be the primary solution of the relation xn+2 = an (x)n+l + b xn 

in R[x], where b is a nonzero real number. Then Zm and zm+l have no common zeros. 

Proof Each Zm is a polynomial in x. The recurrence relation shows that a common 
zero of Zn+2 and zn+l is also a common zero of zn+l and Zn (because b is a nonzero 
real number), hence a common zero of zn and z,_1, and so on, until it is seen to be a 
common zero of Z2 and zi. This is impossible, for zi = 1 and has no zeros. I 

Lemma 8.2. Let zn (A, B) be the primary solution of the relation 

Xn+2 = an(x)Xn+l + bxn, 

where b is a nonzero real number and the an (x) are monic polynomials of degree d with 
d > 1. If zt(A, B) divides each Zkt(A, B), then z(A, B) = zt(Akt, Bkt) for each k. 

Proof Take n = vt and q = t - 1 in Theorem 4.1. This yields the relation 

Z(v+I)(A, B) = z' zt+i(A, B) + b z+ z,,(A, B). 

Because zt(A,B) divides each z,,(A, B), we see that zt(A,B) divides each 
zt" zt+i(A, B). Now zt(A, B) divides z,,(A, B), while z,,(A, B) and z,t+l(A, B) 
are coprime (Lemma 8.1). Thus zt (A, B) divides each zt (A, B). But these polynomi- 
als have the same degree and they are both monic. Accordingly, they are equal. U 

Proof of Theorem 7.3. We must show that, if zn has Chebyshev divisibility, then the 
sequence (an) is periodic with period two and (bn) is a nonzero constant sequence. 
Our main tool is Lemma 8.2, which shows that under this divisibility assumption 

Zn - Zmn . (8.1) 

for all m and n. First, Z2(x) = x + a0. Using this fact and (8.1) with n = 2, we see that 
x + ao = x + a2m for every m. Thus 

ao = a2 = a4 6= a6 = ' . (8.2) 

We proceed to show that 

al = a3 = a5 = a7 = - -. (8.3) 

It is easy to prove (by induction) that 

Zn(x) = xn-1 + (ao + . + an-2)xn-2 + O(xn-3). (8.4) 

Appealing to (8.4) in tandem with (8.1), we find that, for every m and every n, 

ao + ... + an-2 = amn + " ± + an+n-2. (8.5) 
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We now put n = 4 in (8.5), invoke (8.2), and conclude that 

al = as = a9 = a13 = - ' ". (8.6) 

Next, we consider (8.5), first with m = 1, n = 2t + 2 and then with m = 1, n = 2t + 1 
to arrive at 

ao + - - * + a2t - a2t+2 + '*' +4t+2 

and 

ao + ''' + at- = - 2t+l + '' ' + a4t, 

respectively. Subtracting, and recalling (8.2) and (8.6), we find that (8.3) holds. Thus 
the sequence (an) is periodic with period two. 

We now use a similar, but longer, proof to show that (b,) is a constant sequence. 
Our proof is based on a stronger version of (8.4), namely, the following: 

Xn+2(X) = Xn+l + (ao + ... + an)xn 

+ [ aiaj+(bl + --+bn) xn- O(x2)"1+ Ox 

This can also be proved by induction (we omit the details). Because Xn+2z = x^+2) 

this yields 

C iaj f (bi - -' + bn) 
O<i<j<n 

- ai+m(n+2)aj+m(n+2) + (bl+m(n+2) + -- + bn+m(n+2)). (8.7) 

O<i<j<n 

We verify that 

Saiaj = ai+m(n+2)ai+m(n+2), (8.8) 
Oi< j<n O<i< j <n 

from which it follows that 

bl + . - - + bn = bl+m(n+2) + " " - + bn+m(n+2). (8.9) 

We exploit (8.9) to show that bl = b2 = b3 = . . 
We establish (8.8). As the sequence (an) is periodic with period two, we can replace 

ar in (8.8) with as, provided that r - s is even. It follows from this that (8.8) certainly 
holds if m is even. The same argument reveals that, when m is odd, it suffices to prove 
(8.8) in the case m = 1 with n + 2 replacing n. Thus we have to show only that 

a aij = i+naj+n. (8.10) 
O<i<j<n O<i<j<n 

Letting s = n - i and t = n - j, we compute 
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a n+in+j a2n-sa2n-t 

O<i<j<n O<t<s<n 

S ( a2(n-s)+sa2(n-t)+t 
O<t<s<n 

O<t<s<n 

as required. This justifies (8.7)-(8.10) and, in particular, establishes (8.9). 
We shall need (8.9) with n = 2, namely, the relation 

b1 + b2 = b4m+l + b4m+2. (8.11) 

Next, we put m = 1 in (8.9) and consider the cases n = 2k and n = 2k - 2. Together, 
these give 

b2k = (bl + - + b2k) - (bl + - . + b2k-2) 

= -b2k+2 + b4k+1 + b4k+2 

or, equivalently, 

b2k + b2k+2 = b4k+1 + b4k+2. (8.12) 

In tandem, (8.11) and (8.12) yield 

bl + b2 = b2m + b2m+2. 

This implies that the sum of two consecutive terms from the sequence b2, b4, b6, ... is 
constant, which means that 

b2 = b6 = blo = b14 = ', b4 = b8 = b12 = b16 = * 

We now return to (8.9) and take n = 1. This gives bl = b3m+1 for all m, hence 
implies that bl = b4 = b7 = blo. We now know that 

bl = b7 = b2 = b4 = b6 = b= ''' = b2m = =- b, 

say. With this, (8.12) for k = 1 gives b5 = b, while (8.9) with n = 3 gives b3 = b7, so 
b3 = b. We conclude that 

bl = b3 =b5 s= b7 = b2 = b4 = b6 = b8 = = b2m = -- = b. 

Finally, if n > 3, (8.9) shows that 

b2n+l = (b2 + - + bn) - (bn+3 + - ' + b2n), 

which enables us to prove easily (by induction) that b2n+l = b for all n. The proof that 
(bn) is a constant sequence is complete, and with it the proof of Theorem 7.3. U 

9. ORTHOGONAL POLYNOMIALS. A Borel measure / on R with the property 
that, for each positive integer k, x lk is integrable over R induces a scalar product 
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(p,q) = J p(x)q(x)dt(x) 
JR 

on the vector space of all real polynomials. A sequence p, of real polynomials, with 
pn monic and of degree n, is ,c-orthogonal if (pi, pj) = 0 whenever i # j. Notice that 
here the p, are normalized by the condition that they are monic rather than the usual 
condition (pn, p,) = 1. 

Suppose now that (pn) is a /-orthogonal sequence. Then xpn+± is monic and of 
degree n + 2, so can be expressed in the form 

xpn+l = oPo + . - + Xn+lPn+ + Pn+2* 

Now for k = 0, 1,..., n - 1, 

(Pk, XPn+l) = (xpk, Pn+i) = 0, 

which implies that the p, satisfy a second-order recurrence relation 

xpn+1 = nPn + in+1Pn+l + Pn+2. (9.1) 

In fact, X, > 0 because pn+1 - xpn is of degree at most n, making it orthogonal to 
Pn+l. Thus 

(Pn+1, Pn+l) = (Pn+l, Xpn) = (xpn+l, Pn) = Xn(Pn, Pn), 

which forces /X to be positive. The converse result (namely, that any sequence (pn) of 
polynomials, with pn monic and of degree n, that satisfies a relation of the form (9.1) 
with Xn > 0 is orthogonal with respect to some g), is known as Favard's Theorem. We 
now see that the p, are orthogonal with respect to some measure g if and only if they 
satisfy a real three-term recurrence relation of the form 

Pn+2 = (X + an)Pn+1 - bnPn (n > 0), (9.2) 

where each bn is positive. For more details, see [3], [5], and [9]. 
Our assumptions about the p, imply that po = 1 and pl = x + a for some a. In 

order to consider primary solutions we extend (9.2) to the case n = -1 by putting 
a_1 = a, b_l = 1, and p-1 = 0. Then 

P-1 =, , po = n+2 = (X + an)Pn+ - bnPn (n -1). (9.3) 

It is clear that, if we let pn = p,-1, then 

Po = 0, p1 = 1, pn+2 = (x + a n-1)Pn+l - bn-pn (n > 0), (9.4) 

so (pn) is the primary solution of the recurrence relation (9.4). 

Starting with (9.3), we also define a sequence (qn) of polynomials by 

qo = 0, qi = 1, qn+2 = (X + an)qn+l - bnqn (n > 0). (9.5) 

In the theory of orthogonal polynomials the q, are known as the associated polynomi- 
als normal to the p, (see, for example, [7]), but for us they are the primary solution 
of the recurrence relation (9.5). Moreover, if we use the natural notation pn(Ao, B°) 
for appropriate sequences Ao and Bo, then, in our earlier notation, q, = pn (A1, B'). 
Thus the polynomials qn associated to the p, are obtained by translating the sequences 
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of coefficients in the relation precisely in the way that we have introduced in Theo- 
rem 4.1. Moreover, from such a perspective, this construction is not dependent on or- 
thogonality, and it is equally applicable to recurrence relations whose coefficients are 

real numbers. In this context, Theorem 4.1 shows how to express Xn+q+1, for varying q, 
as a linear combination of two fixed terms x, and x+1, where the coefficients in this 
linear combination are identified in terms of the higher order associated polynomials. 
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