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Abstract: The generalized inversion of the block Toeplitz-plus-Hankel matrix
has been obtained. It allows to find the inverse (one-sided inverse) matrix of the
block Toeplitz-plus-Hankel matrix provided that the this matrix is invertible
(one-sided invertible).
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1. Introduction

In many applications, e.g. digital signal processing, discrete inverse scatter-
ing, linear prediction etc., Toeplitz-plus-Hankel (T + H) matrices need to be
inverted. (For further applications see [1] and references therein).

Firstly the T +H matrix inversion problem has been solved in [2] where it
was reduced to the inversion problem of the block Toeplitz matrix (the so-called
mosaic matrix). The drawback of the method is that it does not work for any
invertible T +H matrix since it requires also invertibility of the corresponding
T −H matrix. Later on the drawback was put out [3], moreover, the inversion
problem was solved for the block T +H matrix [4], [5].
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Our goal is to restore the method of [2] in order to get the generalized
inversion for the block T + H matrix. To do it we will need the generalized
inversion for the block Toeplitz matrix which has been already found in, e.g.
[6]. It is shown in the present paper that there is no need for T − H matrix
to be inverted: if the T +H matrix is invertible than the obtained generalized
inverse matrix proves to be its inverse matrix.

2. The Basic Definitions and Notations

Let T +H = ||ai−j + bi+j ||i=0,...,n,
j=0,...,m,

, ak, bk ∈ C
p×q, be the block Toeplitz-plus-

Hankel matrix.
Denote an−m(z) = a−mz−m + . . . + a0 + . . . + anz

n, bn+m
0 (z) = b0 + b1z +

. . .+ bn+mzn+m and introduce an auxiliary matrix function

A(z) =

(

znbn+m
0 (z−1) zn−man−m(z−1)
an−m(z) z−mbn+m

0 (z)

)

.

Obviously, A(z) =
n
∑

j=−m

Ajz
j , with Aj ∈ C

2p×2q and

Aj =

(

bn−j an−m−j

aj bj+m

)

. (1)

Thus, A(z) is the generating function for the sequence of matrices A−m, . . .,
A0, . . . , An.

Further we will need the generalized inversion for the block Toeplitz matrix
TA = ||Ai−j ||i=0,...,n,

j=0,...,m,

which has been found in [6]. In order to use this result

we should introduce the definitions of essential indices and polynomials of the
sequence A−m, . . . , A0, . . . , An.

We include the matrix TA ≡ T0 into the family of the block Toeplitz matrices
Tk = ||Ai−j+k||i=0,...,n−k,

j=0,...,m+k,

, −m ≤ k ≤ n. The matrices Tk are of the same

structure and it is reasonable that they should be examined together.
We are interested in right kernels of Tk. For the sake of convenience let

us pass from the spaces kerR Tk to the isomorphic spaces NR

k of generating
polynomials. To do this we define the operator σR acting from the space of
rational matrix functions R(z) =

∑m
j=−n rjz

j, rj ∈ C
2q×l to the space C

2p×l

according to σR {R(z)} =
∑m

j=−nA−jrj .

By NR

k , k = −m, . . . , n, we denote the space of vector polynomials R(z) =
∑k+m

j=0 rjz
j, rj ∈ C

2q×1, such that σR

{

z−iR(z)
}

= 0, i = k, k + 1, . . . , n. NR

k is
evident to be isomorphic to kerR Tk.
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It is convenient to put NR

−m−1 = 0 and denote by NR

n+1 the 2(n+m+ 2)q-
dimensional space of all vector polynomials in z with formal degree n+m+ 1.

Similarly, one may define spaces N L

k which are isomorphic to kerL Tk. We
denote kerL A = {y | yA = 0}.

Let us put also α = dimNR
−m and ω = dimN L

n . The sequence A−m, . . . , An

is called left (right) regular if α = 0 (ω = 0). Otherwise, the sequence is not
regular and α(ω) is its left (right) defect. The sequence is called regular if
α = ω = 0. It is evident that α < 2q, ω < 2p for the nonzero sequence.

Denote dR

k = dimNR

k , ∆
R

k = dR

k −dR

k−1, k = −m, . . . , n+1. For any sequence
A−m, . . . , An the following inequalities hold [6]:

α = ∆R

−m ≤ ∆R

−m+1 ≤ . . . ≤ ∆R

n ≤ ∆R

n+1 = 2(p + q)− ω.

It means that there are 2(p+q)−α−ω integers µα ≤ µα+1 ≤ . . . ≤ µ2(p+q)−α−ω,
satisfying equations

∆R
−m = . . . = ∆R

µα+1
= α,

· · ·
∆R

µi+1 = . . . = ∆R

µi+1
= i,

· · ·
∆R

µ2(p+q)−ω+1 = . . . = ∆R

n+1 = 2(p + q)− ω.

(2)

If the ith row in (2) is absent, we assume µi = µi+1. Let us put also µ1 = . . . =
µα = −m− 1 if α 6= 0 and µ2(p+q)−ω+1 = . . . = µ2(p+q) if ω 6= 0.

Thus, for any sequence A−m, . . . , An, there is a set of 2(p + q) integers,
satisfying (2), which will be called indices of the sequence.

Let us define the right essential polynomials. It follows from the definition of
NR

k that NR

k and zNR

k are the subspaces of NR

k+1, k = −m−1, . . . , n, moreover,
NR

k

⋂

zNR

k = NR

k−1. Then NR

k+1 = (NR

k + zNR

k ) ⊕ HR

k+1, where HR

k+1 is the
complement ofNR

k +zNR

k to the wholeNR

k+1.Obviously, dimHR

k+1 = ∆R

k+1−∆R

k .

Hence dimHR

k+1 6= 0 iff k = µi. In this case dimHR

k+1 is equal to the multiplicity
ki of the index µi.

Definition 1. If α 6= 0 then any vector polynomials R1(z), . . . , Rα(z)
forming the basis of NR

−m will be called right essential polynomials of the se-
quence A−m, . . . , A0, . . . , An. They correspond to the index µ1 = −m− 1 with
the multiplicity α.

Any vector polynomials Rj(z), . . . , Rj+kj−1(z) forming the basis for HR

µj+1

will be called right essential polynomials of the sequence A−m, . . . , A0, . . . , An.
They correspond to the index µj with the multiplicity kj , α+1 ≤ j ≤ 2(p+q)−ω.
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Similarly, one may define the left essential polynomials.

There are 2(p + q)− ω right and 2(p + q)− α left essential polynomials of
the sequence A−m, . . . , An. There is a lack of essential polynomials if α 6= 0
or ω 6= 0. But we can always complement the number of right (if p ≤ q) or
left (if p ≥ q) essential polynomials to 2(p+ q). (The complement procedure is
described in [6]).

For definiteness sake, we will suppose that we have got the full set of 2(p+q)
right essential polinomials, i.e. either ω = 0 or p ≤ q.

The set of the left essential polynomials could always be recovered with the
help of the so-called conformation procedure of the right and left essential poly-
nomials. Let us describe how for the given set of the right essential polynomials
R1(z), . . . , R2(p+q)(z), Rj(z) ∈ C

2q×1[z] one can construct the conforming left
essential polynomials L1(z), . . . , L2(p+q)(z), Lj(z) ∈ C

1×2p[z].

We introduce the matrix R(z) =
(

R1(z) . . . R2(p+q)(z)
)

of the right essential
polynomials and find the matrix polynomial α−(z) from the decomposition
A(z)R(z) = α−(z)d(z)−zn+1β+(z), where d(z) = diag [zµ1 , . . . , zµ2(p+q) ] , β+(z)
(α−(z)) is the matrix polynomial in z (z−1) of the size 2p× 2(p + q).

Denote R−(z) = z−m−1R(z)d−1(z). Let U−(z) =

(

R−(z)
α−(z)

)

be the matrix

polynomial in z−1. The polynomial U−(z) is shown in [6] to be unimodular, i.e.
its determinant is equal to a constant. We pick the 2(p + q) × 2p block L(z)
out U−1

− (z) =
(

∗ L(z)
)

.

The matrix polynomial L(z) =







L1(z)
...

L2(p+q)(z)






turns out to be the matrix

of the conforming left essential polynomials.

The case when α = 0 or p ≥ q may be considered in a similar manner with
help of the left essential polynomials.

Now we may present the formula (5.13) from [6] for the generalized inverse
of TA:

T
†
A =







R0 . . . 0
...

. . .
...

Rm . . . R0






Π







L0 . . . L−n

...
. . .

...
0 . . . L0






. (3)

Here Rj ∈ C
2q×2(p+q), Lj ∈ C

2(p+q)×2p are the coefficients of the matrix poly-
nomials R(z), L(z), respectively, and Rj(z), Lj(z) are the conforming right and
left essential polynomials of the sequence A−m, . . . , A0, . . . , An. The generalized
inversion for matrix A is meant to be the matrix A† such that AA†A = A.
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The matrix Π is constructed in a following way. Let λ1, . . . , λr be the
distinct essential indices of the sequence A−m, . . . , A0, . . . , An and let ν1, . . . , νr
be their multiplicities (ν1 + . . . + νr = 2(p + q)). Then Π = ||Πi−j ||i=0,...,m,

j=0,...,n,
.

Here Πk = 0 for −n ≤ k ≤ m, k 6= −λ1, . . . ,−λr, Π−λj
= ‖εji δik‖

2(p+q)
i,k=1 ,

ε
j
i =

{

1, i = ν1 + · · ·+ νj−1 + 1, . . . , ν1 + · · · + νj,

0, otherwise.

For the generalized inversion of the T + H matrix it will be useful to

partition the right essential polynomials Rj(z) =

(

R1
j (z)

R2
j (z)

)

. Here R
1,2
j ∈

C
q×1[z]. In similar way we partition the left essential polynomials: Lj(z) =

(

L1
j(z) L2

j (z)
)

, with L
1,2
j ∈ C

1×p[z].

Then the matrix of these essential polynomials may be represented as:

R(z) =

(

R1(z)
R2(z)

)

, L(z) =
(

L1(z) L2(z)
)

, (4)

with R1,2(z) ∈ C
q×2(p+q), L1,2(z) ∈ C

2(p+q)×p.

3. The Generalized Inversion

In the section we will present our main result. Let us denote

TRj
=







Rj
0 . . . 0
...

. . .
...

Rj
m . . . Rj

0






, TLj

=







Lj
0 . . . Lj

−n
...

. . .
...

0 . . . Lj
0






, j = 1, 2,

where Rj
k(L

j
k) are the coefficients of the polynomials Rj(Lj). We also put

HR2 = JTR2 , HL1 = TL1J .

Theorem 1. The generalized inverses of the T +H and T −H matrices
are found by the formulas:

(T ±H)† =
1

2
(TR1 ±HR2)Π (TL2 ±HL1) . (5)

If T ± H is invertible (one-sided invertible), then (T ±H)† is its inverse
(one-sided inverse) matrix.
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Proof. Let us construct the generalized inversion to TA ≡ T0 according to
formula (3). We are going to pass from block Toeplitz matrix TA to the mosaic
matrix

MA =





























bn . . . bn+m an−m . . . an
bn−1 . . . bn+m−1 an−m−1 . . . an−1
...

. . .
...

...
. . .

...
b0 . . . bm a−m . . . a0
a0 . . . a−m bm . . . b0
a1 . . . a−m+1 bm+1 . . . b1
...

. . .
...

...
. . .

...
an . . . an−m bn+m . . . bn





























.

At first, according to the block structure of Aj (1), we partition each block
columnXj of the matrix TA into two block columnsX1

j ,X
2
j with sizes 2p(n+1)×

q: Xj =
(

X1
j X2

j

)

. Then permute new block columns in TA and construct
the matrix

(

X1
1 . . . X1

m X2
1 . . . X2

m

)

=























bn bn+1 . . . bn+m an−m an−m+1 . . . an
a0 a−1 . . . a−m bm bm−1 . . . b0
bn−1 bn . . . bn+m−1 an−m−1 an−m . . . an−1

a1 a0 . . . a−m+1 bm+1 bm . . . b1
...

...
. . .

...
...

...
. . .

...

b0 b1 . . . bm a−m a−m+1 . . . a0
an an−1 . . . an−m bn+m bn+m−1 . . . bn























.

This matrix is evident to be obtained by multiplying TA on a permutation
matrix P2. Then we will do the analogous permutation with block rows in TAP2.
As a result, we will get the matrix P1TAP2, where P1 is a permutation matrix.
The matrix P1TAP2 coincides with MA = P1TAP2. Thus we have passed from
the block Toeplitz matrix TA to the mosaic matrix MA.

Since for a permutation matrix P the equality P−1 = P t holds, we get
the generalized inversion for MA : M †

A = P t
2T

†
AP

t
1 . Let us specify the structure

of factors in this product. The operations which P2 has done with the block
columns of TA, the matrix P t

2 now will carry out with the block rows of the

matrix







R0 . . . 0
...

. . .
...

Rm . . . R0






.
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Thus

P t
2







R0 . . . 0
...

. . .
...

Rm . . . R0






=





















R1
0 . . . 0
...

. . .
...

R1
m . . . R1

0

R2
0 . . . 0
...

. . .
...

R2
m . . . R2

0





















≡

(

TR1

TR2

)

,

where R1,2
j are the coefficients of the matrix polynomials R1,2(z), presented in

(4).
Similarly, we have







L0 . . . L−n

...
. . .

...
0 . . . L0






P t
1

=







L1
0 . . . L1

−n L2
0 . . . L2

−n
...

. . .
...

...
. . .

...
0 . . . L1

0 0 . . . L2
0






≡

(

TL1 TL2

)

.

Then

M
†
A =

(

TR1

TR2

)

Π
(

TL1 TL2

)

.

Let us apply now the well-known method [2] of reducing the mosaic matrix
MA to the block-diagonal matrix formed from the Toeplitz-plus-Hankel and
Toeplitz-minus-Hankel matrices:

MA =
1

2

(

J J

I −I

)(

T +H 0
0 T −H

)(

I J

−I J

)

.

Then

G =
1

2

(

I J

−I J

)

M
†
A

(

J J

I −I

)

=
1

2

(

TR1 + JTR2

−TR1 + JTR2

)

Π
(

TL1J + TL2 TL1J − TL2

)

is the generalized inversion for the matrix
(

T +H 0
0 T −H

)

.
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Let G =

(

G11 G12

G21 G22

)

, where Gij ∈ C
(m+1)q×(n+1)p. It is easy to get that

G11 = 1
2 (TR1 +HR2) Π (TL2 +HL1) , is the generalized inverses to T +H and

G22 =
1
2 (TR1 −HR2)Π (TL2 −HL1) is the generalized inverses to T −H.

The theorem statement concerning the invertibility (one-sided invertibility)
is evident. The theorem has been proved.

Given T ±H matrices are block matrices with the sizes of their blocks p×q.

The factors in the inverse formulas (5) have blocks with sizes q × 2(p + q),
2(p+ q)× p. The compact form of the generalized inversion is in many respects
because of such factors sizes. Sometimes it is convenient to have a formula for
the generalized inversion where factors have blocks with sizes q× q, q× p, p× p.

In order to obtain it we partition R(z) and L(z) into blocks:

R(z) =

(

R11 R12 R13 R14

R21 R22 R23 R24

)

, L(z) =









L11 L12

L21 L22

L31 L32

L41 L42









.

Here Rij have the sizes q × q for i, j = 1, 2, and q × p for i = 1, 2, j = 3, 4
and Lij have the sizes q × p for i, j = 1, 2, and p × p for i = 3, 4, j = 1, 2.
Let us also partition D = diag[zµ1 . . . zµ2(p+q) ] = (d1 d2 d3 d4) , where d1,2 are
diagonal matrices with the sizes q× q and d3,4 are ones with the sizes p×p. For
i, j = 1, . . . , 4 denote

TRij
=







Rij
0 . . . 0
...

. . .
...

Rij
m . . . Rj

0






, TLij

=







Lij
0 . . . Lij

−n
...

. . .
...

0 . . . Lij
0






.

Then it is easy to see that

(T ±H)† =
1

2





4
∑

j=1

TR1jπjTLj2 +
4

∑

j=1

HR2jπjHLj1

±





4
∑

j=1

TR1jπjHLj1 +

4
∑

j=1

HR2jπjTLj2







 ,

where we denote TL,RJ = HL,R and πj are the matrices constructed by dj with
the same manner as Π by d.
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