INVERSION OF THE TOEPLITZ-PLUS-HANKEL MATRICES VIA GENERALIZED INVERSION

Victor Adukov ${ }^{1}$ §, Olga Ibryaeva ${ }^{2}$
${ }^{1,2}$ Department of Differential Equations and Dynamical Systems South Ural State University
Chelyabinsk, RUSSIA

Abstract

The generalized inversion of the block Toeplitz-plus-Hankel matrix has been obtained. It allows to find the inverse (one-sided inverse) matrix of the block Toeplitz-plus-Hankel matrix provided that the this matrix is invertible (one-sided invertible).

AMS Subject Classification: 15A09
Key Words: Toeplitz-plus-Hankel matrices, generalized inversion, inversion

1. Introduction

In many applications, e.g. digital signal processing, discrete inverse scattering, linear prediction etc., Toeplitz-plus-Hankel $(T+H)$ matrices need to be inverted. (For further applications see [1] and references therein).

Firstly the $T+H$ matrix inversion problem has been solved in [2] where it was reduced to the inversion problem of the block Toeplitz matrix (the so-called mosaic matrix). The drawback of the method is that it does not work for any invertible $T+H$ matrix since it requires also invertibility of the corresponding $T-H$ matrix. Later on the drawback was put out [3], moreover, the inversion problem was solved for the block $T+H$ matrix [4], [5].

Received: May 5, 2012
(C) 2012 Academic Publications, Ltd. url: www.acadpubl.eu
${ }^{\text {§ }}$ Correspondence author

Our goal is to restore the method of [2] in order to get the generalized inversion for the block $T+H$ matrix. To do it we will need the generalized inversion for the block Toeplitz matrix which has been already found in, e.g. [6]. It is shown in the present paper that there is no need for $T-H$ matrix to be inverted: if the $T+H$ matrix is invertible than the obtained generalized inverse matrix proves to be its inverse matrix.

2. The Basic Definitions and Notations

Let $T+H=\left\|a_{i-j}+b_{i+j}\right\|_{\substack{i=0, \ldots, n, j=0, \ldots, m,}}, a_{k}, b_{k} \in \mathbb{C}^{p \times q}$, be the block Toeplitz-plusHankel matrix.

Denote $a_{-m}^{n}(z)=a_{-m} z^{-m}+\ldots+a_{0}+\ldots+a_{n} z^{n}, b_{0}^{n+m}(z)=b_{0}+b_{1} z+$ $\ldots+b_{n+m} z^{n+m}$ and introduce an auxiliary matrix function

$$
A(z)=\left(\begin{array}{cc}
z^{n} b_{0}^{n+m}\left(z^{-1}\right) & z^{n-m} a_{-m}^{n}\left(z^{-1}\right) \\
a_{-m}^{n}(z) & z^{-m} b_{0}^{n+m}(z)
\end{array}\right)
$$

Obviously, $A(z)=\sum_{j=-m}^{n} A_{j} z^{j}$, with $A_{j} \in \mathbb{C}^{2 p \times 2 q}$ and

$$
A_{j}=\left(\begin{array}{cc}
b_{n-j} & a_{n-m-j} \tag{1}\\
a_{j} & b_{j+m}
\end{array}\right)
$$

Thus, $A(z)$ is the generating function for the sequence of matrices A_{-m}, \ldots, A_{0}, \ldots, A_{n}.

Further we will need the generalized inversion for the block Toeplitz matrix $T_{A}=\left\|A_{i-j}\right\|_{\substack{i=0, \ldots, n, j=0, \ldots, m}}$ which has been found in [6]. In order to use this result we should introduce the definitions of essential indices and polynomials of the sequence $A_{-m}, \ldots, A_{0}, \ldots, A_{n}$.

We include the matrix $T_{A} \equiv T_{0}$ into the family of the block Toeplitz matrices $T_{k}=\left\|A_{i-j+k}\right\|_{\substack{i=0, \ldots, n-k, j=0, \ldots, m+k}},-m \leq k \leq n$. The matrices T_{k} are of the same structure and it is reasonable that they should be examined together.

We are interested in right kernels of T_{k}. For the sake of convenience let us pass from the spaces $\operatorname{ker}_{\mathrm{R}} T_{k}$ to the isomorphic spaces \mathcal{N}_{k}^{R} of generating polynomials. To do this we define the operator σ_{R} acting from the space of rational matrix functions $R(z)=\sum_{j=-n}^{m} r_{j} z^{j}, r_{j} \in \mathbb{C}^{2 q \times l}$ to the space $\mathbb{C}^{2 p \times l}$ according to $\sigma_{R}\{R(z)\}=\sum_{j=-n}^{m} A_{-j} r_{j}$.

By $\mathcal{N}_{k}^{R}, k=-m, \ldots, n$, we denote the space of vector polynomials $R(z)=$ $\sum_{j=0}^{k+m} r_{j} z^{j}, r_{j} \in \mathbb{C}^{2 q \times 1}$, such that $\sigma_{R}\left\{z^{-i} R(z)\right\}=0, i=k, k+1, \ldots, n . \mathcal{N}_{k}^{R}$ is evident to be isomorphic to $\operatorname{ker}_{\mathrm{R}} T_{k}$.

It is convenient to put $\mathcal{N}_{-m-1}^{R}=0$ and denote by \mathcal{N}_{n+1}^{R} the $2(n+m+2) q-$ dimensional space of all vector polynomials in z with formal degree $n+m+1$.

Similarly, one may define spaces \mathcal{N}_{k}^{L} which are isomorphic to $\operatorname{ker}_{\mathrm{L}} T_{k}$. We denote $\operatorname{ker}_{L} A=\{y \mid y A=0\}$.

Let us put also $\alpha=\operatorname{dim} \mathcal{N}_{-m}^{R}$ and $\omega=\operatorname{dim} \mathcal{N}_{n}^{L}$. The sequence A_{-m}, \ldots, A_{n} is called left (right) regular if $\alpha=0 \quad(\omega=0)$. Otherwise, the sequence is not regular and $\alpha(\omega)$ is its left (right) defect. The sequence is called regular if $\alpha=\omega=0$. It is evident that $\alpha<2 q, \omega<2 p$ for the nonzero sequence.

Denote $d_{k}^{R}=\operatorname{dim} \mathcal{N}_{k}^{R}, \Delta_{k}^{R}=d_{k}^{R}-d_{k-1}^{R}, k=-m, \ldots, n+1$. For any sequence A_{-m}, \ldots, A_{n} the following inequalities hold [6]:

$$
\alpha=\Delta_{-m}^{R} \leq \Delta_{-m+1}^{R} \leq \ldots \leq \Delta_{n}^{R} \leq \Delta_{n+1}^{R}=2(p+q)-\omega
$$

It means that there are $2(p+q)-\alpha-\omega$ integers $\mu_{\alpha} \leq \mu_{\alpha+1} \leq \ldots \leq \mu_{2(p+q)-\alpha-\omega}$, satisfying equations

$$
\begin{array}{cl}
\Delta_{-m}^{R} & =\ldots=\Delta_{\mu_{\alpha+1}}^{R}=\alpha \\
& \ldots \tag{2}\\
\Delta_{\mu_{i}+1}^{R} & \left.=\begin{array}{l}
\ldots \\
\\
\\
\\
\Delta_{\mu_{2(p+q)-\omega+1}}^{R}=
\end{array}\right]=\Delta_{\mu_{i+1}}^{R}=i \\
\ldots=\Delta_{n+1}^{R}=2(p+q)-\omega
\end{array}
$$

If the i th row in (2) is absent, we assume $\mu_{i}=\mu_{i+1}$. Let us put also $\mu_{1}=\ldots=$ $\mu_{\alpha}=-m-1$ if $\alpha \neq 0$ and $\mu_{2(p+q)-\omega+1}=\ldots=\mu_{2(p+q)}$ if $\omega \neq 0$.

Thus, for any sequence A_{-m}, \ldots, A_{n}, there is a set of $2(p+q)$ integers, satisfying (2), which will be called indices of the sequence.

Let us define the right essential polynomials. It follows from the definition of \mathcal{N}_{k}^{R} that \mathcal{N}_{k}^{R} and $z \mathcal{N}_{k}^{R}$ are the subspaces of $\mathcal{N}_{k+1}^{R}, k=-m-1, \ldots, n$, moreover, $\mathcal{N}_{k}^{R} \bigcap z \mathcal{N}_{k}^{R}=\mathcal{N}_{k-1}^{R}$. Then $\mathcal{N}_{k+1}^{R}=\left(\mathcal{N}_{k}^{R}+z \mathcal{N}_{k}^{R}\right) \oplus \mathcal{H}_{k+1}^{R}$, where \mathcal{H}_{k+1}^{R} is the complement of $\mathcal{N}_{k}^{R}+z \mathcal{N}_{k}^{R}$ to the whole \mathcal{N}_{k+1}^{R}. Obviously, $\operatorname{dim} \mathcal{H}_{k+1}^{R}=\Delta_{k+1}^{R}-\Delta_{k}^{R}$. Hence $\operatorname{dim} \mathcal{H}_{k+1}^{R} \neq 0 \mathrm{iff} k=\mu_{i}$. In this case $\operatorname{dim} \mathcal{H}_{k+1}^{R}$ is equal to the multiplicity k_{i} of the index μ_{i}.

Definition 1. If $\alpha \neq 0$ then any vector polynomials $R_{1}(z), \ldots, R_{\alpha}(z)$ forming the basis of \mathcal{N}_{-m}^{R} will be called right essential polynomials of the sequence $A_{-m}, \ldots, A_{0}, \ldots, A_{n}$. They correspond to the index $\mu_{1}=-m-1$ with the multiplicity α.

Any vector polynomials $R_{j}(z), \ldots, R_{j+k_{j}-1}(z)$ forming the basis for $\mathcal{H}_{\mu_{j}+1}^{R}$ will be called right essential polynomials of the sequence $A_{-m}, \ldots, A_{0}, \ldots, A_{n}$. They correspond to the index μ_{j} with the multiplicity $k_{j}, \alpha+1 \leq j \leq 2(p+q)-\omega$.

Similarly, one may define the left essential polynomials.
There are $2(p+q)-\omega$ right and $2(p+q)-\alpha$ left essential polynomials of the sequence A_{-m}, \ldots, A_{n}. There is a lack of essential polynomials if $\alpha \neq 0$ or $\omega \neq 0$. But we can always complement the number of right (if $p \leq q$) or left (if $p \geq q$) essential polynomials to $2(p+q)$. (The complement procedure is described in [6]).

For definiteness sake, we will suppose that we have got the full set of $2(p+q)$ right essential polinomials, i.e. either $\omega=0$ or $p \leq q$.

The set of the left essential polynomials could always be recovered with the help of the so-called conformation procedure of the right and left essential polynomials. Let us describe how for the given set of the right essential polynomials $R_{1}(z), \ldots, R_{2(p+q)}(z), R_{j}(z) \in \mathbb{C}^{2 q \times 1}[z]$ one can construct the conforming left essential polynomials $L_{1}(z), \ldots, L_{2(p+q)}(z), L_{j}(z) \in \mathbb{C}^{1 \times 2 p}[z]$.

We introduce the matrix $\mathcal{R}(z)=\left(R_{1}(z) \ldots R_{2(p+q)}(z)\right)$ of the right essential polynomials and find the matrix polynomial $\alpha_{-}(z)$ from the decomposition $A(z) \mathcal{R}(z)=\alpha_{-}(z) d(z)-z^{n+1} \beta_{+}(z)$, where $d(z)=\operatorname{diag}\left[z^{\mu_{1}}, \ldots, z^{\mu_{2(p+q)}}\right], \beta_{+}(z)$ $\left(\alpha_{-}(z)\right)$ is the matrix polynomial in $z\left(z^{-1}\right)$ of the size $2 p \times 2(p+q)$.

Denote $\mathcal{R}_{-}(z)=z^{-m-1} \mathcal{R}(z) d^{-1}(z)$. Let $U_{-}(z)=\binom{\mathcal{R}_{-}(z)}{\alpha_{-}(z)}$ be the matrix polynomial in z^{-1}. The polynomial $U_{-}(z)$ is shown in [6] to be unimodular, i.e. its determinant is equal to a constant. We pick the $2(p+q) \times 2 p$ block $\mathcal{L}(z)$ out $U_{-}^{-1}(z)=\left(\begin{array}{ll}* & \mathcal{L}(z)) \text {. } . ~ . ~\end{array}\right.$

The matrix polynomial $\mathcal{L}(z)=\left(\begin{array}{c}L_{1}(z) \\ \vdots \\ L_{2(p+q)}(z)\end{array}\right)$ turns out to be the matrix of the conforming left essential polynomials.

The case when $\alpha=0$ or $p \geq q$ may be considered in a similar manner with help of the left essential polynomials.

Now we may present the formula (5.13) from [6] for the generalized inverse of T_{A} :

$$
T_{A}^{\dagger}=\left(\begin{array}{ccc}
\mathcal{R}_{0} & \ldots & 0 \tag{3}\\
\vdots & \ddots & \vdots \\
\mathcal{R}_{m} & \ldots & \mathcal{R}_{0}
\end{array}\right) \Pi\left(\begin{array}{ccc}
\mathcal{L}_{0} & \ldots & \mathcal{L}_{-n} \\
\vdots & \ddots & \vdots \\
0 & \ldots & \mathcal{L}_{0}
\end{array}\right)
$$

Here $\mathcal{R}_{j} \in \mathbb{C}^{2 q \times 2(p+q)}, \quad \mathcal{L}_{j} \in \mathbb{C}^{2(p+q) \times 2 p}$ are the coefficients of the matrix polynomials $\mathcal{R}(z), \mathcal{L}(z)$, respectively, and $R_{j}(z), L_{j}(z)$ are the conforming right and left essential polynomials of the sequence $A_{-m}, \ldots, A_{0}, \ldots, A_{n}$. The generalized inversion for matrix A is meant to be the matrix A^{\dagger} such that $A A^{\dagger} A=A$.

The matrix Π is constructed in a following way. Let $\lambda_{1}, \ldots, \lambda_{r}$ be the distinct essential indices of the sequence $A_{-m}, \ldots, A_{0}, \ldots, A_{n}$ and let ν_{1}, \ldots, ν_{r} be their multiplicities $\left(\nu_{1}+\ldots+\nu_{r}=2(p+q)\right)$. Then $\Pi=\left\|\Pi_{i-j}\right\|_{\substack{i=0, \ldots, m, j=0, n, n}}$, Here $\Pi_{k}=0$ for $-n \leq k \leq m, k \neq-\lambda_{1}, \ldots,-\lambda_{r}, \Pi_{-\lambda_{j}}=\left\|\varepsilon_{i}^{j} \delta_{i k}\right\|_{i, k=1}^{2(p+q)}$,

$$
\varepsilon_{i}^{j}=\left\{\begin{array}{lc}
1, & i=\nu_{1}+\cdots+\nu_{j-1}+1, \ldots, \nu_{1}+\cdots+\nu_{j} \\
0, & \text { otherwise }
\end{array}\right.
$$

For the generalized inversion of the $T+H$ matrix it will be useful to partition the right essential polynomials $R_{j}(z)=\binom{R_{j}^{1}(z)}{R_{j}^{2}(z)}$. Here $R_{j}^{1,2} \in$ $\mathbb{C}^{q \times 1}[z]$. In similar way we partition the left essential polynomials: $L_{j}(z)=$ $\left(L_{j}^{1}(z) \quad L_{j}^{2}(z)\right)$, with $L_{j}^{1,2} \in \mathbb{C}^{1 \times p}[z]$.

Then the matrix of these essential polynomials may be represented as:

$$
\mathcal{R}(z)=\binom{\mathcal{R}^{1}(z)}{\mathcal{R}^{2}(z)}, \quad \mathcal{L}(z)=\left(\begin{array}{ll}
\mathcal{L}^{1}(z) & \mathcal{L}^{2}(z) \tag{4}
\end{array}\right)
$$

with $\mathcal{R}^{1,2}(z) \in \mathbb{C}^{q \times 2(p+q)}, \quad \mathcal{L}^{1,2}(z) \in \mathbb{C}^{2(p+q) \times p}$.

3. The Generalized Inversion

In the section we will present our main result. Let us denote

$$
T_{\mathcal{R}_{j}}=\left(\begin{array}{ccc}
\mathcal{R}_{0}^{j} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
\mathcal{R}_{m}^{j} & \ldots & \mathcal{R}_{0}^{j}
\end{array}\right), \quad T_{\mathcal{L}_{j}}=\left(\begin{array}{ccc}
\mathcal{L}_{0}^{j} & \ldots & \mathcal{L}_{-n}^{j} \\
\vdots & \ddots & \vdots \\
0 & \ldots & \mathcal{L}_{0}^{j}
\end{array}\right), \quad j=1,2
$$

where $\mathcal{R}_{k}^{j}\left(\mathcal{L}_{k}^{j}\right)$ are the coefficients of the polynomials $\mathcal{R}^{j}\left(\mathcal{L}^{j}\right)$. We also put $H_{\mathcal{R}_{2}}=J T_{\mathcal{R}_{2}}, H_{\mathcal{L}_{1}}=T_{\mathcal{L}_{1}} J$.

Theorem 1. The generalized inverses of the $T+H$ and $T-H$ matrices are found by the formulas:

$$
\begin{equation*}
(T \pm H)^{\dagger}=\frac{1}{2}\left(T_{\mathcal{R}_{1}} \pm H_{\mathcal{R}_{2}}\right) \Pi\left(T_{\mathcal{L}_{2}} \pm H_{\mathcal{L}_{1}}\right) \tag{5}
\end{equation*}
$$

If $T \pm H$ is invertible (one-sided invertible), then $(T \pm H)^{\dagger}$ is its inverse (one-sided inverse) matrix.

Proof. Let us construct the generalized inversion to $T_{A} \equiv T_{0}$ according to formula (3). We are going to pass from block Toeplitz matrix T_{A} to the mosaic matrix

$$
M_{A}=\left(\begin{array}{ccc|ccc}
b_{n} & \ldots & b_{n+m} & a_{n-m} & \ldots & a_{n} \\
b_{n-1} & \ldots & b_{n+m-1} & a_{n-m-1} & \ldots & a_{n-1} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
b_{0} & \ldots & b_{m} & a_{-m} & \ldots & a_{0} \\
\hline a_{0} & \ldots & a_{-m} & b_{m} & \ldots & b_{0} \\
a_{1} & \ldots & a_{-m+1} & b_{m+1} & \ldots & b_{1} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{n} & \ldots & a_{n-m} & b_{n+m} & \ldots & b_{n}
\end{array}\right) .
$$

At first, according to the block structure of $A_{j}(1)$, we partition each block column X_{j} of the matrix T_{A} into two block columns X_{j}^{1}, X_{j}^{2} with sizes $2 p(n+1) \times$ $q: X_{j}=\left(\begin{array}{ll}X_{j}^{1} & X_{j}^{2}\end{array}\right)$. Then permute new block columns in T_{A} and construct the matrix

$$
\begin{aligned}
&\left(\begin{array}{llccc|cccc}
X_{1}^{1} & \ldots & X_{m}^{1} & X_{1}^{2} & \ldots & X_{m}^{2}
\end{array}\right) \\
&=\left(\begin{array}{ccccccc}
b_{n} & b_{n+1} & \ldots & b_{n+m} & a_{n-m} & a_{n-m+1} & \ldots \\
a_{0} & a_{-1} & \ldots & a_{-m} & a_{n} \\
\hline b_{n-1} & b_{n} & \ldots & b_{n+m-1} & a_{n-m-1} & a_{m-1} & \ldots \\
a_{n-m} & \ldots & a_{n-1} \\
a_{1} & a_{0} & \ldots & a_{-m+1} & b_{m+1} & b_{m} & \ldots \\
b_{1} \\
\hline \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots \\
\vdots \\
\hline b_{0} & b_{1} & \ldots & b_{m} & a_{-m} & a_{-m+1} & \ldots \\
a_{n} & a_{n-1} & \ldots & a_{n-m} & b_{n+m} & b_{n+m-1} & \ldots \\
b_{n}
\end{array}\right) .
\end{aligned}
$$

This matrix is evident to be obtained by multiplying T_{A} on a permutation matrix P_{2}. Then we will do the analogous permutation with block rows in $T_{A} P_{2}$. As a result, we will get the matrix $P_{1} T_{A} P_{2}$, where P_{1} is a permutation matrix. The matrix $P_{1} T_{A} P_{2}$ coincides with $M_{A}=P_{1} T_{A} P_{2}$. Thus we have passed from the block Toeplitz matrix T_{A} to the mosaic matrix M_{A}.

Since for a permutation matrix P the equality $P^{-1}=P^{t}$ holds, we get the generalized inversion for $M_{A}: M_{A}^{\dagger}=P_{2}^{t} T_{A}^{\dagger} P_{1}^{t}$. Let us specify the structure of factors in this product. The operations which P_{2} has done with the block columns of T_{A}, the matrix P_{2}^{t} now will carry out with the block rows of the $\operatorname{matrix}\left(\begin{array}{ccc}\mathcal{R}_{0} & \ldots & 0 \\ \vdots & \ddots & \vdots \\ \mathcal{R}_{m} & \ldots & \mathcal{R}_{0}\end{array}\right)$.

Thus

$$
P_{2}^{t}\left(\begin{array}{ccc}
\mathcal{R}_{0} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
\mathcal{R}_{m} & \ldots & \mathcal{R}_{0}
\end{array}\right)=\left(\begin{array}{ccc}
\mathcal{R}_{0}^{1} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
\mathcal{R}_{m}^{1} & \ldots & \mathcal{R}_{0}^{1} \\
\mathcal{R}_{0}^{2} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
\mathcal{R}_{m}^{2} & \ldots & \mathcal{R}_{0}^{2}
\end{array}\right) \equiv\binom{T_{\mathcal{R}_{1}}}{T_{\mathcal{R}_{2}}}
$$

where $\mathcal{R}_{j}^{1,2}$ are the coefficients of the matrix polynomials $\mathcal{R}^{1,2}(z)$, presented in (4).

Similarly, we have

$$
\begin{aligned}
&\left(\begin{array}{ccc}
\mathcal{L}_{0} & \ldots & \mathcal{L}_{-n} \\
\vdots & \ddots & \vdots \\
0 & \ldots & \mathcal{L}_{0}
\end{array}\right) P_{1}^{t} \\
& \\
&=\left(\begin{array}{cccccc}
\mathcal{L}_{0}^{1} & \ldots & \mathcal{L}_{-n}^{1} & \mathcal{L}_{0}^{2} & \ldots & \mathcal{L}_{-n}^{2} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \mathcal{L}_{0}^{1} & 0 & \ldots & \mathcal{L}_{0}^{2}
\end{array}\right) \equiv\left(\begin{array}{ll}
T_{\mathcal{L}_{1}} & T_{\mathcal{L}_{2}}
\end{array}\right)
\end{aligned}
$$

Then

$$
M_{A}^{\dagger}=\binom{T_{\mathcal{R}_{1}}}{T_{\mathcal{R}_{2}}} \Pi\left(\begin{array}{cc}
T_{\mathcal{L}_{1}} & T_{\mathcal{L}_{2}}
\end{array}\right)
$$

Let us apply now the well-known method [2] of reducing the mosaic matrix M_{A} to the block-diagonal matrix formed from the Toeplitz-plus-Hankel and Toeplitz-minus-Hankel matrices:

$$
M_{A}=\frac{1}{2}\left(\begin{array}{cc}
J & J \\
I & -I
\end{array}\right)\left(\begin{array}{cc}
T+H & 0 \\
0 & T-H
\end{array}\right)\left(\begin{array}{cc}
I & J \\
-I & J
\end{array}\right) .
$$

Then

$$
\begin{aligned}
& G=\frac{1}{2}\left(\begin{array}{cc}
I & J \\
-I & J
\end{array}\right) M_{A}^{\dagger}\left(\begin{array}{cc}
J & J \\
I & -I
\end{array}\right) \\
&=\frac{1}{2}\binom{T_{\mathcal{R}_{1}}+J T_{\mathcal{R}_{2}}}{-T_{\mathcal{R}_{1}}+J T_{\mathcal{R}_{2}}} \Pi\left(T_{\mathcal{L}_{1}} J+T_{\mathcal{L}_{2}}\right. \\
&\left.T_{\mathcal{L}_{1}} J-T_{\mathcal{L}_{2}}\right)
\end{aligned}
$$

is the generalized inversion for the matrix

$$
\left(\begin{array}{cc}
T+H & 0 \\
0 & T-H
\end{array}\right)
$$

Let $G=\left(\begin{array}{ll}G_{11} & G_{12} \\ G_{21} & G_{22}\end{array}\right)$, where $G_{i j} \in \mathbb{C}^{(m+1) q \times(n+1) p}$. It is easy to get that $G_{11}=\frac{1}{2}\left(T_{\mathcal{R}_{1}}+H_{\mathcal{R}_{2}}\right) \Pi\left(T_{\mathcal{L}_{2}}+H_{\mathcal{L}_{1}}\right)$, is the generalized inverses to $T+H$ and $G_{22}=\frac{1}{2}\left(T_{\mathcal{R}_{1}}-H_{\mathcal{R}_{2}}\right) \Pi\left(T_{\mathcal{L}_{2}}-H_{\mathcal{L}_{1}}\right)$ is the generalized inverses to $T-H$.

The theorem statement concerning the invertibility (one-sided invertibility) is evident. The theorem has been proved.

Given $T \pm H$ matrices are block matrices with the sizes of their blocks $p \times q$. The factors in the inverse formulas (5) have blocks with sizes $q \times 2(p+q)$, $2(p+q) \times p$. The compact form of the generalized inversion is in many respects because of such factors sizes. Sometimes it is convenient to have a formula for the generalized inversion where factors have blocks with sizes $q \times q, q \times p, p \times p$.

In order to obtain it we partition $\mathcal{R}(z)$ and $\mathcal{L}(z)$ into blocks:

$$
\mathcal{R}(z)=\left(\begin{array}{cccc}
\mathcal{R}_{11} & \mathcal{R}_{12} & \mathcal{R}_{13} & \mathcal{R}_{14} \\
\mathcal{R}_{21} & \mathcal{R}_{22} & \mathcal{R}_{23} & \mathcal{R}_{24}
\end{array}\right), \quad \mathcal{L}(z)=\left(\begin{array}{cc}
\mathcal{L}_{11} & \mathcal{L}_{12} \\
\mathcal{L}_{21} & \mathcal{L}_{22} \\
\mathcal{L}_{31} & \mathcal{L}_{32} \\
\mathcal{L}_{41} & \mathcal{L}_{42}
\end{array}\right)
$$

Here $\mathcal{R}_{i j}$ have the sizes $q \times q$ for $i, j=1,2$, and $q \times p$ for $i=1,2, j=3,4$ and $\mathcal{L}_{i j}$ have the sizes $q \times p$ for $i, j=1,2$, and $p \times p$ for $i=3,4, j=1,2$. Let us also partition $D=\operatorname{diag}\left[z^{\mu_{1}} \ldots z^{\mu_{2(p+q)}}\right]=\left(\begin{array}{lll}d_{1} & d_{2} & d_{3}\end{array} d_{4}\right)$, where $d_{1,2}$ are diagonal matrices with the sizes $q \times q$ and $d_{3,4}$ are ones with the sizes $p \times p$. For $i, j=1, \ldots, 4$ denote

$$
T_{\mathcal{R}_{i j}}=\left(\begin{array}{ccc}
\mathcal{R}_{0}^{i j} & \ldots & 0 \\
\vdots & \ddots & \vdots \\
\mathcal{R}_{m}^{i j} & \ldots & \mathcal{R}_{0}^{j}
\end{array}\right), \quad T_{\mathcal{L}_{i j}}=\left(\begin{array}{ccc}
\mathcal{L}_{0}^{i j} & \ldots & \mathcal{L}_{-n}^{i j} \\
\vdots & \ddots & \vdots \\
0 & \ldots & \mathcal{L}_{0}^{i j}
\end{array}\right) .
$$

Then it is easy to see that

$$
\begin{aligned}
(T \pm H)^{\dagger}=\frac{1}{2}\left[\sum_{j=1}^{4} T_{\mathcal{R}_{1 j}} \pi_{j} T_{\mathcal{L}_{j 2}}\right. & +\sum_{j=1}^{4} H_{\mathcal{R}_{2 j}} \pi_{j} H_{\mathcal{L}_{j 1}} \\
& \left. \pm\left(\sum_{j=1}^{4} T_{\mathcal{R}_{1 j}} \pi_{j} H_{\mathcal{L}_{j 1}}+\sum_{j=1}^{4} H_{\mathcal{R}_{2 j}} \pi_{j} T_{\mathcal{L}_{j 2}}\right)\right]
\end{aligned}
$$

where we denote $T_{\mathcal{L}, \mathcal{R}} J=H_{\mathcal{L}, \mathcal{R}}$ and π_{j} are the matrices constructed by d_{j} with the same manner as Π by d.

References

[1] A.H. Sayed, H. Lev-Ari, T. Kailath, Fast triangular factorization of the sum of quasi-Toeplitz and quasi-Hankel matrices, Linear Algebra Appl., 191 (1993), 77-106.
[2] G.A. Merchant, T.W. Parks, Efficient solution of a Toeplitz-plus-Hankel coefficient system of equations, IEEE Trans. on Acoustics, Speech and Signal Processing, 30, No. 1 (1982), 40-44.
[3] G. Heinig, K. Rost, On the inverses of Toeplitz-plus-Hankel matrices, Linear Algebra Appl., 106 (1988), 39-52.
[4] I. Gohberg, T. Shalom, On inversion of square matrices partitioned into non-square blocks, Integral Equations and Operator Theory, 12 (1989), 539-566.
[5] V.M. Adukov, O.L. Ibryaeva, On the kernel structure of the Toeplitz-plusHankel matrices, Proceedings of South Ural state University, 7 (2001), 3-12, In Russian.
[6] V.M. Adukov, Generalized inversion of block Toeplitz matrices, Linear Algebra Appl., 274 (1998), 85-124.

