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ABSTRACT. We establish new operational formulae of Burchnall type for the complex disk polyno-
mials (generalized Zernike polynomials) on the hyperbolic unit disk of the complex plane and then
apply them in order to derive related basic identities involving these polynomials. Mainely, we are
interested in three terms recurrence formulas, like Nielsen’s identity and Runge’s addition formula.
Various generating functions for these disk polynomials are also given.

1. INTRODUCTION

Operational formulae are powerful tools in the theory of orthogonal polynomials. They will
enable proofs of new identities as well as alternative, more simpler, proofs of well-known ones.
Particular examples of such identities are the so-called addition formulas, which can also be ob-
tained from a group-theoretic point of view [35, 20, 36]. This approach was first employed by
Burchnall [2], in a direct and simple way, to prove Nielsen’s identity ([26]) for the classical real
Hermite polynomials Hm(x) = (−1)mex2 dm

dxm (e−x2
). Since then many extension for specific one-

variable real polynomials have been obtained [5, 1, 15, 6, 27, 7, 28, 18]. For the Jacobi polynomials
P(α,β)

n (x) defined by their Rodrigues’ formula ([29, 32]):

P(α,β)
n (x) :=

(−1)n

2nn!
(1− x)−α(1 + x)−β dn

dxn

(
(1− x)α+n(1 + x)β+n

)
,

R.P. Singh has developed in [31] the following operational relation
n

∏
j=1

{
(1− x2)

d
dx
− (α + β + 2j)x + β− α

}
=

n

∑
k=0

(−2)n−kn!
k!

(1− x2)kP(α+k,β+k)
n−k (x)

dk

dxk

It is then used to derive some useful properties of these polynomials like the quadratic recurrence
formula

P(α,β)
n+m (x) :=

n!m!
(n + m)!

n

∑
k=0

(−1)k(α + β + 2n + m + 1)k

22kk!
(1− x2)kP(α+k,β+k)

n−k (x)P(α+n+k,β+n+k)
m−k (x).

In the present paper, we deal with the disk polynomials ([21, 37, 12, 9]) that we define here
through:

Zγ
m,n(z, z̄) = (−1)m+n(1− |z|2)−γ ∂m+n

∂zm∂z̄n

(
(1− |z|2)γ+m+n

)
, (1.1)

z and z̄ being the variables in the unit disk D of the complex plane. They form a complete or-
thogonal system (basis) over the Hilbert space L2(D; (1− |z|2)γdλ), where γ > −1 and dλ being
the Lebesgue measure, and are often referred to as generalized Zernike polynomials. Note that
for γ = 0 and m ≤ n, the disk polynomials P0

m,n(z, z̄) turn out to be related to the real Zernike
polynomials Rν

k(x) introduced by Zernike and Brinkman [40], being indeed

Z0
m,n(z, z̄) = (m + n)!ei[(n−m) arg z]Rn−m

m+n(
√

zz̄),
1

ar
X

iv
:1

31
2.

36
28

v1
  [

m
at

h.
C

A
] 

 1
2 

D
ec

 2
01

3



2 LABEL1, LABEL2, LABEL3, AND LABEL2

and used in the study of diffraction problems. For further applications in geometric and wave
optics for systems with circular apertures and coherent state quantization on the disk, we refer the
reader to [25, 23, 3, 38, 37, 34, 33] and the references therin. They were served in [39] by Y. Xu as
a basic example to illustrate the connection between representations of orthogonal polynomials of
two real variables and those of complex variables. Their structural relations is also explored there.
Furthermore, the disk polynomials Zγ

m,n(z, z̄) appear quite frequently when investigating spectral
properties of some special differential operators of Laplacian type acting on L2(D; (1− |z|2)γdλ)
(see Section 2).

The motivation for considering the disk polynomials is the same as that for considering orthog-
onal polynomials in complex variable. This context is in general more convenient to obtain more
elegant identities and formulae which is already done in the case of the complex Hermite polyno-
mials ([11, 13, 17]):

Hp,q(z, z) = (−1)p+qezz ∂p+q

∂zp∂zq

(
e−zz

)
; z ∈ C. (1.2)

The main object of this paper is to develop some operational formulae for the Zγ
m,n(z, z̄), and

next use them to derive some remarkably interesting identities, including Nielsen’s identities and
Runge’s addition formula. New generating functions are derived from the obtained operational
representation which are alternative to the Rodrigues-type representation. Furthermore, one can
derive other generating functions for the product of disk polynomials.

Lastly we quote the important remark that an appropriate limiting procedure γ → +∞ leads to
complex Hermite polynomials in (1.2). Moreover, it is a device for taking into account the hyper-
bolic geometry of the disk and the physical meaning of the parameter γ.

The remaining sections are organised as follows. In Section 2, we review the factorization
method, à la Schrödinger, for the magnetic Laplacian on the hyperbolic unit disk and recall some
properties of the suggested disk polynomials. In Section 3, we give operational formulae of Burch-
nall type involving these complex disk polynomials. Some of their applications are discussed in
Sections 4, 5, 6 and 7. Indeed, Section 4 deals with recurrence quadratic formulas. In Section 5,
we establish three term recurrence formulas. Section 6 is devoted to Runge’s addition formula. In
Section 7, new generating functions are obtained.

2. GENERATION OF THE COMPLEX DISK POLYNOMIALS: AN ALGEBRAIC APPROACH

Let D be the hyperbolic unit disk equipped with its standard Bergman-Kähler structure de-
scribed through the Hermitian metric ds2 := (1 − |z|2)−2dz ⊗ dz̄. The volume measure is then
dµ = (1 − |z|2)−2dλ, where dλ(z) = dxdy denotes the Lebesgue measure on D. Associated to
the differential one-form θ := (∂ − ∂̄) log(1 − |z|2), there is the magnetic Schrödinger operator
Lν = (d + iνθ)∗(d + iνθ) acting on the L2-Hilbert spaceH := L2(D; dµ). Its explicit expression, up
to a multiplicative constant, is given by

Lν = −(1− |z|2)2 ∂2

∂z∂z̄
− ν(1− |z|2)

(
z

∂

∂z
− z̄

∂

∂z̄

)
+ ν2|z|2. (2.1)

The twisted Laplacian Lν is an elliptic self-adjoint second order differential operator whose con-
crete spectral theory is well known in the literature [41, 10, 14, 4]. In particular, its discrete L2-
spectrum is nontrivial only and only if ν > 1/2. It is known to be given by the eigenvalues
λν,m := ν(2m + 1)− m(m + 1) for varying positive integer m such that 0 ≤ m < ν− 1/2. In the
other hand, we know since Schrödinger (see [30, 16, 10]) that the factorization method allows one
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to construct L2-eigenfunctions. Indeed, our Laplacian Lν can be rewritten as

Lν = ∇ν−1∇∗ν−1 + ν and Lν−1 = ∇∗ν−1∇ν−1 − (ν− 1),

where the first order differential operator ∇α and its formal adjoint ∇∗α are given by

∇α = −(1− |z|2) ∂

∂z
+ αz̄ and ∇∗α = (1− |z|2) ∂

∂z̄
+ (α + 1)z. (2.2)

So that we have the following algebraic relationship

Lν∇ν−1 =
(
∇ν−1∇∗ν−1 + ν

)
∇ν−1 = ∇ν−1 (Lν−1 + (2ν− 1)) .

This implies that the operator ∇ν−1 generates eigenfunctions of Lν from those of Lν−1. Thus, if
ϕ0 is a nonzero L2-eigenfuncion associated to the lowest eigenvalue (the lowest Landau level) of
Lν−m, then ∇ν

m ϕ0, where we have set

∇ν
m := ∇ν−1 ◦ ∇ν−2 ◦ · · · ◦ ∇ν−m = (−1)m

m

∏
j=1

(
(1− |z|2) ∂

∂z
− (ν− j)z̄

)
, (2.3)

is an eigenfunction of Lν belonging to

A2,ν
m (D) := {ϕ ∈ L2(D; dµ); Lν ϕ = λν,m ϕ}.

Conversely, this method describes completely the L2-eigenspaces A2,ν
m (D) (see [12]). More pre-

cisely, for fixed ν > 1/2, the functions

ψν
m,n(z, z̄) := ∇ν

m

(
zn(1− |z|2)ν−m

)
(2.4)

for varying n = 0, 1, 2, · · · , are L2-eigenfunctions of Lν. Furthermore, they constitute an orthogonal
basis of the L2-eigenspace A2,ν

m (D). Whence, by observing that ∇α can be rewritten as

∇α f = −(1− |z|2)1−α ∂

∂z
[(1− |z|2)α f ],

the operator ∇ν
m in (2.3) acts on sufficienty differentiable functions on D as

∇ν
m f = (−1)m(1− |z|2)−ν

[
(1− |z|2)2 ∂

∂z

]m (
(1− |z|2)ν−m f

)
. (2.5)

which for the special case of f (z) = ϕν
n,m(z) := zn(1 − |z|2)ν−m, belonging to the null space of

∇∗ν−m−1, gives rise to

ψν
m,n(z, z̄) = (−1)m(1− |z|2)−ν

[
(1− |z|2)2 ∂

∂z

]m (
zn(1− |z|2)2(ν−m)

)
. (2.6)

The explicit expression of ψν
m,n(z, z̄) involves the real Jacobi Polynomials P(α,β)

k (x). More precisely,
we have

Proposition 2.1 ([12]). Denote by m∧ n the minimum of the nonnegative integers m and n. The quantities
ψν

m,n(z, z̄) are given by

ψν
m,n(z, z̄) = (−1)m(m ∧ n)!(1− zz̄)ν−m|z||m−n|ei[(n−m) arg z]P(|m−n|,2(ν−m)−1)

m∧n (1− 2|z|2). (2.7)

By means of (2.6) and (2.7), the suggested class of two variable polynomials

Pγ
m,n(z, z̄) := (1− |z|2)−ν+m∇ν

m

(
zn(1− |z|2)ν−m

)
(2.8)

= (1− |z|2)−ν+mψν
m,n(z, z̄),
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where γ = 2(ν−m)− 1, are given by

Pγ
m,n(z, z̄) = (−1)m(1− |z|2)−(γ+m+1)

[
(1− |z|2)2 ∂

∂z

]m (
zn(1− |z|2)γ+1

)
(2.9)

= (−1)m(m ∧ n)!|z||m−n|ei[(n−m) arg z]P(|m−n|,γ)
m∧n (1− 2|z|2). (2.10)

Up to a multiplicative constant, (2.10) leads to the so-called disk polynomials defined through
(1.1). An accurate analysis of the basic properties of such polynomials, like the recurrence relations
with respect to the indices m and n, the differential equations they obey, the generating functions
and so on, from different point of views has been developed in many papers. For a very nice
account on these polynomials, the interested can refer to [21, 22]. Other recent relevant references
are [37, 34, 12, 24, 19, 39, 33].

In the next section we derive operational formulae for the disk polynomials. We follow in spirit
[13] where analogous results are obtained for the complex Hermite polynomials Hp,q(z, z) in (1.2).

3. OPERATIONAL FORMULAE FOR THE DISK POLYNOMIALS

We start by noting that the intertwining invariant operator in the right hand side of (2.5), i.e.,

Dm = D ◦D ◦ · · · ◦D; m-times, D = h2(z)
∂

∂z
; h(z) := 1− |z|2, (3.1)

depends only on the geometry of the hyperbolic disk D. It is connected to the one in (2.3) through
(2.5),

Dm f = (−1)m(1− |z|2)ν∇ν
m

(
(1− |z|2)−ν+m f

)
. (3.2)

Moreover, it can be realized in terms of the following one

Am( f ) := hm+1(z)
∂m

∂zm

(
hm−1(z) f (z)

)
. (3.3)

Namely, we assert

Proposition 3.1. Let A and D be as above. Then, we have Dm f = Am( f ). More explicitly[
(1− |z|2)2 ∂

∂z

]m
( f ) = (1− |z|2)m+1 ∂m

∂zm

(
(1− |z|2)m−1 f

)
. (3.4)

In particular, we have Am+m′ = Am ◦ Am′ .

Proof. The proof of (3.4) can be handled by induction. Obviously, for m = 0 and m = 1 the identity
(3.4) holds good. Assume that (3.4) holds for given fixed positive integer m and note that the
operators Dm and ∂h/∂z = −z̄ commute. Hence, direct computation yields

hm+2 ∂m+1

∂zm+1 (h
m f ) = h

{
hm+1 ∂m

∂zm

(
∂

∂z
(hm f )

)}
= h

{
m
(

∂h
∂z

)
Dm( f ) +Dm(h−1D( f ))

}
. (3.5)

Note also that, for every given positive integer k such that 0 ≤ k ≤ m, we have

Dm(h−1D( f )) = Dm−k(h−1Dk+1( f ))− k
∂h
∂z

Dm( f ) (3.6)

which follows by repeated application of the fact Dm(h−1D( f )) = Dm−1(h−1D2( f )) − ∂h
∂zD

m( f ).
Now by taking k = m in (3.6) and substituting it in (3.5), we get the equality (3.3). The second
assertion follows easily since Am+1( f ) = Dm+1( f ) = D ◦Dm( f ) = A1 ◦ Am( f ). �
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Remark 3.2. According to (2.9) and Proposition 3.1, we have

Pγ
m,n(z, z̄) = (−1)mh−γ(z)

∂m

∂zm (znhγ+m(z)) (3.7)

which gives rise to the Rodrigues’ type formula [37, 12]:

Cγ
m,nPγ

m,n(z, z̄) = (−1)m+nh−γ(z)
∂m+n

∂zm∂z̄n

(
hγ+m+n(z)

)
, (3.8)

where

Cγ
m,n := (γ + m + 1)n (3.9)

(a)n being the Pochhammer symbol (a)n := a(a + 1) · · · (a + n− 1).

The reader is advised that the normalization adopted here may not coincide with the ones
adopted elsewhere. In the sequel, instead of Pγ

m,n(z, z̄), we deal with the polynomials

Zγ
m,n(z, z̄) := Cγ

m,nPγ
m,n(z, z̄)

= (−1)m(m ∧ n)!Cγ
m,n|z||m−n|ei[(n−m) arg z]P(|m−n|,γ)

m∧n (1− 2|z|2). (3.10)

so that

Zγ
m,n(z, z̄)

(2.8)
= Cγ

m,n(1− |z|2)−
γ+1

2 ∇
γ+1

2 +m
m

(
zn(1− |z|2)

γ+1
2

)
(3.11)

(3.7)
= (−1)mCγ

m,nh−γ(z)
∂m

∂zm (znhγ+m(z)) (3.12)

(3.8)
= (−1)m+nh−γ(z)

∂m+n

∂zm∂z̄n

(
hγ+m+n(z)

)
. (3.13)

Associated to these formulas, we introduce the following differential operators

Aγ
m,n( f ) := (−1)mCγ

m,nh−γ(z)
∂m

∂zm

(
znhγ+m(z) f

)
(3.14)

Zγ
m,n( f ) := (−1)m+nh−γ(z)

∂m+n

∂zm∂z̄n

(
hγ+m+n(z) f

)
, (3.15)

∇γ
m,n( f ) = ∇γ

m ◦ ∇
γ
n( f ), (3.16)

where∇α
m = ∇α−1 ◦ ∇α−2 ◦ · · · ◦ ∇α−m and∇α

n = ∇α−1 ◦∇α−2 ◦ · · · ◦ ∇α−n with∇α = −h(z) ∂
∂z +

αz̄ and ∇α = −h(z) ∂
∂z̄ + αz, so that

[Aγ
m,n(1)](z) = [Zγ

m,n(1)](z) = Zγ
m,n(z, z̄) (3.17)

and Zβ
0,s(z, z̄) = Zβ

s,0(z, z̄) = (β + 1)szs. We should note also that the operator Aγ
m,n is connected to

the one in (3.3) by

Aγ
m,n( f ) = (−1)m(γ + m + 1)nh−(γ+m+1)(z)Am(znhγ+1(z) f ). (3.18)

The main results of this section are the following operational formulae of Burchnall type involv-
ing Zγ

m,n(z, z̄).
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Proposition 3.3. For given positive integers m, n, and sufficiently differentiable function f , we have

Aγ
m,n( f ) = m!n!

m

∑
j=0

(−1)jhj(z)
j!

Zγ+j
m−j,n(z, z̄)

(m− j)!n!
∂j

∂zj ( f ). (3.19)

Zγ
m,n( f ) = m!n!

m

∑
j=0

n

∑
k=0

(−1)j+khj+k(z)
j!k!

Zγ+j+k
m−j,n−k(z, z̄)

(m− j)!(n− k)!
∂j+k

∂zj∂z̄k ( f ) (3.20)

∇γ
m,n( f ) = m!n!

m

∑
j=0

n

∑
k=0

(γ + n− k− 2)n−k
(γ + k)n−k

(−1)j+khj+k(z)
j!k!

Z (γ−1−m)+k+j
m−j,n−k (z, z̄)

(m− j)!(n− k)!
∂k+j

∂zj∂z̄k ( f ). (3.21)

Proof. Start from (3.14) and make use of the Leibnitz formula to get

Aγ
m,n( f ) = (−1)mCγ

m,nh−γ(z)
m

∑
j=0

(
m
j

)(
∂m−j

∂zm−j (z
nhγ+m(z))

)(
∂j

∂zj f
)

= m!
m

∑
j=0

(−1)jhj(z)
j!(m− j)!

(
(−1)m−jh−(γ+j)(z)Cγ

m,n
∂m−j

∂zm−j (z
nh(γ+j)+(m−j)(z))

)
∂j

∂zj f .

The statement follows from the fact (3.17) since Cγ
m,n = Cγ+j

m−j,n.
The proof of (3.20) is quite similar. Indeed, repeated application of the Leibnitz formula to (3.15)

yields

Zγ
m,n( f ) = (−1)m+nh−γ(z)

∂m

∂zm

{
n

∑
k=0

(
n
k

)(
∂n−k

∂z̄n−k (h
γ+m+n(z))

)(
∂k

∂z̄k f

)}

= (−1)m+nh−γ(z)
n

∑
k=0

m

∑
j=0

(
n
k

)(
m
j

)
∂m−j

∂zm−j

(
∂n−k

∂z̄n−k (h
γ+m+n(z))

)
∂j

∂zj

(
∂k

∂z̄k f

)

= (−1)m+nh−γ(z)
m

∑
j=0

n

∑
k=0

(
m
j

)(
n
k

)(
∂(m−j)+(n−k)

∂zm−j∂z̄n−k (hγ+m+n(z))

)
∂j+k

∂zj∂z̄k f .

The desired identity follows then since

∂(m−j)+(n−k)

∂zm−j∂z̄n−k (hγ+m+n(z)) = (−1)(m−j)+(n−k)hγ+j+k(z)Zγ+j+k
m−j,n−k(z, z̄).

To prove (3.21) let recall first that from (3.2), we have

∇γ
m f = (−1)mh−γDm(hγ−m f ) and ∇γ

n f = (−1)nh−γD
n
(hγ−n f ),

so that
∇γ

m,n f = ∇γ
m ◦ ∇

γ
n f = (−1)m+nh−γDm(h−mD

n
(hγ−n f )).

By applying twice Proposition 3.1, we get

∇γ
m,n f = (−1)m+nhm+1−γ(z)

∂m

∂zm

[
hn(z)

∂n

∂z̄n (h
γ−1(z) f )

]
.

Now, making use of Leibnitz formula, combined with the fact that

∂k

∂zk (h
β(z)) = (−β)k z̄khβ−k(z), (3.22)
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leads to

∇γ
m,n f = (−1)m+nhm+1−γ(z)

m

∑
j=0

n

∑
k=0

(
m
j

)(
n
k

)
(1− γ)n−k

∂m−j

∂zm−j

(
zn−khγ−1+k(z)

) ∂k+j

∂zj∂z̄k ( f )

=
m

∑
j=0

n

∑
k=0

(−1)n−j
(

m
j

)(
n
k

)
(1− γ)n−k
(γ + k)n−k

hj+k(z)Z (γ−1−m)+k+j
m−j,n−k (z, z̄)

∂k+j

∂zj∂z̄k ( f ).

This proves (3.21) since (−a)k = (−1)k(a− k + 1)k. �

Remark 3.4. The particular case of f = 1 in (3.21) gives rise to(
∇γ−1 ◦ ∇γ−2 ◦ · · · ∇γ−m

)
◦
(
∇γ−1 ◦ ∇γ−2 ◦ · · · ∇γ−n

)
(1) =

(γ + n− 2)n

(γ)n
Z (γ−1−m)

m,n (z, z̄).

Remark 3.5. Using similar arguments as in the proof of (3.21), we see that the operator ∇α,β
m,n f := ∇α

m ◦
∇β

n f coincides with the operator Zγ
m,n( f ) given through (3.14) for α = γ + m + 1 and β = α + n.

Corollary 3.6. We have the following identities

m

∑
j=0

(−1)j(γ + m)j
z̄j

j!

Zγ+j
m−j,n(z, z̄)

(m− j)!
= 0 (3.23)

whenever m > n, and

m

∑
j=0

(−1)j(γ + m)j
z̄j

j!

Zγ+j
m−j,n(z, z̄)

(m− j)!n!
= (−1)m(γ + 1 + m)n

zn−m

(n−m)!
(1− |z|2)m

m!
(3.24)

when m ≤ n.

Proof. The identities (3.23) when m > n and (3.24) when m ≤ n follow easily from (3.20) and (3.15),
by taking there f (z) = h−γ−m(z), since

Aγ
m,n(h−γ−m(z)) =


0 if n < m

(−1)m n!(γ + m + 1)n

(n−m)!
zn−mh−γ(z) if n ≥ m .

�

Remark 3.7. Taking n = 0 in (3.23), keeping in mind that Zβ
s,0(z, z̄) = (β + 1)sz̄s, leads to the following

identity for Gamma function
m

∑
j=0

(−1)j Γ(γ + m + j)
Γ(γ + 1 + j)

= 0. (3.25)

Corollary 3.8. The representation of the complex Hermite polynomials Hm,n(z, z̄) restricted to the unit disk
is given in terms of the disk polynomials by

Hm,n(z, z̄) =
m!

(γ + m + 1)n
h−m(z)

m

∑
j=0

j

∑
k=0

(−1)k(γ + m)k
k!

z̄jhj−k(z)
(j− k)!

Zγ+j
m−j,n(z, z̄)

(m− j)!
. (3.26)
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Proof. Note first thatAγ
m,n(h−γ−m(z)e−|z|

2
) = (γ+m+ 1)nh−γ(z)e−|z|

2
Hm,n(z, z̄). Furthermore, the

right hand side of (3.19), with f (z) = h−γ−m(z)e−|z|
2
, yields

Aγ
m,n(h−γ−m(z)e−|z|

2
) = m!h−γ−m(z)

m

∑
j=0

j

∑
k=0

(−1)k(γ + m)k
k!

z̄jhj−k(z)
(j− k)!

Zγ+j
m−j,n(z, z̄)

(m− j)!
. (3.27)

Thus (3.26) follows from (3.19) by straightforward computation making use of the Leibnitz rule
combined with the fact (3.22). �

Some applications of the previous obtained results are discussed in the following sections.

4. QUADRATIC RECURRENCE FORMULA

For different specific functions f we deduce interesting identities. Indeed, for given positive
integers m, n, s, we have

Zγ
m,n+s(z, z̄) = m!n!s!Cγ

m+n,s

m∧s

∑
j=0

(−1)jzs−jhj(z)
(s− j)!j!

Zγ+j
m−j,n(z, z̄)

(m− j)!n!
, (4.1)

which follows from (3.19) for f = zs, together with the following useful fact

Zγ+β
m,n+s(z, z̄) =

Cγ+β
m,n+s

Cγ
m,n
Aγ

m,n(zshβ(z)) (4.2)

for any positive integers m, n, s and real number γ, β. Also, when taking f = hs, we obtain

Zγ+s
m,n (z, z̄) = m!n!s!

Cγ+s
m,n

Cγ
m,n

m∧s

∑
j=0

z̄j

(s− j)!j!

Zγ+j
m−j,n(z, z̄)

(m− j)!n!
. (4.3)

Moreover, we have the following identity (of Nielsen type) involving Zγ
m,n(z, z̄).

Proposition 4.1. For every fixed positive integers m, n, r and s, we have the following quadratic recurrence
formulae

Zγ
m+r,n+s(z, z̄)

m!n!r!s!
=

m∧r

∑
j=0

n∧s

∑
k=0

(α + r + 1)j(α + s + 1)k
(−1)j+khj+k(z)

j!k!

Zγ+j+k
m−j,n−k(z, z̄)

(m− j)!(n− k)!

Zγ+m+n+j+k
r−k,s−j (z, z̄)

(s− j)!(r− k)!
(4.4)

and

Zγ
m+r,n(z, z̄)

m!n!
=

m∧n

∑
j=0

(γ + m + r + 1)j(γ + j + 1)m−j
(−1)jz̄m−jhj(z)

(m− j)!j!

Zγ+m+j
r,n−j (z, z̄)

(n− j)!
. (4.5)

Proof. Using the representation of the operator Zγ
m,n( f ), given through (3.15), as well as the fact

Zβ
r,s(z, z̄) = Zβ

r,s(1), we check easily that

Zγ
m+r,n+s(z, z̄) := Zγ

m,n(Zγ+m+n
r,s (z, z̄)). (4.6)

Thus, the operational formula (3.20) gives rise to

Zγ
m+r,n+s(z, z̄) = m!n!

m

∑
j=0

n

∑
k=0

(−1)j+khj+k(z)
j!k!

Zγ+j+k
m−j,n−k(z, z̄)

(m− j)!(n− k)!
∂j+k

∂zj∂z̄k

(
Zγ+m+n

r,s (z, z̄)
)
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which reduces further to

m!n!r!s!
m∧r

∑
j=0

n∧s

∑
k=0

(α + r + 1)j(α + s + 1)k
(−1)j+khj+k(z)

j!k!

Zγ+j+k
m−j,n−k(z, z̄)

(m− j)!(n− k)!

Zγ+m+n+j+k
r−k,s−j (z, z̄)

(s− j)!(r− k)!
.

The last equality is due to the fact that

∂j+k

∂zj∂z̄k

(
Zα

r,s(z, z̄)
)
=

r!s!(α + r + 1)j(α + s + 1)k

(r− k)!(s− j)!
Zα+j+k

r−k,s−j(z, z̄) (4.7)

which follows by induction since

∂

∂z
(
Zα

r,s(z, z̄)
)
= s(α + r + 1)Zα+1

r,s−1(z, z̄) and
∂

∂z̄
(
Zα

r,s(z, z̄)
)
= r(α + s + 1)Zα

r−1,s(z, z̄).

The proof of (4.5) lies essentially on the fact that

Zγ
m+r,n(z, z̄) := Aγ

m,0(Z
γ+m
r,n (z, z̄)), (4.8)

which can be handled easily from the representation (3.14) of the operator Aγ
m,0( f ) together with

the fact that Zβ
r,n(z, z̄) = Aβ

r,n(1). Next, the operational formula (3.20) infers

Zγ
m+r,n(z, z̄) = m!

m∧n

∑
j=0

(−1)jhj(z)
j!

Zγ+j
m−j,0(z, z̄)

(m− j)!
∂j

∂zj (Z
γ+m
r,n (z, z̄))

= m!n!
m∧n

∑
j=0

(γ + m + r + 1)j
(−1)jhj(z)

j!

Zγ+j
m−j,0(z, z̄)

(m− j)!

Zγ+m+j
r,n−j (z, z̄)

(n− j)!
.

This leads to (4.5) according to Zα
0,s(z, z̄) = (α + 1)szs. �

Remark 4.2. We recover (4.1) from (4.4) by taking s = 0. For specific choices of the parameters, r = 0 in
(4.5) or n = 0 in (4.1), we get the explicit expression of the polynomials Zγ

m,n(z, z̄):

Zγ
m,n(z, z̄) = m!n!

m∧n

∑
j=0

Γ(γ + m + n + 1)
Γ(γ + j + 1)

(−1)jhj(z)
j!

z̄m−j

(m− j)!
zn−j

(n− j)!

which can be rewritten in terms of the Gauss hypergeometric function 2F1

(
a, b
c

∣∣∣∣x) as

Zγ
m,n(z, z̄) = (γ + 1)m+nzmzn

2F1

(
−m,−n

γ + 1

∣∣∣∣1− 1
|z|2

)
.

5. THREE TERMS RECURRENCE FORMULAS

Proposition 5.1. We have the following three terms recurrence formulas

Zγ
m,n+1(z, z̄) = (γ + m + n + 1)

{
zZγ

m,n(z, z̄)−mh(z)Zγ+1
m−1,n(z, z̄)

}
(5.1)

Zγ+1
m,n (z, z̄) =

(
γ + m + n + 1

γ + m + 1

){
Zγ

m,n(z, z̄) + mz̄Zγ+1
m−1,n(z, z̄)

}
(5.2)

h(z)
∂

∂z
(Zγ+1

m,n (z, z̄)) = (γ + 1)z̄Zγ+1
m,n (z, z̄)−Zγ

m+1,n(z, z̄) (5.3)



10 LABEL1, LABEL2, LABEL3, AND LABEL2

as well as their conjugate

Zγ
m+1,n(z, z̄) = (γ + m + n + 1)

{
z̄Zγ

m,n(z, z̄)− nh(z)Zγ+1
m,n−1(z, z̄)

}
(5.4)

Zγ+1
m,n (z, z̄) =

(
γ + m + n + 1

γ + n + 1

){
Zγ

m,n(z, z̄) + nzZγ+1
m,n−1(z, z̄)

}
(5.5)

h(z)
∂

∂z̄
(Zγ+1

m,n (z, z̄)) = (γ + 1)zZγ+1
m,n (z, z̄)−Zγ

m,n+1(z, z̄). (5.6)

Proof. (5.1) is a special case of (4.1) by taking s = 1. While (5.2) is an immediate consequence of
(4.3) with s = 1. (5.3) is checked by writing Zγ

m+1,n(z, z̄) = Aγ
m+1,n(1) as

Zγ
m+1,n(z, z̄) = −h−γ(z)

∂

∂z

(
hγ+1(z)Zγ

m,n(z, z̄)
)

and next applying the derivative rule to the involved product. Finally, since

Zγ
m,n(z, z̄) = Zγ

m,n(z̄, z) = Zγ
n,m(z, z̄),

the recurrence formulae (5.4), (5.5) and (5.6) are the conjugate counterparts of (5.1), (5.2) and (5.3)
respectively. Note that (5.1) can also be derived directly from (3.17) by applying again the deriva-
tive rule to

Zγ
m+1,n(z, z̄) = (−1)m+nCγ

m,nh−γ(z)
∂m

∂zm

(
∂

∂z

(
znhγ+m+1(z)

))
.

�

6. RUNGE’S ADDITION FORMULA

Proposition 6.1. We have de following addition formula

hγ

(
z + w√

2

)
Zγ

m,n

(
z + w√

2
,

z + w√
2

)
=

(
1
2

)γ+m+m+n
2

m!n!(γ + m + n)!× (6.1)

m

∑
j=0

n

∑
k=0

∑
|s|=γ+m

(−1)s3+s4 z̄s4w̄s3 hs1−j(z)hs2−m+j(w)

s!j!k!(m− j)!(n− k)!

Z s1−j
j,s3+k(z, z̄)Z s2−m+j

m−j,s4+n−k(w, w̄)

(s1 + 1)s3+k(s2 + 1)s4+n−k

with (m+γ
s ) := (γ + m)!/s!, s! = s1!s2!s3!s4! and |s| = s1 + s2 + s3 + s4 for s = (s1, s2, s3, s4); sj ∈ Z+,

and where γ + m is assumed to be a positive integer.

Proof. From Zγ
m,n(z, z̄) = (−1)m(γ + m + 1)nh−γ(z) ∂m

∂zm (znhγ+m(z)), we can write

hγ

(
z + w√

2

)
Zγ

m,n

(
z + w√

2
,

z + w√
2

)
= (−1)m(γ + m + 1)n

∂m

∂
(

z+w√
2

)m

((
z + w√

2

)n
hγ+m

(
z + w√

2

))
.

Making use of the facts that ∂

∂
(

z+w√
2

) = 1√
2

(
∂
∂z +

∂
∂w

)
and h

(
z+w√

2

)
= 1

2 (h(z) + h(w)− zw̄− z̄w)

as well as the binomial formulas, including (X1 + X2 + X3 + X4)
m = ∑

|s|=m
(m

s )Xs1
1 Xs2

2 Xs3
3 Xs4

4 , one
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obtains

hγ

(
z + w√

2

)
Zγ

m,n

(
z + w√

2
,

z + w√
2

)
= (−1)m

(
1
2

)γ+2m+m+
2

(γ + m + 1)n×

m

∑
j=0

n

∑
k=0

∑
|s|=γ+m

(−1)s3+s4

(
m
j

)(
n
k

)(
m + γ

s

)
z̄s4w̄s3

∂j

∂zj

(
zs3+khs1(z)

) ∂m−j

∂wm−j

(
ws4+n−khs2(w)

)
that we can rewrite in terms of Zγ

m,n(z, z̄) as

hγ

(
z + w√

2

)
Zγ

m,n

(
z + w√

2
,

z + w√
2

)
=

(
1
2

)γ+m+m+n
2

(γ + m + 1)n

m

∑
j=0

n

∑
k=0

∑
|s|=γ+m

(−1)s3+s4×

(
m
j

)(
n
k

)(
m + γ

s

)
z̄s4w̄s3 hs1−j(z)hs2−m+j(w)

Z s1−j
j,s3+k(z, z̄)Z s2−m+j

m−j,s4+n−k(w, w̄)

(s1 + 1)s3+k(s2 + 1)s4+n−k
.

This yields the desired result (6.1). �

Remark 6.2. Under the assumption γ+m is a positive integer and by writing down (6.1) for the particular
case of z + w = 0, we get

m

∑
j=0

n

∑
k=0

∑
|s|=γ+m

(−1)k z̄s3+s4 hs1+s2(z)
s!k!(n− k)!

Z s1−j
j,s3+k(z, z̄)Z s2−m+j

m−j,s4+n−k(z, z̄)

j!(m− j)!(s1 + 1)s3+k(s2 + 1)s4+n−k
= 0,

when m 6= n as well as

m

∑
j=0

m

∑
k=0

∑
|s|=γ+m

(−1)j+k z̄s3+s4 hs1+s2(z)
s!k!(m− k)!

Z s1−j
j,s3+k(z, z̄)Z s2−m+j

m−j,s4+m−k(z, z̄)

j!(m− j)!(s1 + 1)s3+k(s2 + 1)s4+m−k
=

(−1)m2γ+2m

m!(γ + m)!
hm(z)

when m = n. The particular case of m = 0 infers the identity

∑
s1+s2+s3+s4=γ

|z|2(s3+s4)(1− |z|2)s1+s2

s1!s2!s3!s4!
=

2γ

γ!
.

7. GENERATING FUNCTIONS

Proposition 7.1. We have

∞

∑
n=0

vn

n!
Zγ

m,n(z, z̄) = m!
(

1
1− vz

)γ+1 ( z̄
1− vz

)m
P(γ,0)

m

(
1− 2

v(1− zz̄)
z̄(1− vz)

)
(7.1)

and
∞

∑
m=0

∞

∑
n=0

um

m!
vn

n!
Zγ

m,n(z, z̄) =
(

1
1− vz− uz̄

)γ+1

2F1

(
γ+1

2 , γ+2
2

γ + 1

∣∣∣∣− 4uv(1− zz̄)
(1− vz− uz̄)2

)
. (7.2)

Proof. Starting from (3.14) and using the fact that
+∞
∑

n=0

(a)n

n!
xn = (1− x)−a, we get

∞

∑
n=0

vn

n!
Zγ

m,n(z, z̄) = (−1)mh−γ(z)
∂m

∂zm

(
(1− vz)−(γ+1+m)hγ+m(z)

)
.
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From the well established fact that
∂m

∂tm

(
(1− xt)α(1− yt)β

)
= (−1)mm!ym(1− xt)α(1− yt)β−mP(β−m,−α−β−1)

m

(
1− 2

x(1− yt)
y(1− xt)

)
,

with α = −(γ + 1 + m), β = γ + m, x = v, y = z̄ and t = z, we have
∞

∑
n=0

vn

n!
Zγ

m,n(z, z̄) = m!
(

1
1− vz

)γ+1( z̄
1− vz

)m
P(γ,0)

m

(
1− 2

v(1− zz̄)
z̄(1− vz)

)
.

Moreover,
∞

∑
m=0

∞

∑
n=0

um

m!
vn

n!
Zγ

m,n(z, z̄) =
(

1
1− vz

)γ+1 ∞

∑
m=0

(
uz̄

1− vz

)m
P(γ,0)

m

(
1− 2

v(1− zz̄)
z̄(1− vz)

)
.

By means of the generating function [29, p.256], to wit
∞

∑
m=0

(α + β + 1)m

(α + 1)m
tmP(α,β)

m (x) = (1− t)−(α+β+1)
2F1

(
α+β+1

2 , α+β+2
2

α + 1

∣∣∣∣2 t(x− 1)
(1− t)2

)
,

with

t =
uz̄

1− vz
, α = γ, β = 0 and x = 1− 2

v(1− zz̄)
z̄(1− vz)

,

it follows
∞

∑
m=0

∞

∑
n=0

um

m!
vn

n!
Zγ

m,n(z, z̄) =
(

1
1− vz− uz̄

)γ+1

2F1

(
γ+1

2 , γ+2
2

γ + 1

∣∣∣∣− 4uv(1− zz̄)
(1− vz− uz̄)2

)
.

�

Corollary 7.2. The followings generating functions hold
+∞

∑
n=0

z̄n

n!
Zγ

m,n(z, z̄) = m!P(γ,0)
m (−1)z̄mh−(γ+m+1)(z) (7.3)

+∞

∑
m,n=0

zmz̄n

m!n!
Zγ

m,n(z, z̄) =
(

1− 2|z|2
)−(γ+1)

2F1

(
γ+1

2 , γ+2
2

γ + 1

∣∣∣∣− 4|z|2(1− |z|2)
(1− 2|z|2)2

)
(7.4)

+∞

∑
m,n=0

hm(z)z̄n

m!n!
Zγ

m,n(z, z̄) =
(

1
(1− z̄)h(z)

)γ+1

2F1

(
γ+1

2 , γ+2
2

γ + 1

∣∣∣∣− 4z̄
(1− z̄)2

)
(7.5)

+∞

∑
m,n=0

hm(z)z̄n

m!n!
Zγ

m,n(z, z̄) =
h−(γ+1)(z)

1 + z̄
(7.6)

Proof. (7.3) and (7.4) follow from (7.1) and (7.2), respectively by setting there v = z̄ and u = z.
While (7.5) follows also from (7.4) by taking u = h(z) and v = z̄. The last one, i.e. (7.6), is checked
easily making use of (7.3) or directly from Zγ

m,n(z, z̄) = (−1)m(γ + m + 1)nh−γ(z) ∂m

∂zm (znhγ+m(z))
combined with the fact that ∂m

∂zm (h−β(z)) = (β)mz̄mh−β−m(z). �

Remark 7.3. From (7.5) and (7.6) we get the following identity

2F1

(
γ+1

2 , γ+2
2

γ + 1

∣∣∣∣− 4z̄
(1− z̄)2

)
=

(1− z̄)γ+1

1 + z̄
. (7.7)

An other generating function for the Zγ+j
m−j,n(z, z̄) is the consequence of the following
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Proposition 7.4. For every fixed positive integers m and r, we have the following

∞

∑
k=0

(−1)kzk

k!

Zγ
m,n+r+k(z, z̄)

(γ + m + n + 1)r+k
= e−|z|

2
m

∑
j=0

(−1)j(−m)jhj(z)
j!

Zγ+j
m−j,n(z, z̄)Hr,j(z, z̄). (7.8)

Proof. Taking f (z) = zre−|z|
2

in the operational formula (3.19) yields

Aγ
m,n(zre−|z|

2
) =

m

∑
j=0

m!
(m− j)!

(−1)jhj(z)
j!

Zγ+j
m−j,n(z, z̄)

∂j

∂zj

(
zre−|z|

2
)

. (7.9)

The jth derivative of zre−|z|
2

in the right hand side of the last equality (7.9) is connected to the
complex Hermite polynomials by

∂j

∂zj

(
zre−|z|

2
)
= (−1)je−|z|

2
Hr,j(z, z̄)

so that (7.9) reduces further to

Aγ
m,n(zre−|z|

2
) = e−|z|

2
m

∑
j=0

m!
(m− j)!

hj(z)
j!
Zγ+j

m−j,n(z, z̄)Hr,j(z, z̄). (7.10)

In the other hand, by expanding e−|z|
2

as series and inserting it in the expression of Aγ
m,n(zre−|z|

2
)

given through (3.14), we get

Aγ
m,n(zre−|z|

2
) =

∞

∑
k=0

(−1)mCγ
m,nh−γ(z)

∂m

∂zm

(
zn+r+khγ+m(z)

) (−1)kzk

k!

=
∞

∑
k=0

(
Cγ

m,n

Cγ
m,n+r+k

)
(−1)kzk

k!
Zγ

m,n+r+k(z, z̄)

=
∞

∑
k=0

(−1)k

Cγ
m+n,r+k

zk

k!
Zγ

m,n+r+k(z, z̄). (7.11)

Equating the two right hand sides of (7.10) and (7.11) infers

∞

∑
k=0

(−1)k

Cγ
m+n,r+k

zk

k!
Zγ

m,n+r+k(z, z̄) = e−|z|
2

m

∑
j=0

m!
(m− j)!

hj(z)
j!
Zγ+j

m−j,n(z, z̄)Hr,j(z, z̄)

that we can rewrite as

∞

∑
k=0

(−1)kzk

k!

Zγ
m,n+r+k(z, z̄)

(γ + m + n + 1)r+k
= e−|z|

2
m

∑
j=0

(−1)j(−m)jhj(z)
j!

Zγ+j
m−j,n(z, z̄)Hr,j(z, z̄).

�

Corollary 7.5. Let 1F1(a; c; x) denotes the confluent hypergeometric function. We have

∞

∑
k=0

(−1)kzk

k!

Zγ
m,k(z, z̄)

(γ + m + 1)k
= (γ + 1)mzme−|z|

2
1F1(−m; γ + 1; |z|2 − 1). (7.12)
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Proof. This is in fact a particular case of (7.8). Indeed, by taking r = 0 and n = 0 keeping in mind
that H0,j(z, z̄) = zj and Zγ+j

m−j,0(z, z̄) = (γ + j + 1)m−jzm−j, it follows

∞

∑
k=0

(−1)kzk

k!

Zγ
m,k(z, z̄)

(γ + m + 1)k
= (γ + 1)mzme−|z|

2
m

∑
j=0

(−m)j

(γ + 1)j

(−1)jhj(z)
j!

= (γ + 1)mzme−|z|
2

1F1(−m; γ + 1; |z|2 − 1).

�

The following result show that the monomial zm restricted to the unit disk has an expansion in
terms of the polynomials Zα

j,k(z, z̄).

Proposition 7.6. For every fixed positive integer m, we have the following

zm = m!e−|z|
2

∞

∑
n=0

m

∑
j=0

(−1)jzn+jhj(z)
j!(γ + 1)m+n

Zγ+j
m−j,n(z, z̄)

(m− j)!n!
. (7.13)

Proof. We begin noting that the action of the operator Aγ
m,n in (3.14) on f (z) = zne−|z|

2
reads

Aγ
m,n(zne−|z|

2
) = (−1)mCγ

m,nh−γ(z)
∂m

∂zm

(
|z|2nhγ+m(z)e−|z|

2
)

.

Therefore, from (3.22) and (−a)k = (−1)k(a− k + 1)k, it is easy to see that
∞

∑
n=0

1
n!Cγ

m,n
Aγ

m,n(zne−|z|
2
) = (γ + 1)mzm. (7.14)

In the other hand, making appeal of the operational formula (3.19), the left hand side of (7.14) can
be rewritten as

∞

∑
n=0

1
n!Cγ

m,n
Aγ

m,n(zne−|z|
2
) = m!e−|z|

2
∞

∑
n=0

m

∑
j=0

(−1)jzn+jhj(z)
j!Cγ

m,n

Zγ+j
m−j,n(z, z̄)

(m− j)!n!
. (7.15)

Hence from (7.14) and (7.15), it follows

zm = e−|z|
2 m!
(γ + 1)m

∞

∑
n=0

m

∑
j=0

(−1)jzn+jhj(z)
j!(γ + m + 1)n

Zγ+j
m−j,n(z, z̄)

(m− j)!n!
. (7.16)

which gives rise to (7.13). �

Corollary 7.7. We have

ez(1+z) =
∞

∑
m=0

∞

∑
n=0

∞

∑
j=0

(−1)jzn+jhj(z)
j!(γ + 1)m+j+n

Zγ+j
m,n (z, z̄)
m!n!

. (7.17)

Proof. The result follows easily from (7.13) since
∞
∑

m=0

m
∑

j=0
A(m, j) =

∞
∑

m=0

∞
∑

j=0
A(m + j, j). �

Further fascinating identities including those involving the product of disk polynomials may be
obtained, from their analogous for the Jacobi polynomials, by means of (3.10). For example, we
have

∞

∑
n=0

(−1)n(2m + 1)n

(2m + n + 1)n

Zm
m+n,n(z, z̄)
(m + n)!n!

=
(−1)m

m!
z̄m
[
1− 2(1− 2|z|2)w + w2

]−(m+ 1
2 ) (7.18)
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which can be handled making use of the generating relation ([29, Eq.3, p.276]):
∞

∑
n=0

(2α + 1)n

(α + 1)n
tnP(α,β)

n (x) = [1− 2xt + t2]−α− 1
2 .

Also, from []
∞

∑
n=0

n!(α + β + 1)n

(α + 1)n(1 + β)n
tnP(α,β)

n (x)P(α,β)
n (y)

= (1 + t)α−β−1F4

(
α + β + 1

2
,

α + β + 2
2

; α + 1, β + 1;
(1− x)(1− y)t

(1 + t)2 ,
(1 + x)(1 + y)t

(1 + t)2

)
where F4(a, b; c, c′; x, y) stands for the fourth Appell’s function ([29, p.265]), one deduces the fol-
lowing generating function for the product of disk polynomials with equal arguments and indices
but with different variables:

∞

∑
n=0

tnZγ−1
n,n (z, z̄)Zγ−1

n,n (w, w̄)

[n!(γ + n)n]2
=

1
(1 + t)γ

F4

(
γ

2
,

γ + 1
2

; γ− 1, γ;
4|z|2|w|2t
(1 + t)2 ,

4(1− |z|2)(1− |w|2)t
(1 + t)2

)
.
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[26] N. Nielsen, Recherches sur les polynômes d’Hermite. Volume 1, Mathematisk-fysiske meddelelser. 79 pages, Det Kgl.

Danske Videnskabernes Selskab, (1918).
[27] K.R. Patil, N.K. Thakare, Operational formulas and generating functions in the unified form for the classical orthogonal

polynomials, Math. Student 45, no. 1 (1978) 41–51.
[28] S.D. Purohit; R.K. Raina, On certain operational formula for multivariable basic hypergeometric functions, Acta Math.

Univ. Comenian. 78, no. 2 (2009) 187–195.
[29] E.D. Rainville, Special functions, Chelsea Publishing Co., Bronx, N.Y., (1971).
[30] E. Schrödinger, A method of determining quantum mechanical eigenvalues and eigenfunctions, Proc. Royal Irish Acad.,

A 46 (1940), 9-16; Further studies on solving eigenvalue problems by factorisation, ibid. (1941) 183-206.
[31] R.P. Singh, Operational formulae for Jacobi and other polynomials, Rend. Sem. Mat. Univ. Padova 35 (1965) 237–244.
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