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Abstract 

The goal of the paper is a generalized inversion of finite rank Hankel operators and 
Hankel or Toeplitz operators with block matrices having finitely many rows. To attain it 
a left coprime fractional factorization of a strictly proper rational matrix function and 
the Bezout equation are used. Generalized inverses of these operators and generating 
functions for the inverses are explicitly constructed in terms of the fractional factor- 
ization. © 1999 Elsevier Science Inc. All rights reserved. 
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Introduction 

In the works  [1,2] F u h r m a n n  has p roposed  the following inversion me thod  
for finite Hanke l  matrices.  Let  H = ]lgi-=i--1 ]]i.j=l,2 ...... be an invertible Hanke l  
matr ix.  By the matr ix  H and the n u m b e r  ~ = g2, we can uniquely determine the 
copr ime polynomials  pc (z) and q~ (z) (the po lynomia l  q~(z) is a monic  one) such 
that  {gi}2~__,~-i are the M a r k o v  pa ramete r s  o f  the rat ional  funct ion p~(z)/q:(z). 
Then H -1 is the Bezoutian of  the copr ime polynomia ls  q~(z) and a(z), where 
a(z) is a solution of  the Bezout  equat ion 
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a(z)p¢(z) + b(z)q¢(z) : 1. 

Similar results have been also obtained by Heinig and Jungnickel [3]. In Ref. 
[4] the method was extended to the case of  finite block Hankel matrices• 

In the present paper  we will show that the fractional representation and the 
Bezout equation can also be used for a generalized inversion of finite rank 
Hankel and Toeplitz operators. We consider Hankel operators that are de- 
termined by the infinite block Hankel matrices 

a 1 a 2 a_3 ..i/ 
a 2  a 3  a-4 

a 3 a-4 a-5 
• 

or the block Hankel matrices with finite number of  rows 

a 1 a-2 a-3 . . .  

a-2 a 3  a 4  . . .  

a - n  a - n - 1  a - n - 2  . .  • 

and the Toeplitz operators with the matrices 

CI CO C - I  

i 
Cn 1 C n - 2  Cn-3  

We restrict our attention to the operators whose symbols a(t) = ~.l=J ~ a## 
v--~n- 1 j 

and c(t) = ~ j = _ ~  c#  are rational p x q matrix functions. We will also assume 
that poles of  a(t)  and t - ' c ( t )  lie into the unit disk. The operators under con- 
sideration have finite ranks. Hence their images and kernels are complemented 
subspaces and the operators are generalized invertible. Recall that a linear 
boundary operator  A is called generalized invertible if there exists an operator  
A t (a general ized inverse of  A) such that AA~A = A (see, e.g., [5]). Our goal is to 
obtain in explicit form generalized inverses for finite rank Hankel  and Toeplitz 
operators. We will consider a generalized inverse having an additional property 
AtAA t = A t. In the matrix theory such generalized inverses are called (1,2)- 
inverses [6]. 

It turns out that the following matrix fractional representation 

a(t)  = L -1 ( t )N( t )  
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of the strictly proper rational matrix function a(t) is central to all further de- 
velopment. Here L(t), N(t) are left coprime matrix polynomials in t, and L(t) is 
a nonsingular p x p matrix polynomial. This representation is called a left 
coprime fi'actional matrix factorization of a(t). The coprimeness condition is 
equivalent to solvability of the following Bezout equation 

L(t)U(t) + X(t)V(t) = Ip. 

Here U(t) and V(t) are matrix polynomials in t. The fractional factorization of 
a transfer matrix function and the Bezout equation widely used in solving 
several important problems of linear system theory (see, e.g., [7 9]). Besides the 
inversion of finite Hankel matrices the fractional factorization was applied for 
a description of the kernel of finite Hankel matrices [3] and the kernel and 
image of Hankel operators with rational symbols [10,I 1]. 

In this paper we obtain formulas for a generalized inversion of finite rank 
Hankel and Toeplitz operators with rational matrix symbols in terms of the 
factor L(t) from the fractional factorization for their symbols and the poly- 
nomial V(t) from the solution (U(t), V(t)) of the Bezout equation. 

I. Notation and usual definitions 

L e t  C p×q be the set of complex p x q matrices. 
By Wp×q we denote the set of p x q matrices with entries in the Wiener al- 

gebra W. If a(t) E Wp×q, then 

a(t) = a~-t k, ak ~ cpxq, It[ = 1, 
k -oc 

where ~k.~ ~ ]akf < oc. Here I" ] is any norm in C pxq. The set ~×q endowed 
with the norm Ila(t)ll = ~k~-~  lakl is a Banach space. We will denote by 
Wp×q(f~), where f~ c 7/, the subspace of Wp×q consisting of matrix functions of 
the form 

a ( t ) = Z a k t k ,  It]= 1. 
ken 

For brevity we will use the notation Wp~q for Ws×q(Y±), where 7/± is the set of 
all nonnegative/nonpositive integers. It is obvious that matrix functions in 
Wp~×q (Wp×q) are analytic in D+ = {z C C I Iz]< I} (D = { z E C U { o c }  I ]zl> 
1}). 

By Eq×~ we denote any of the following Banach spaces of double infinite 
sequences {Xk}A.~ ~ (Xk E cq×J): 

lq×l(1 ~S < oC.), 0 Cqxl~ Cqxl~ mq×l. 

We will denote by Eq×l(O), where f2 C 7/, the subspace of Eq×l consisting of 
sequences {x~ }~= ~ for which xk = 0 if k g ~. It is evident that 
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Eq×l = Eqxl (~-+ )4Eq×l ( 77* ). 

Here Z* is the set of all negative integers. 
Let Q+ be the projector from Eq×l onto Eq×l(77+) along Eq×l(77*) and let Q_ 

be the complementary projector. Similarly, we denote by P+ the projector from 
Ep×l onto Ep×I(Y-+) along Ep×l(77*_) and by P_ the complementary projector. 

If a(t) = ~-~,~-o~ akt* E Wp×q, then we will use the notation h for the con- 
volution operator acting from Eq× ~ into Ep× j according to the formula 

oc 

(ax)i : ~ ai_jxj, i C 77. 
j _ -  ~¢ 

A Toeplitz (or a discrete Wiener-HopJ) operator with the symbol a(t) E Wp×q 
is defined by the formula 

V~ = P+hQ+ ]Eq×, (77+), (1.1) 

that is, 

(qF,x)i = Zai_ jx j ,  i = 0, 1 ,2 , . . . .  
j - 0  

Hence the operator -I-~ from Eq×l(77+) into Ep×l(~/+) is determined by the in- 
finite block Toeplitz matrix 

a l  ao a - i  

2 a l  a0 

For Toeplitz operators there is the following property of partial multi- 
plicativity: 

"~aa. ~- ~a'~a+, -~a a = "~a -~a. (1.2) 

Here a+(t) 6 Wq+k, a_(t) 6 Wt; p. 
We will also use the Wiener-Hopf operators with respect to the space 

Eq×l(Z*) 

Y' = P_hQ_lEq×, (Z*). 

For these operators we have 

q]-'aa ' ' Y' ' ' 
_ = ql-al-  . . . . . .  = T A T = .  ( 1 . 3 )  

A Hankel operator with the symbol a(t) C Wp×q is the operator acting from 
Eq×j(77+) into Ep×l(77*) by the formula 
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H, = P_hQ+IEq×~(~_+). 

Hence 

( H , , x ) , = Z a i  /x;, i = - 1 , - 2 , - 3 , . . . ,  
/=0 

and this operator is determined by the infinite block Hankel matrix 

a_l a 2 a-3 . . . )  

a-2 a 3 a-4 ~l,+)/'."' 
a 3 a-4 a-5 

• 

^ * 

Also we will use the Hankel operator H' = P+aQ_ IEq×l (2_) determined by the 
matrix 

al a2 a3 . . . ~  

J 
a2 a3 a4 

a3 a4 a5 

2. Generalized inversion of finite rank Hankel operators 

In this paper we will assume that the symbol a(t )= ~ I _ ~  a~ t~ of the 
Hankel operator Ha is the strictly proper rational p × q matrix function having 
poles in D+ only. 

In the system theory the following matrix fractional representation 

a(t) = L-'(t)N(t),  (2.1) 

of the strictly proper rational matrix function a(t) plays an important role (see, 
e.g., [7-9]). Here L(t), N(t) are left coprime matrix polynomials in t, and L(t) is 
a nonsingular p x p matrix polynomial. This representation is called a left 
coprime fractional matrix factorization of a(t). The coprimeness condition is 
equivalent to solvability of the following Bezout equation 

L(t)U(t) + N(t)V(t) = Ip. (2.2) 

Here U(t) and V(t) are matrix polynomials in t. (Algorithms of an effective 
construction of representation (2.1) and effective solving of Eq. (2.2) by ele- 
mentary row operations see, e.g., [12].) Since poles ofa(t)  lie in D~, detL(t) ¢ 0 
if [t[ ~> 1. Hence L I(t) E Wp×p. 
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We will show that for a generalized inversion of the Hankel operator H, 
representation (2.1) plays a role of the Wiener -Hopf  factorization. 

Theorem 2.1. Let H. be a Hankel operator with the rational matrix symbol a(t) 
and 

a(t) = L -j (t)N(t) 

its fractional matrix factorization. Let (U(t), V(t) ) be an arbitrary solution of  the 
Bezout Eq. (2.2). 

Then the operator H~ = Tv~'L is a generalized inverse o f  ~ .  Moreover, 

Proofi It follows from the fractional factorization and the definition of the 
operator 14o that 

H. = ~L ,Yx- 

Hence, using the partial multiplicativity (1.2) and the Bezout Eq. (2.2), we 
have 

Since 

~,,H~H,, = I-IL-ITNTvHLII L , T N  

= I'{L 'Hti.~I. ' T N -  ]{L 'TLTUI-ILI-IL ITN" 

HL, = P_E',P+LP+ P&x1 (z+) 

= P L - ' L P + I E v × I ( Z + )  = O, 

[H] L I [I-IlL[I-IlL I/9+ ~ P_L-1P+LP_L-1P+ 

= p_L-~-~P+LL--'---~p+ _ p_L'-~p+Lp+~--~p+ 

= p_L-A)p+ _ p_~- ' - ,Lp+Z 'Z ' - lp+  = p_L--'-tp+ = H L , P ÷ ,  

we obtain 

H.H~H~ = Ha. 

In a similar manner we can prove that l-ltl-l=lq]~ = H~ [] 

Remark 2.1. A similar theorem holds for integral Hankel operators with 
rational matrix symbols. Moreover, if a(t) is an arbitrary strictly proper 
rational matrix function and 
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u(t) = -g ai+ 
,=-rc 

125 

is the Laurent-series expansion of a(t) at infinity, then it is not difficult to see 
that the infinite block matrix 

i 

q, 0 0 . . . 
wl: = K v, 0 . . . 

. . . . . . 

L, L2 L3 . . . 

L2 Lj L4 . 
. . . . . . 

is a generalized inverse of the infinite block Hankel matrix 

. . . . . . 

Here V, and Li are the coefficients of the matrix polynomials V(t), L(t). 

In the system theory a description of the kernel and image of a Hankel 
operator with a rational symbol plays an important role (see, e.g., [13]). It turns 
out that the spaces ker W, and Im W, are directly related to the coprime 
fractional factorization of the symbol a(t) [ 10,l 1,131. 

Using the generalized inverse WL, now we can describe ker W,, Im W, in 
terms of the factorization of a(t) for the matrix case. We will need the frac- 
tional factorization of a(t) with an additional property. Let 

a(t) = t-‘(c)N(t) 

be an arbitrary left coprime fractional matrix factorization of a(t). It is well 
known (see, e.g., [S]) that for the nonsingular p x p matrix polynomial L(t) 
there exists a unimodular matrix polynomial s(t) such that L(t) = S(t)L(t) is a 
row proper matrix polynomial, i.e. the constant p x p matrix L“‘” consisting of 
the coefficients of the highest degrees in each row of L(t) is nonsingular. Hence 
any left coprime factorization a(t) = L-‘(t)N(t) can be reduced to the row 
proper form a(t) = L-‘(t)N(t). In the system theory it is shown that the row 
degrees p, ~ . . ,pP coincide with observability indices of the system with the 
transfer matrix function a(t). The sum K of the indices is the McMilh ciegree 
of the system (and the transfer matrix function a(t)). We can assume that 
Pl 6 ‘.. <Pp. 

Let d(t) = diag[PI,. . . , t@] and L-(t) = dm’(t)L(t). Since detL(t) # 0 for 
ItI 2 1 and detL(m) = detL’“” # 0, L-(t) is an invertible element of y,*P. 
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Theorem 2.2. Let a(t) = L-1 (t)N(t) be an arbitrary left coprime fractional matrix 
factorization of  a(t). The space ker H~ consists of  the vectors of  the form 

u - Tv(l - TLTL-,)TNu, 

where u E Eq×~(Z+). 
Let, in addition, L(t) be the row proper matrix polynomial Then the space 

Im H,, is K-dimensional and the vector functions 

{t '[L-' (t)]J,..., t -p~ [LZ' (t)]J}~=, (2.3) 

are the generating functions for the elements of  a basis for Im ~ in any space 
Ep×,(Z*). Here L_(t) = d '(t)L(t), d(t) = diag[tP',.. .  ,top] and tc = ~-~f=, pj is 
the McMillan degree of  a(t). 

Proof. Since n~ t is a generalized inverse of  b~a and H~HaHt~ = n~, the operator 
H~H= is the projector onto Im N~ along ker Ha. It is easily seen that 

H~Ha = TAD - ~rLTL ,)TN. 

Hence ker Ha = Im(l -- Tv(I - TLTL ~)TN) and we get the first assertion of the 
theorem. 

The operator HaH~ is the projector onto Im Ha along kerH~ and 

~aH~ = 1 - P _ L -  P LP_]Ep×,(~__) = 1 - T L ,T L, 

Here ql-~ = P_[P_IEp×I(Y*) is the Wiener-Hopf  operator with respect to the 
space Ep×N(Z*). Hence Im H, = kerT~ ~T~. 

Since L(t) = d(t)L_(t) and L_(t), d-l(t) are elements of  W7~ , we have, by 
l ! ! l ¢ ! ! t t P P t • • 

Eq. (1.3), T L ,T L = TL~T d ~TdT L . Thus kerT L ~q]-L = q]-L' kerYd. It is easily 
seen that the vector functions { t - l e j , . . . ,  t-P~ej}~_ l, where {ej}jPl is the stan- 
dard basis of  C p×~, are the generating functions for elements of  a basis of  the 
space kerT d in any space Ep×l (Z*). It follows from this that vector functions 
(2.3) are the generating functions for elements of  a basis of kerT~ , T~. [] 

Remark 2.2. We can also obtain a generalized inverse of  Ha in terms of a right 
fractional factorization 

a(t) = M(t)R -l (t) 

of the symbol a(t). In this case we have a more simple description of the kernel: 

kerHa = Im YRTR-, ' 

but a more complicated description of  the image Im Ha 
Thus the Hankel operator H. with the rational matrix symbol a(t) is a finite 

rank operator and its rank coincides with the McMillan degree of  a(t). It is 
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easily seen that if the matrix (1.4) has finite rank then its symbol a(t) is a ra- 
tionab m~i~:¢ %a~c% on. hhence "~e ~ari~'~e ~to % e  5 ohh o v / ~  ",,~ebb'-xno~ r esaah'~ 3a 
block analog of the Kronecker  theorem): the rank of a block Hankel matrix is 
finite iff the symbol of  this matrix is a rational matrix function. 

We can use Theorems 2. ! and 2.2 for solving of an infinity system of linear 
equations with a Hankel matrix. The equation Hax = y has a solution iff the 
generating function of  y is a linear combination of  the functions (2.3). I f  this 
ceadition is 6ulfdled, ttten x = Tv ~'lY is a solution o f  the equation, The general 
solution can be found by the formula (see, e.g., [6]) 

x = qFvH'ty + u - qFv(fl - 7LTFLI)YNU, 

where u ~s an arbitrary etevaent o f  E~,:, ~(Z+), 

Ex'atttl~e E L  Let  as carts?dec as art examy'te ~'rte fo'dtou/mg syszem of eqttaZ?orte 

4 10 lX l  -}- ~X 2 -}- 7 X 3  -~- _T2X4 @ 

10 13 4X I ~- 7 X  2 -~ ~ X  3 ~- ~ X  4 ~- 

10 ~ 13 7xl  + g .~2+  g x 3 +  ~ x 4 +  

10 v 13 _~-,tl Jr- ~ X 2  -i t- 1@8X3 -l- 2@6X4 Jr- 

m 

m 

0 ~  

1 

4 r 

8 ~ 
3 
16 1 

The symbol of  the Hankel operator Ha in the left-hand side of  the system is 
aOt) - - ~ = ~ 1 3 n  + l)2"s~t"'~a). ] t  )s eas~fly seen that 

t + l  
a ( t )  

(2t-  l) 

is the fractional factorization of a(t). Hence L(t) = (2t - 1) 2, N(t)  = t + 1. By 
Euclidean algorithm we have U(t) = 1, F(t) = - ~t + ~. Then 

2 0 0 

- 1  2 0 

H* = 7 v H '  L = to 0 - 1  2 
a 

9 
0 0 - 1  

- 2  2 0 0 

3 -1  0 0 
16 - 1  0 0 0 

9 0 0 0 0 

O . . .  / 

. , .  

. . .  

. , , 

i:: / 

- 1  1 0 0 . . .  

1 0 0 0 . . .  

0 0 0 0 . . .  

0 0 0 0 . . .  
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Since 

~-~ n+_l t_2LS,(t)= ~-~ n + l  
t ' L - '  (t) = ~ 2.+2t.+1 , 27+-57t.+2 , 

n=O n=0 

the vectors  

1 2 3 0, 8' 
4 '  8 '  16'  " '" ' 4 '  16 '  " "  

form basis o f  Im Ho. Hence  the r ight-hand side o f  the system belongs to Im H= 
and the system is solvable. The vector  

( ;  4 0, 0, . . )  
H~y = , 9 '  ' ' " 

is a solution of  the system. N o w  the general solution of  the system has the 
following form 

4 8 8 10 4 4 4 4 \ 
u0 . 2  . 3 ,  ...). 

Here (u0, ul, uz, . . . )  is an arb i t ra ry  vector  in E(Z+)  and ~ = ~,~o(nU,/2"), 
fl = y'~.L0(u./2"). 

In conclusion of  the section we find the generat ing matr ix  function G( t , s )  
for the matr ix  gij i,j~0 of  the ope ra to r  kO~ = Tr i lL .  It is evident that  g,j = 0 for  
sufficiently large. i , j .  Hence 

G(t,  s) = Zgijtis j 
i,j=O 

is a matr ix  po lynomia l  in t, s. 

Proposition 2.1. The generating matrix function of the generalized inverse ~ 
from Theorem 2.1 is found by the formula 

G(t , s )  = V(t) L(t) - L(s) 
t - - s  

Proof. Apply  the opera to r  H~ = TvH~ to the sequence 

E = (Ip,slp,s21p,...). 

Let 0 < ]s I < 1. Then the sequence belongs to ll×j (Z*) and the symbol  (i.e. the 
Four ier  t ransform)  o f  the sequence H~E coincides with the generat ing matr ix  
funct ion G(t , s ) .  Let us find the symbol  of  the sequence 
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, 7 2  ~ . . . .  

Here  L 0 , L ~ , . .  are the coefficients o f  the matr ix  polynomia l  L( t ) .  Denote  by 2 
the degree of  L( t ) .  

Then the generat ing funct ion of  H i E  is 

L(s )  - Lo - L ( s )  - Lo - L , s  . . . . .  L; ,s; ' t ; - '  L(s )  - Lo ~ L j s t  + . .  . ~ 
S S 2 $2 

_ L ( S ) ( l + t s - ' + . . . + f f  is ;.~ ) . . . . .  L ° ( l + t s  ' + +t; .  is -;.~1) 
S S 

L;~-2t'~; (1 + ts  -I ) L i t  L~ 
(1 + ts  -1 ÷ " '"  + t;'-2S ;.-2) . . . .  1 t;_l 

S S S 

: L ( s ) ( 1  - V,~ -~-) L o ( 1  - t~~ ' ; )  L ~ t ( !  - t ~ - ~ S  ~+') . . . .  

s - - t  s - - I  s - - I  

L;. 2t ;~ 2(1 t2s -2) ) 1 - -  L ; .  t t  ~ ( l - t s  -1) 

s - t s -  t 

1 
-- s - t [L(s) - t;s-;~L(s) - L( t )  + L~t; + t ; s - ; L ( s )  - L; t;]  

L(s )  - L ( t )  

s - - t  

Since the matr ix  po lynomia l  (L( t )  - L ( s ) ) / ( t -  s) in t belongs to Wp+~p, and 
V(t )  E Wq~p, the symbol  o f  T v ~ L  E coincides with V ( t ) ( L ( t )  - L ( s )  ) / ( t  - s). The 
condi t ion 0 < Isl < 1 can be omit ted  because (L(t)  - L ( s ) ) / ( t  - s) is a matr ix  
polynomia l  in s. The  propos i t ion  is proved.  [] 

3. Generalized inversion of block Toeplitz and Hankel matrices with finite 
number of rows 

In this section we will consider a generalized inversion of  Toepli tz  and 
Hankel  opera tors  acting f rom the space  Eq×l (~+)  into the finite-dimensional 
space C ''p×I . These opera tors  are de terminated  by the block Toepl i tz  or Hanke l  
matr ices 

T, = 

I CO C I C 2 

C 1 C 0 C 1 

Cn 1 Cn 2 Cn 3 

.° • 
! 4 .  = 

a l  a-2  a-3 . . ~  

) a 2  a 3  a 4  

a--n a - n - I  a - , - 2  

( 3 . 1 )  
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having finitely many rows. We will assume that the symbols of  these operators 
o(t) .k = z_~-~ ~k, and a(t) = ~-1_~ akt k are rational matrix functions and t-"e(t), 
a(t) have poles in D+ only. 

Denote by P,. the projector from Ep×l (2~+) onto the first i coordinates. It is 
easily seen that ~ = D - ~-el,,q]-, ,l,,. Here D is the identity operator and Ip is the 
identity p x p matrix. Obviously, now we have 

Tc = P,,-II-c. 

Similarly, if/],.' = D-g ' t  ,t~q]-',,/,, is the projector from Ep×l(g*) onto the first i 
coordinates, then 

Let us now show that the fractional factorization of  the symbols c(t) and 
a(t) allows to obtain a generalized inversion of  the operators Tc and Ha. Denote 
by a(t) the strictly proper rational matrix function t-"c(t). Let 

a( t )  = L -I  ( t ) N ( t )  (3.2) 

be its left coprime fractional factorization with the row proper matrix poly- 
nomial L(t). Let (U(t), V(t)) be an arbitrary solution of the Bezout equation 

L(t)U(t) + N(t)V(t)  = Ip. 

Denote by P l , . . . ,  Pp the degrees of  the rows of  L(t). Let 

d(t) = diag[tP' , . . . ,  t&,], L_(t) = d-l(t)L(t) .  

As we show in Section 1, L_ (t) is an invertible element of the algebra Wp×p. The 
fractional factorization (3.2} gives now the following factorization of c(t) 

c(t) = L - l e d  - '  (t)N(t). (3.3) 

Theorem 4.1. The operator 

T] = qFvqF, ,,aPnTL Pn[Im P, (3.4) 

is a generalized inverse o f  the operator T~ = P, Tc. Moreover, T!T,T! = T!. I f  
Pi > n.['or j = I , . . .  ,p, then T* is a right inverse o f  T,.. 

Proof. It follows from Eq. (1.2) that 

P.TL P. = P.~-L . 

Hence 

T! = WvT,-.aTL Pnllm P.. 



V.M. Adukov I Linear Algebra and its Applications 290 (1999) 119-134 

Moreover ,  in virtue of  Eq. (3.3), we have 

T~. = P,,TL; T,°d , TN. 

Since 

T N T V  = "~NV = I - -  T L ~ U ,  

we obtain 

TcT,!T~. = P, TL:;Tt°u ,Tr ,,dTL P , ,Tc-P=TL ITtnd-lTL~O~l nd~L P=Tc. 

Taking into account  the relations 

P, Tc ,T,.d ITL =Pn-[[L 't"d 'L =P,T~" 6, = O, 

P,,Yc = YL ,T,,,d , T N  -- T,,,1,,Tr-,,c, 

]]-L T t : l  ~-- 1, ] [ t , , d - l ~ t  ndT tnd- t  = ~ t n d - I ,  

we have 

T,.T,! T,, = P ,T  L ~T,. d , T x -  P,q]-L ,T,.d ,T, ..aT,=L -gt-"c. 

Using Eq. (3.5) and 

T~,,L = Yt,,d-' 7L, 

we finally obtain 

T c T ! T e  : P~ ,~L  It,,d l N : Pn~c = To. 

Similarly we can prove the relation 

r ! r , . r !  = r ! .  

If  pj >~ n, then t"d-l(t)  c Wp×p and it is easily seen that 

r ~ . r !  = D. 

The theorem is proved.  [] 

Obviously, the matrix JTt,,., where 

d = • 

. . .  0 
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(3.5) 



1 3 2  V, M. Adukov / Linear Algebra and its Applications 290 (1999) 119-134 

coincides with the matrix H=. Hence Tt! f l  is a generalized inverse of H~. Since J 
is the matrix of the operator ' ' ' P,,Ht%P'=IIm P" and 

/ 
]-L H't°t,, = klt, L , 

we arrive to the following proposition on a generalized inversion of the block 
Hankel matrix H, with finite number of rows. 

Proposition 3.1. The operator H~ ' ' : T V ] [  t ndPnHt~ L P~]Im P" is a generalized 
inverse o f  the operator Ha = t=~H~. Moreover, H~HaH~ = H~. I f  Pi >>" n for  
j = 1, . . .  ,p, then H~ is a right inverse o f  Ha. 

Now we find generating functions for the matrices of the operators T!. /-/~. 
If % (h0) are the entries of the matrix T~ (H~t), then, by definition, the gener- 
ating matrix function of this matrix is 

oc n 1 ~c n 1 

! o 

i = 0  j = 0  / /  i : 0  j = 0  

Let us introduce the operator ~ = Tv]-, °fi-L acting from 11×1(7/+) into 
Pq×l(Y+). It is easily seen that B is determined by the infinity block matrix 

oc 
B = [Ib,jll~j:0 (b~j E cq×P), having absolutely summable block columns and 
rows. Hence we can define the generating function of B: 

i d - 0  

Then the generating function for the matrix of the operator 
I-v]-, °d-l-L [Im P. is 

.Y-(t, s) = ;~,.(-n + 1,0)~(t, s), 

where ~ ( - n  + 1,0) is the projector acting by the rule 

oc n - l  

i = 0  j = 0  

Proposition 3.2. The generating matrix function o f  the generalized inverse T~ 
f rom Theorem 3.1 is found  by the .formula 

J~(t,s) = ,~=(-n + 1,0) V(t)d~(t,s)L (s) 
1 -  ts -I , [t]~<l. 

Here 

do(t, s) = diag[J' = , . . . ,  s p°-", t po+,-=, . . . , tPp -~] 
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and the integer a is f o u n d  f r o m  the condition 

pl <~ . . .  <.~p <...n < p~+l <... . . .  <.pp. 

Proof. Apply the operator ~ to the sequence E =  ( Ip , s - l lp , s  2Ip , . . . ) .  For 
Isl > 1 the sequence belongs to lpl×l and has the symbol (the Fourier transform) 

1 Ip, ]tl~< 1. 
Z t / s - i l p  - -  1 - -  t s  -1  
j-O 

30 
The symbol of the sequence BE is the function ~i./=0 b J  is-J, that is the gen- 
erating function of B. 

On the other hand, the sequence q]-L E = (L_ ( s ) , s  JL (s ) , s  2L (s) . . . .  ) has 
the symbol L .(s)/(1 - ts 1). Hence the symbol of the sequence qft ,,,tqfL E is 
P+(t "d ( t )L_( s ) / (1  - ts 1)). Since 

I~ k >-0, 
t k 1 ts I , . 

- -  X 
P+ 1 - ts-L ~.~ 

l - is- t  , k ~ O, 

we have 

t " d ( t ) L _ ( s )  _ dJt, s)L (s) 
P+ l - t s  I - 1 - t s  1 

Thus the symbol of the sequence ql-vq]-, ,,JgL E is the function 

V ( t )d , ( t , s )L  (s) V( t )d~( t , s )L_(s )  = ~ ( t : s ) .  
P+ l _ ts 1 = l _ ts_ 1 

Hence ~(t ,s)  is the generating function of the operator B: 

7X. 7Y~ 

Z Z b , , t ' s  J, tl Isl > 1. 
i 0 i - 0  

Then the generating function of the matrix of the operator T~ t coincides with 
the matrix function ~ ( - n  + 1,0)~(t, s). Since this function is a polynomial in 
s -~, we can omit the condition Isl > 1. The proposition is proved. [] 

From this proposition it follows at once the formula for the generating 
function of//,~. 

Proposition 3.3. The generat ing matr ix  func t ion  o f  the general ized inverse H1. 
f r o m  Proposit ion 3.1 is f o u n d  by the f o rmu la  
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Here  

= n - 1 )  
V(t);to(t,s)L(s) 

S - - t  
, Itt < I .  

[l~(t,s) = d i a g [ 1 , . . . ,  1, (ts-l)Pa+l-n,..., (ts-1) pp-I;] 

and  the integer a is f o u n d  f r o m  the condit ion 

Pl <~ "'" <~ p ,  <~ n < P~+l ~< . . . <~ Pp. 
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