International Journal of Pure and Applied Mathematics Volume 79 No. 1 2012, 57-65

ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu

INVERSION OF THE TOEPLITZ-PLUS-HANKEL MATRICES VIA GENERALIZED INVERSION

Victor Adukov^{1 §}, Olga Ibryaeva²

^{1,2}Department of Differential Equations and Dynamical Systems South Ural State University Chelyabinsk, RUSSIA

Abstract: The generalized inversion of the block Toeplitz-plus-Hankel matrix has been obtained. It allows to find the inverse (one-sided inverse) matrix of the block Toeplitz-plus-Hankel matrix provided that the this matrix is invertible (one-sided invertible).

AMS Subject Classification: 15A09 **Key Words:** Toeplitz-plus-Hankel matrices, generalized inversion, inversion

1. Introduction

In many applications, e.g. digital signal processing, discrete inverse scattering, linear prediction etc., Toeplitz-plus-Hankel (T + H) matrices need to be inverted. (For further applications see [1] and references therein).

Firstly the T + H matrix inversion problem has been solved in [2] where it was reduced to the inversion problem of the block Toeplitz matrix (the so-called mosaic matrix). The drawback of the method is that it does not work for any invertible T + H matrix since it requires also invertibility of the corresponding T - H matrix. Later on the drawback was put out [3], moreover, the inversion problem was solved for the block T + H matrix [4], [5].

Received: May 5, 2012

© 2012 Academic Publications, Ltd. url: www.acadpubl.eu

[§]Correspondence author

Our goal is to restore the method of [2] in order to get the generalized inversion for the block T + H matrix. To do it we will need the generalized inversion for the block Toeplitz matrix which has been already found in, e.g. [6]. It is shown in the present paper that there is no need for T - H matrix to be inverted: if the T + H matrix is invertible than the obtained generalized inverse matrix proves to be its inverse matrix.

2. The Basic Definitions and Notations

Let $T + H = ||a_{i-j} + b_{i+j}||_{\substack{i=0,\dots,n,\\j=0,\dots,m,}}$, $a_k, b_k \in \mathbb{C}^{p \times q}$, be the block Toeplitz-plus-Hankel matrix.

Denote $a_{-m}^n(z) = a_{-m}z^{-m} + \ldots + a_0 + \ldots + a_nz^n$, $b_0^{n+m}(z) = b_0 + b_1z + \ldots + b_{n+m}z^{n+m}$ and introduce an auxiliary matrix function

$$A(z) = \begin{pmatrix} z^{n}b_{0}^{n+m}(z^{-1}) & z^{n-m}a_{-m}^{n}(z^{-1}) \\ a_{-m}^{n}(z) & z^{-m}b_{0}^{n+m}(z) \end{pmatrix}.$$

Obviously, $A(z) = \sum_{j=-m}^{n} A_{j}z^{j}$, with $A_{j} \in \mathbb{C}^{2p \times 2q}$ and
 $A_{j} = \begin{pmatrix} b_{n-j} & a_{n-m-j} \\ a_{j} & b_{j+m} \end{pmatrix}.$ (1)

Thus, A(z) is the generating function for the sequence of matrices $A_{-m}, \ldots, A_0, \ldots, A_n$.

Further we will need the generalized inversion for the block Toeplitz matrix $T_A = ||A_{i-j}||_{\substack{i=0,\ldots,n,\\j=0,\ldots,m,}}$ which has been found in [6]. In order to use this result we should introduce the definitions of essential indices and polynomials of the sequence $A_{-m}, \ldots, A_0, \ldots, A_n$.

We include the matrix $T_A \equiv T_0$ into the family of the block Toeplitz matrices $T_k = ||A_{i-j+k}||_{\substack{i=0,\dots,n-k,\\j=0,\dots,m+k,}}, -m \leq k \leq n$. The matrices T_k are of the same structure and it is reasonable that they should be examined together.

We are interested in right kernels of T_k . For the sake of convenience let us pass from the spaces ker_R T_k to the isomorphic spaces \mathcal{N}_k^R of generating polynomials. To do this we define the operator σ_R acting from the space of rational matrix functions $R(z) = \sum_{j=-n}^m r_j z^j, r_j \in \mathbb{C}^{2q \times l}$ to the space $\mathbb{C}^{2p \times l}$ according to $\sigma_R \{R(z)\} = \sum_{j=-n}^m A_{-j} r_j$.

By \mathcal{N}_k^R , $k = -m, \ldots, n$, we denote the space of vector polynomials $R(z) = \sum_{j=0}^{k+m} r_j z^j$, $r_j \in \mathbb{C}^{2q \times 1}$, such that $\sigma_R \{ z^{-i} R(z) \} = 0$, $i = k, k+1, \ldots, n$. \mathcal{N}_k^R is evident to be isomorphic to ker_R T_k .

It is convenient to put $\mathcal{N}_{-m-1}^R = 0$ and denote by \mathcal{N}_{n+1}^R the 2(n+m+2)qdimensional space of all vector polynomials in z with formal degree n+m+1.

Similarly, one may define spaces \mathcal{N}_k^L which are isomorphic to ker_L T_k . We denote ker_L $A = \{y \mid yA = 0\}$.

Let us put also $\alpha = \dim \mathcal{N}_{-m}^R$ and $\omega = \dim \mathcal{N}_n^L$. The sequence A_{-m}, \ldots, A_n is called *left (right) regular* if $\alpha = 0$ ($\omega = 0$). Otherwise, the sequence is not regular and $\alpha(\omega)$ is its *left (right) defect*. The sequence is called *regular* if $\alpha = \omega = 0$. It is evident that $\alpha < 2q$, $\omega < 2p$ for the nonzero sequence.

Denote $d_k^R = \dim \mathcal{N}_k^R$, $\Delta_k^R = d_k^R - d_{k-1}^R$, $k = -m, \ldots, n+1$. For any sequence A_{-m}, \ldots, A_n the following inequalities hold [6]:

$$\alpha = \Delta_{-m}^{R} \le \Delta_{-m+1}^{R} \le \dots \le \Delta_{n}^{R} \le \Delta_{n+1}^{R} = 2(p+q) - \omega.$$

It means that there are $2(p+q) - \alpha - \omega$ integers $\mu_{\alpha} \leq \mu_{\alpha+1} \leq \ldots \leq \mu_{2(p+q)-\alpha-\omega}$, satisfying equations

$$\Delta_{-m}^{R} = \dots = \Delta_{\mu_{\alpha+1}}^{R} = \alpha,$$

$$\dots$$

$$\Delta_{\mu_{i}+1}^{R} = \dots = \Delta_{\mu_{i+1}}^{R} = i,$$

$$\dots$$

$$\Delta_{\mu_{2(p+q)-\omega+1}}^{R} = \dots = \Delta_{n+1}^{R} = 2(p+q) - \omega.$$
(2)

If the *i*th row in (2) is absent, we assume $\mu_i = \mu_{i+1}$. Let us put also $\mu_1 = \ldots = \mu_{\alpha} = -m - 1$ if $\alpha \neq 0$ and $\mu_{2(p+q)-\omega+1} = \ldots = \mu_{2(p+q)}$ if $\omega \neq 0$.

Thus, for any sequence A_{-m}, \ldots, A_n , there is a set of 2(p+q) integers, satisfying (2), which will be called *indices* of the sequence.

Let us define the right essential polynomials. It follows from the definition of \mathcal{N}_k^R that \mathcal{N}_k^R and $z\mathcal{N}_k^R$ are the subspaces of \mathcal{N}_{k+1}^R , $k = -m-1, \ldots, n$, moreover, $\mathcal{N}_k^R \bigcap z\mathcal{N}_k^R = \mathcal{N}_{k-1}^R$. Then $\mathcal{N}_{k+1}^R = (\mathcal{N}_k^R + z\mathcal{N}_k^R) \oplus \mathcal{H}_{k+1}^R$, where \mathcal{H}_{k+1}^R is the complement of $\mathcal{N}_k^R + z\mathcal{N}_k^R$ to the whole \mathcal{N}_{k+1}^R . Obviously, dim $\mathcal{H}_{k+1}^R = \Delta_{k+1}^R - \Delta_k^R$. Hence dim $\mathcal{H}_{k+1}^R \neq 0$ iff $k = \mu_i$. In this case dim \mathcal{H}_{k+1}^R is equal to the multiplicity k_i of the index μ_i .

Definition 1. If $\alpha \neq 0$ then any vector polynomials $R_1(z), \ldots, R_{\alpha}(z)$ forming the basis of \mathcal{N}_{-m}^R will be called right essential polynomials of the sequence $A_{-m}, \ldots, A_0, \ldots, A_n$. They correspond to the index $\mu_1 = -m - 1$ with the multiplicity α .

Any vector polynomials $R_j(z), \ldots, R_{j+k_j-1}(z)$ forming the basis for $\mathcal{H}^R_{\mu_j+1}$ will be called right essential polynomials of the sequence $A_{-m}, \ldots, A_0, \ldots, A_n$. They correspond to the index μ_j with the multiplicity $k_j, \alpha+1 \leq j \leq 2(p+q)-\omega$. Similarly, one may define the left essential polynomials.

There are $2(p+q) - \omega$ right and $2(p+q) - \alpha$ left essential polynomials of the sequence A_{-m}, \ldots, A_n . There is a lack of essential polynomials if $\alpha \neq 0$ or $\omega \neq 0$. But we can always complement the number of right (if $p \leq q$) or left (if $p \geq q$) essential polynomials to 2(p+q). (The complement procedure is described in [6]).

For definiteness sake, we will suppose that we have got the full set of 2(p+q) right essential polynomials, i.e. either $\omega = 0$ or $p \leq q$.

The set of the left essential polynomials could always be recovered with the help of the so-called conformation procedure of the right and left essential polynomials. Let us describe how for the given set of the right essential polynomials $R_1(z), \ldots, R_{2(p+q)}(z), R_j(z) \in \mathbb{C}^{2q \times 1}[z]$ one can construct the conforming left essential polynomials $L_1(z), \ldots, L_{2(p+q)}(z), L_j(z) \in \mathbb{C}^{1 \times 2p}[z]$.

We introduce the matrix $\mathcal{R}(z) = (R_1(z) \dots R_{2(p+q)}(z))$ of the right essential polynomials and find the matrix polynomial $\alpha_-(z)$ from the decomposition $A(z)\mathcal{R}(z) = \alpha_-(z)d(z) - z^{n+1}\beta_+(z)$, where $d(z) = \text{diag}[z^{\mu_1}, \dots, z^{\mu_{2(p+q)}}], \beta_+(z)$ $(\alpha_-(z))$ is the matrix polynomial in z (z^{-1}) of the size $2p \times 2(p+q)$.

Denote $\mathcal{R}_{-}(z) = z^{-m-1}\mathcal{R}(z)d^{-1}(z)$. Let $U_{-}(z) = \begin{pmatrix} \mathcal{R}_{-}(z) \\ \alpha_{-}(z) \end{pmatrix}$ be the matrix polynomial in z^{-1} . The polynomial $U_{-}(z)$ is shown in [6] to be unimodular, i.e.

polynomial in z^{-1} . The polynomial $U_{-}(z)$ is shown in [6] to be unimodular, i.e. its determinant is equal to a constant. We pick the $2(p+q) \times 2p$ block $\mathcal{L}(z)$ out $U_{-}^{-1}(z) = (* \mathcal{L}(z))$.

The matrix polynomial
$$\mathcal{L}(z) = \begin{pmatrix} L_1(z) \\ \vdots \\ L_{2(p+q)}(z) \end{pmatrix}$$
 turns out to be the matrix

of the conforming left essential polynomials.

The case when $\alpha = 0$ or $p \ge q$ may be considered in a similar manner with help of the left essential polynomials.

Now we may present the formula (5.13) from [6] for the generalized inverse of T_A :

$$T_{A}^{\dagger} = \begin{pmatrix} \mathcal{R}_{0} & \dots & 0 \\ \vdots & \ddots & \vdots \\ \mathcal{R}_{m} & \dots & \mathcal{R}_{0} \end{pmatrix} \Pi \begin{pmatrix} \mathcal{L}_{0} & \dots & \mathcal{L}_{-n} \\ \vdots & \ddots & \vdots \\ 0 & \dots & \mathcal{L}_{0} \end{pmatrix}.$$
 (3)

Here $\mathcal{R}_j \in \mathbb{C}^{2q \times 2(p+q)}$, $\mathcal{L}_j \in \mathbb{C}^{2(p+q) \times 2p}$ are the coefficients of the matrix polynomials $\mathcal{R}(z)$, $\mathcal{L}(z)$, respectively, and $R_j(z)$, $L_j(z)$ are the conforming right and left essential polynomials of the sequence $A_{-m}, \ldots, A_0, \ldots, A_n$. The generalized inversion for matrix A is meant to be the matrix A^{\dagger} such that $AA^{\dagger}A = A$.

The matrix Π is constructed in a following way. Let $\lambda_1, \ldots, \lambda_r$ be the distinct essential indices of the sequence $A_{-m}, \ldots, A_0, \ldots, A_n$ and let ν_1, \ldots, ν_r be their multiplicities $(\nu_1 + \ldots + \nu_r = 2(p+q))$. Then $\Pi = ||\Pi_{i-j}||_{\substack{i=0,\ldots,m, \\ j=0,\ldots,n,}}$. Here $\Pi_k = 0$ for $-n \le k \le m, \ k \ne -\lambda_1, \ldots, -\lambda_r, \ \Pi_{-\lambda_j} = \|\varepsilon_i^j \delta_{ik}\|_{i,k=1}^{2(p+q)}$,

$$\varepsilon_i^j = \begin{cases} 1, & i = \nu_1 + \dots + \nu_{j-1} + 1, \dots, \nu_1 + \dots + \nu_j, \\ 0, & \text{otherwise.} \end{cases}$$

For the generalized inversion of the T + H matrix it will be useful to partition the right essential polynomials $R_j(z) = \begin{pmatrix} R_j^1(z) \\ R_j^2(z) \end{pmatrix}$. Here $R_j^{1,2} \in \mathbb{C}^{q \times 1}[z]$. In similar way we partition the left essential polynomials: $L_j(z) = \begin{pmatrix} L_j^1(z) & L_j^2(z) \end{pmatrix}$, with $L_j^{1,2} \in \mathbb{C}^{1 \times p}[z]$.

Then the matrix of these essential polynomials may be represented as:

$$\mathcal{R}(z) = \begin{pmatrix} \mathcal{R}^1(z) \\ \mathcal{R}^2(z) \end{pmatrix}, \quad \mathcal{L}(z) = \begin{pmatrix} \mathcal{L}^1(z) & \mathcal{L}^2(z) \end{pmatrix}, \quad (4)$$

with $\mathcal{R}^{1,2}(z) \in \mathbb{C}^{q \times 2(p+q)}, \quad \mathcal{L}^{1,2}(z) \in \mathbb{C}^{2(p+q) \times p}.$

3. The Generalized Inversion

In the section we will present our main result. Let us denote

$$T_{\mathcal{R}_j} = \begin{pmatrix} \mathcal{R}_0^j & \dots & 0\\ \vdots & \ddots & \vdots\\ \mathcal{R}_m^j & \dots & \mathcal{R}_0^j \end{pmatrix}, \quad T_{\mathcal{L}_j} = \begin{pmatrix} \mathcal{L}_0^j & \dots & \mathcal{L}_{-n}^j\\ \vdots & \ddots & \vdots\\ 0 & \dots & \mathcal{L}_0^j \end{pmatrix}, \quad j = 1, 2,$$

where $\mathcal{R}_k^j(\mathcal{L}_k^j)$ are the coefficients of the polynomials $\mathcal{R}^j(\mathcal{L}^j)$. We also put $H_{\mathcal{R}_2} = JT_{\mathcal{R}_2}, H_{\mathcal{L}_1} = T_{\mathcal{L}_1}J$.

Theorem 1. The generalized inverses of the T + H and T - H matrices are found by the formulas:

$$(T \pm H)^{\dagger} = \frac{1}{2} \left(T_{\mathcal{R}_1} \pm H_{\mathcal{R}_2} \right) \Pi \left(T_{\mathcal{L}_2} \pm H_{\mathcal{L}_1} \right).$$
 (5)

If $T \pm H$ is invertible (one-sided invertible), then $(T \pm H)^{\dagger}$ is its inverse (one-sided inverse) matrix.

Proof. Let us construct the generalized inversion to $T_A \equiv T_0$ according to formula (3). We are going to pass from block Toeplitz matrix T_A to the mosaic matrix

	(b_n		b_{n+m}	a_{n-m}		a_n
$M_A =$		b_{n-1}		b_{n+m-1}	a_{n-m-1}		a_{n-1}
		:	·	:	÷	·	:
		b_0		b_m	a_{-m}		a_0
	-	a_0		a_{-m}	b_m		b_0
		a_1		a_{-m+1}	b_{m+1}		b_1
		÷	·	:	:	·	:
		a_n		a_{n-m}	b_{n+m}		b_n /

At first, according to the block structure of A_j (1), we partition each block column X_j of the matrix T_A into two block columns X_j^1, X_j^2 with sizes $2p(n+1) \times q$: $X_j = \begin{pmatrix} X_j^1 & X_j^2 \end{pmatrix}$. Then permute new block columns in T_A and construct the matrix

$\left(\begin{array}{c} X_1^1 \end{array} \right)$		X_m^1	X_1^2 .	2	X_m^2)					
	1	b_n	b_{n+1}		b_{n+m}	a_{n-m}	a_{n-m+1}		a_n	
		a_0	a_{-1}		a_{-m}	b_m	b_{m-1}	•••	b_0	
		b_{n-1}	b_n	•••	b_{n+m-1}	a_{n-m-1}	a_{n-m}	•••	a_{n-1}	
	=	a_1	a_0		a_{-m+1}	b_{m+1}	b_m	•••	b_1	. .
		÷	÷	۰.	:	:	÷	۰.	÷	
		b_0	b_1		b_m	a_{-m}	a_{-m+1}		a_0	
	(a_n	a_{n-1}		a_{n-m}	b_{n+m}	b_{n+m-1}		b_n	/

This matrix is evident to be obtained by multiplying T_A on a permutation matrix P_2 . Then we will do the analogous permutation with block rows in $T_A P_2$. As a result, we will get the matrix $P_1T_AP_2$, where P_1 is a permutation matrix. The matrix $P_1T_AP_2$ coincides with $M_A = P_1T_AP_2$. Thus we have passed from the block Toeplitz matrix T_A to the mosaic matrix M_A .

Since for a permutation matrix P the equality $P^{-1} = P^t$ holds, we get the generalized inversion for $M_A: M_A^{\dagger} = P_2^t T_A^{\dagger} P_1^t$. Let us specify the structure of factors in this product. The operations which P_2 has done with the block columns of T_A , the matrix P_2^t now will carry out with the block rows of the

matrix $\begin{pmatrix} \mathcal{R}_0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ \mathcal{R}_m & \dots & \mathcal{R}_0 \end{pmatrix}$.

Thus

$$P_2^t \begin{pmatrix} \mathcal{R}_0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ \mathcal{R}_m & \dots & \mathcal{R}_0 \end{pmatrix} = \begin{pmatrix} \mathcal{R}_0^1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ \mathcal{R}_m^1 & \dots & \mathcal{R}_0^1 \\ \mathcal{R}_0^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ \mathcal{R}_m^2 & \dots & \mathcal{R}_0^2 \end{pmatrix} \equiv \begin{pmatrix} T_{\mathcal{R}_1} \\ T_{\mathcal{R}_2} \end{pmatrix},$$

where $\mathcal{R}_{j}^{1,2}$ are the coefficients of the matrix polynomials $\mathcal{R}^{1,2}(z)$, presented in (4).

Similarly, we have

$$\begin{pmatrix} \mathcal{L}_0 & \dots & \mathcal{L}_{-n} \\ \vdots & \ddots & \vdots \\ 0 & \dots & \mathcal{L}_0 \end{pmatrix} P_1^t$$
$$= \begin{pmatrix} \mathcal{L}_0^1 & \dots & \mathcal{L}_{-n}^1 & \mathcal{L}_0^2 & \dots & \mathcal{L}_{-n}^2 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \mathcal{L}_0^1 & 0 & \dots & \mathcal{L}_0^2 \end{pmatrix} \equiv \begin{pmatrix} T_{\mathcal{L}_1} & T_{\mathcal{L}_2} \end{pmatrix}.$$

Then

$$M_A^{\dagger} = \begin{pmatrix} T_{\mathcal{R}_1} \\ T_{\mathcal{R}_2} \end{pmatrix} \Pi \begin{pmatrix} T_{\mathcal{L}_1} & T_{\mathcal{L}_2} \end{pmatrix}.$$

Let us apply now the well-known method [2] of reducing the mosaic matrix M_A to the block-diagonal matrix formed from the Toeplitz-plus-Hankel and Toeplitz-minus-Hankel matrices:

$$M_A = \frac{1}{2} \begin{pmatrix} J & J \\ I & -I \end{pmatrix} \begin{pmatrix} T+H & 0 \\ 0 & T-H \end{pmatrix} \begin{pmatrix} I & J \\ -I & J \end{pmatrix}.$$

Then

$$G = \frac{1}{2} \begin{pmatrix} I & J \\ -I & J \end{pmatrix} M_A^{\dagger} \begin{pmatrix} J & J \\ I & -I \end{pmatrix}$$
$$= \frac{1}{2} \begin{pmatrix} T_{\mathcal{R}_1} + JT_{\mathcal{R}_2} \\ -T_{\mathcal{R}_1} + JT_{\mathcal{R}_2} \end{pmatrix} \Pi (T_{\mathcal{L}_1}J + T_{\mathcal{L}_2} \quad T_{\mathcal{L}_1}J - T_{\mathcal{L}_2})$$

is the generalized inversion for the matrix

$$\left(\begin{array}{cc} T+H & 0\\ 0 & T-H \end{array}\right).$$

Let $G = \begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix}$, where $G_{ij} \in \mathbb{C}^{(m+1)q \times (n+1)p}$. It is easy to get that $G_{11} = \frac{1}{2} (T_{\mathcal{R}_1} + H_{\mathcal{R}_2}) \prod (T_{\mathcal{L}_2} + H_{\mathcal{L}_1})$, is the generalized inverses to T + H and $G_{22} = \frac{1}{2} (T_{\mathcal{R}_1} - H_{\mathcal{R}_2}) \prod (T_{\mathcal{L}_2} - H_{\mathcal{L}_1})$ is the generalized inverses to T - H.

The theorem statement concerning the invertibility (one-sided invertibility) is evident. The theorem has been proved. $\hfill \Box$

Given $T \pm H$ matrices are block matrices with the sizes of their blocks $p \times q$. The factors in the inverse formulas (5) have blocks with sizes $q \times 2(p+q)$, $2(p+q) \times p$. The compact form of the generalized inversion is in many respects because of such factors sizes. Sometimes it is convenient to have a formula for the generalized inversion where factors have blocks with sizes $q \times q, q \times p, p \times p$.

In order to obtain it we partition $\mathcal{R}(z)$ and $\mathcal{L}(z)$ into blocks:

$$\mathcal{R}(z) = \begin{pmatrix} \mathcal{R}_{11} & \mathcal{R}_{12} & \mathcal{R}_{13} & \mathcal{R}_{14} \\ \mathcal{R}_{21} & \mathcal{R}_{22} & \mathcal{R}_{23} & \mathcal{R}_{24} \end{pmatrix}, \quad \mathcal{L}(z) = \begin{pmatrix} \mathcal{L}_{11} & \mathcal{L}_{12} \\ \mathcal{L}_{21} & \mathcal{L}_{22} \\ \mathcal{L}_{31} & \mathcal{L}_{32} \\ \mathcal{L}_{41} & \mathcal{L}_{42} \end{pmatrix}.$$

Here \mathcal{R}_{ij} have the sizes $q \times q$ for i, j = 1, 2, and $q \times p$ for i = 1, 2, j = 3, 4and \mathcal{L}_{ij} have the sizes $q \times p$ for i, j = 1, 2, and $p \times p$ for i = 3, 4, j = 1, 2. Let us also partition $D = \text{diag}[z^{\mu_1} \dots z^{\mu_{2(p+q)}}] = (d_1 \ d_2 \ d_3 \ d_4)$, where $d_{1,2}$ are diagonal matrices with the sizes $q \times q$ and $d_{3,4}$ are ones with the sizes $p \times p$. For $i, j = 1, \dots, 4$ denote

$$T_{\mathcal{R}_{ij}} = \begin{pmatrix} \mathcal{R}_0^{ij} & \dots & 0\\ \vdots & \ddots & \vdots\\ \mathcal{R}_m^{ij} & \dots & \mathcal{R}_0^j \end{pmatrix}, \quad T_{\mathcal{L}_{ij}} = \begin{pmatrix} \mathcal{L}_0^{ij} & \dots & \mathcal{L}_{-n}^{ij}\\ \vdots & \ddots & \vdots\\ 0 & \dots & \mathcal{L}_0^{ij} \end{pmatrix}.$$

Then it is easy to see that

$$(T \pm H)^{\dagger} = \frac{1}{2} \left[\sum_{j=1}^{4} T_{\mathcal{R}_{1j}} \pi_j T_{\mathcal{L}_{j2}} + \sum_{j=1}^{4} H_{\mathcal{R}_{2j}} \pi_j H_{\mathcal{L}_{j1}} \right]$$
$$\pm \left(\sum_{j=1}^{4} T_{\mathcal{R}_{1j}} \pi_j H_{\mathcal{L}_{j1}} + \sum_{j=1}^{4} H_{\mathcal{R}_{2j}} \pi_j T_{\mathcal{L}_{j2}} \right) \right],$$

where we denote $T_{\mathcal{L},\mathcal{R}}J = H_{\mathcal{L},\mathcal{R}}$ and π_j are the matrices constructed by d_j with the same manner as Π by d.

References

- A.H. Sayed, H. Lev-Ari, T. Kailath, Fast triangular factorization of the sum of quasi-Toeplitz and quasi-Hankel matrices, *Linear Algebra Appl.*, 191 (1993), 77-106.
- [2] G.A. Merchant, T.W. Parks, Efficient solution of a Toeplitz-plus-Hankel coefficient system of equations, *IEEE Trans. on Acoustics, Speech and Signal Processing*, **30**, No. 1 (1982), 40-44.
- [3] G. Heinig, K. Rost, On the inverses of Toeplitz-plus-Hankel matrices, *Linear Algebra Appl.*, 106 (1988), 39-52.
- [4] I. Gohberg, T. Shalom, On inversion of square matrices partitioned into non-square blocks, *Integral Equations and Operator Theory*, **12** (1989), 539-566.
- [5] V.M. Adukov, O.L. Ibryaeva, On the kernel structure of the Toeplitz-plus-Hankel matrices, *Proceedings of South Ural state University*, 7 (2001), 3-12, In Russian.
- [6] V.M. Adukov, Generalized inversion of block Toeplitz matrices, *Linear Algebra Appl.*, 274 (1998), 85-124.