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Abstract

The goal of the paper is a generalized inversion of finite rank Hankel operators and
Hankel or Toeplitz operators with block matrices having finitely many rows. To attain it
a left coprime fractional factorization of a strictly proper rational matrix function and
the Bezout equation are used. Generalized inverses of these operators and generating
functions for the inverses are explicitly constructed in terms of the fractional factor-
ization. © 1999 Elsevier Science Inc. All rights reserved.
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Introduction

In the works [1,2] Fuhrmann has proposed the following inversion method
for finite Hankel matrices. Let H = ||g.;-1l,,-,,. , be an invertible Hankel
matrix. By the matrix A and the number £ = g,, we can uniquely determine the
coprime Qolynomials p:(z) and g:(z) (the polynomial g;(z) is a monic one) such
that {g;}.";" are the Markov parameters of the rational function p:(2)/q:(z).
Then H™' is the Bezoutian of the coprime polynomials ¢:(z) and a(z), where
a(z) is a solution of the Bezout equation

! E-mail: adukov@math.tu-chel.ac.ru.

0024-3795/99/$ — see front matter © 1999 Elsevier Science Inc. All rights reserved.
PI: S0024-3795(98)10216-1



120 V.M. Adukov | Linear Algebra and its Applications 290 (1999) 119-134

a(2)pe(z) + b(z)ge(z) = 1.

Similar results have been also obtained by Heinig and Jungnickel [3]. In Ref.
[4] the method was extended to the case of finite block Hankel matrices.

In the present paper we will show that the fractional representation and the
Bezout equation can also be used for a generalized inversion of finite rank
Hankel and Toeplitz operators. We consider Hankel operators that are de-
termined by the infinite block Hankel matrices

a_.| a-p, d_j
a_» d_3 d_4

a3 a_4 Aa_s

or the block Hankel matrices with finite number of rows

a_, d.p-1 QA-p-2

and the Toeplitz operators with the matrices

Co C_] 6
C| Co (o]
Cpa1 Cn-2 Cy-3

We restrict our attention to the operators whose symbols a(t) = Zlefoo a;¥

and c(?) = Z}’:m c; are rational p x ¢ matrix functions. We will also assume
that poles of a(?) and ¢~"¢(¢) lie into the unit disk. The operators under con-
sideration have finite ranks. Hence their images and kernels are complemented
subspaces and the operators are generalized invertible. Recall that a linear
boundary operator 4 is called generalized invertible if there exists an operator
A" (a generalized inverse of A) such that A4'4 = 4 (see, e.g., [5]). Our goal is to
obtain in explicit form generalized inverses for finite rank Hankel and Toeplitz
operators. We will consider a generalized inverse having an additional property
A'44" = 4% In the matrix theory such generalized inverses are called (1,2)-
inverses [6].
It turns out that the following matrix fractional representation

a(t) =L (O)N(2)
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of the strictly proper rational matrix function a(¢) is central to all further de-
velopment. Here L(¢), N(r) are left coprime matrix polynomials in ¢, and L(¢) is
a nonsingular p x p matrix polynomial. This representation is called a /left
coprime fractional matrix factorization of a(t). The coprimeness condition is
equivalent to solvability of the following Bezout equation

LnU@) + NV (1) = 1,.

Here U(¢) and 7 (¢) are matrix polynomials in ¢. The fractional factorization of
a transfer matrix function and the Bezout equation widely used in solving
several important problems of linear system theory (see, e.g., [7-9]). Besides the
inversion of finite Hankel matrices the fractional factorization was applied for
a description of the kernel of finite Hankel matrices [3] and the kernel and
image of Hankel operators with rational symbols [10,11].

In this paper we obtain formulas for a generalized inversion of finite rank
Hankel and Toeplitz operators with rational matrix symbols in terms of the
factor L(r) from the fractional factorization for their symbols and the poly-
nomial V(z) from the solution (U(¢), V(¢)) of the Bezout equation.

1. Notation and usual definitions

Let C”*“ be the set of complex p x ¢ matrices.
By W,., we denote the set of p x ¢ matrices with entries in the Wiener al-
gebra W. If a(t) € W,,,, then

a() = Y al, aeC” |f=1,
k=-oc
where 37 |a;| < oc. Here || is any norm in C”*¢. The set #,,, endowed
with the norm |a(r)|| = 37,2 |ax| is a Banach space. We will denote by
Wpq(Q), where Q C Z, the subspace of 1., consisting of matrix functions of
the form
a(t) = > at, |t =1
keQ
For brevity we will use the notation W for W,,,(Z..), where Z_ is the set of
all nonnegative/nonpositive integers. It is obvious that matrix functions in
;/I%;q (W) are analyticin D, = {z€ C| |z < 1} (D_ = {z€ CU{oc} | |z| >
).
By E,., we denote any of the following Banach spaces of double infinite
sequences {x;},=  (x € C¥'):

—DC

l.\‘

0
qxl(l <S<OO)5 Cq)<|-, qu]7 qul~

We will denote by E,,,(Q), where Q C Z, the subspace of £, consisting of
sequences {x;},- _ for which x; = 0 if £ €Q. It is evident that
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qul = qul (Z+)~FE4X] (Zi)

Here Z* is the set of all negative integers.

Let O, be the projector from E,,, onto E,,(Z,) along E,.(Z" ) and let Q_
be the complementary projector. Similarly, we denote by P, the projector from
E,. onto E,.(Z.) along E,,,(Z" ) and by P_ the complementary projector.

If a(r) = 3, axt* € W,,,, then we will use the notation & for the con-
volution operator acting from E,,, into £, according to the formula

oC

(@), =Y ax, i€l

J—

A Toeplitz (or a discrete Wiener—Hopf) operator with the symbol a(t) € W,,,
is defined by the formula

—H_a =P+dQ+IEqX|(Z+)7 (11)

that is,

(Tux), = Za,-_jxj, i=0,12,....

J=0

Hence the operator T, from E . (Z,) into E,.(Z,) is determined by the in-
finite block Toeplitz matrix

g d4d_y a_,

ay ag a_|

a a ap

For Toeplitz operators there is the following property of partial multi-
plicativity:
Too. =T, To,, T,0=T,T, (1.2)
Here a, (1) € Wi, a_(t) € W,

We will also use the Wiener—-Hopf operators with respect to the space
qu1(Zi)

T, =P.aQ_|E,;(Z").
For these operators we have
—H_t,my = —I]—,a-ﬂ-ih’ 1]—:qa = T;- -ﬂ—; (13)

A Hankel operator with the symbol a(t) € W,,, is the operator acting from
E 1 (Z,) into E,.;(Z") by the formula
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H, = P_&Q+|qu1(Z+).
Hence

(Hox), =Y a g, i=-1,-2,-3,...,
=0

and this operator is determined by the infinite block Hankel matrix

a.| da-, da_j
a., d_3 d4d_y
a

(1.4)

3 dad_4 4a_s

Also we will use the Hankel operator H! = P,aQ_|E,.;(Z" ) determined by the
matrix

a, a4y 43
a; as ay
das a3 das

2. Generalized inversion of finite rank Hankel operators

In this paper we will assume that the symbol a(r) = Z;]_X a;t/ of the
Hankel operator H, is the strictly proper rational p x ¢ matrix function having
poles in D, only.

In the system theory the following matrix fractional representation

a(t) = L' (O)N(1), (2.1)

of the strictly proper rational matrix function a{z) plays an important role (see,
e.g., [7-9]). Here L(¢), N(¢) are left coprime matrix polynomials in ¢, and L(¢) is
a nonsingular p X p matrix polynomial. This representation is called a left
coprime fractional matrix factorization of a(t). The coprimeness condition is
equivalent to solvability of the following Bezout equation

LOU@) + NV () =1, (2.2)

Here U{¢) and V(¢) are matrix polynomials in ¢. (Algorithms of an effective
construction of representation (2.1) and effective solving of Eq. (2.2) by ele-
mentary row operations see, €.g., [12].) Since poles of a(¢?) liein D, detL(s) #0
if /| = 1. Hence L™'(¢) € W,,,.
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We will show that for a generalized inversion of the Hankel operator H,
representation (2.1) plays a role of the Wiener-Hopf factorization.

Theorem 2.1. Let H, be a Hankel operator with the rational matrix symbol a(t)
and

a(t) = L' (ON(1)

its fractional matrix factorization. Let (U(¢), V(t)) be an arbitrary solution of the
Bezout Eq. (2.2).

Then the operator H! =T, H| is a generalized inverse of H,. Moreover,
HIH,H = 1]

Proof. It follows from the fractional factorization and the definition of the
operator H, that

Hu = HLWI TN.

Hence, using the partial multiplicativity (1.2) and the Bezout Eq. (2.2), we
have

HHIH, = H,  ThToH, H, Ty
= HL’]HLHL’]—U—N - HLfl—ﬂ—LFH-UHLHL l—I]—N.

Since
M, T, = PLLPLEP,|E,\(Z.)
=P LLP.|E,(Z.) = 0,

Hy M, P, = P.L-\P,LP_L7P,
=P L P, LL-\P, — P L'P, [P, [P,
=P L P, — P[P [P, =P [P =H, P,
we obtain
HHH, = H,.
In a similar manner we can prove that H/H,H! = H! O
Remark 2.1. A similar theorem holds for integral Hankel operators with

rational matrix symbols. Moreover, if a(z) is an arbitrary strictly proper
rational matrix function and
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a(t) = Z a;t’

is the Laurent-series expansion of a(t) at infinity, then it is not difficult to see
that the infinite block matrix

Vo 0 0 ... Ly L, Ls
Hf = nw w 0 ... Ly Ly L4

is a generalized inverse of the infinite block Hankel matrix

Here V; and L; are the coefficients of the matrix polynomials ¥V (¢), L(¢).

In the system theory a description of the kernel and image of a Hankel
operator with a rational symbol plays an important role (see, e.g., [13]). It turns
out that the spaces kerH, and Im H, are directly related to the coprime
fractional factorization of the symbol a(r) {10,11,13].

Using the generalized inverse |H]I,, now we can describe kerH,, Im H, in
terms of the factorization of a(¢) for the matrix case. We will need the frac-
tional factorization of a(¢) with an additional property. Let

alt) = L (ON(1)

be an arbitrary left coprime fractional matrix factorization of a(t). It is well
known (see, e.g., [8]) that for the nonsingular p x p matrix polynomial L(r)
there exists a unimodular matrix polynomial S(¢) such that L(¢) = S(t)L(¢) is a
row proper matrix polynomial, i.e. the constant p x p matrix L™ consisting of
the coefficients of the highest degrees in each row of L(¢) is nonsingular. Hence
any left coprime factorization a(t) = L™'(f)N(¢) can be reduced to the row
proper form a(¢) = L~'(¢)N(¢). In the system theory it is shown that the row
degrees py,...,p, coincide with observability indices of the system with the
transfer matrix function a(¢). The sum « of the indices is the McMillun degree
of the system (and the transfer matrix function a(¢)). We can assume that
PSSP,

Let d(t) = diag[tr,...,¢*] and L_(f) =d '(¢)L(t). Since detL(r)# 0 for
i1l =1 and detL_(oco) = detL™" # 0, L_(¢) is an invertible element of W~

pept
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Theorem 2.2. Let a(t) = L~ (t)N(¢) be an arbitrary left coprime fractional matrix
Sfactorization of a(t). The space ker H, consists of the vectors of the form

U — TV(H - -I]—LTL-I)TNU,

where u € E i (Z.).
Let, in addition, L(t) be the row proper matrix polynomial. Then the space
Im H, is x-dimensional and the vector functions
(LY. eP L (Y (2.3)

=1

are the generating functions for the elements of a basis for Im H, in any space
Ep(Z7). Here L_(t) = d '(0)L(t), d(r) = diag[t",...,t7] and x =370, p; is
the McMillan degree of a(t).

Proof. Since H! is a generalized inverse of H, and H!H,H! = H], the operator
[H]l[H]a is the projector onto Im [H]I along ker H,. It is easily seen that

HiH, =Tyl = T, T, 1)Tw.

Hence ker H, = Im(l — T, (0 — T,T,-1)Ty) and we get the first assertion of the
theorem.
The operator H,H! is the projector onto Im H, along kerH/ and

HH! = 1= P L P EP|E, (Z)=1-T,,T,.

Here T, = P_.LP_|E,.\(Z") is the Wiener—-Hopf operator with respect to the
space £, (Z7). Hence Im H, = ker T, T}.

Since L(t) =d(t)L_(¢) and L_(1), “( ) are elements of W, we have, by
Eq. (1.3), T, T, =T, T, T,T, . Thus ker T, , T, = T, ker T,. It is easily
seen that the vector functions {t 'e;,... ¢ vie;}7_,, where {e;}]_, is the stan-
dard basis of C**!, are the generatmg funct1ons for elements of a basis of the
space kerT), in any space E,,,(Z" ). It follows from this that vector functions
(2.3) are the generating functions for elements of a basis of ker T, T,. O

Remark 2.2. We can also obtain a generalized inverse of H, in terms of a right
fractional factorization
a(t) =M(R'(2)
of the symbol a(¢). In this case we have a more simple description of the kernel:
kerH, =Im TzT4

but a more complicated description of the image Im H,
Thus the Hankel operator H, with the rational matrix symbol a(¢) is a finite
rank operator and its rank coincides with the McMillan degree of a(z). 1t is
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easily seen that if the matrix (1.4) has finite rank then its symbol a(z) is a ra-
ticond M THDLHOD. MEDLE WE 2rNve 10 Ihe 0howme weh-xnown 1esun ja
block analog of the Kronecker theorem): the rank of a block Hankel matrix is
finite iff the symbol of this matrix is a rational matrix function.

We can use Theorems 2.1 and 2.2 for solving of an infinity system of linear
equations with a Hankel matrix. The equation H,x = y has a solution iff the
generating function of y is a linear combination of the functions (2.3). If this
condition s fulfilled, then x = Ty H}y is a solution of the equation. The general
solution can be found by the formula (see, e.g., [6])

X = T;H;‘y +u— TV(" — ‘I]’[_WZIYUFNU,

where u is an arbitrary element of £, (7, }

A

Exampre 2.1. Let us coasweer as an exampre e toltowing sysrem ot equatans

3% + %XQ + ]—76)(?3 + %)&; + e = 0,
i+ Fxo+ Bun+ Ba+ oo = 4
Fxi+ Bo+ Bag+ B+ o = 2
;—‘,_’x, + é—ixz + %fg&z + 2—]5%)(4 + - = %,

The symbol of the Hankel operator H, in the left-hand side of the system is
alp) =>"7,13n + 1) 2" ) 1t 1s easily seen that
t+1

=T

is the fractional factorization of a(t). Hence L(r) = (2t — 1)*, N(t) =t + 1. By
Euclidean atgorithm we have U{¢) =1, ¥(r) = —2r + & Then

2 0 0 0 .N\N/=1100
12 0 0 .. {[1 000
[HlﬁTVIH]’L_% 0 -1 2 0 0 00 0
0 0 -1 2 0 00 0
2 2 00
3 -1 0 0
_16f 0 0 0
1o o0 0o
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Since

TR N TN N
LT (t) = Zzn+2tn+l y LD (t) - < Qn+2gm+2”
n=0 n=

the vectors

123 0l 23
4816 ) 478 16"

form basis of Im H,. Hence the right-hand side of the system belongs to Im H,
and the system is solvable. The vector

8 4
v=1{z, —=2,0,0, ...
[H]ay (97 9? 707 - )

is a solution of the system. Now the general solution of the system has the
following form

4 8 +8 1_() i[f—4 +4 +4ﬂ
uo+30¢ 9ﬁ 9,u1 3oz 5 9,u2 3oz 9,u3, Ug, ... ).

Here (ug, 4y, us, ...) is an arbitrary vector in E(Z,) and o« = >_ = (nu,/2"),

B = Zrlo(un/zn)

In conclusion of the section we find the generating matrix function G(¢, s)
for the matrix ||g;;||;;_, of the operator H! = T, Hj. It is evident that g; = O for
sufficiently large. i, ;. Hence

G(t, S) = Zg,jt’SJ
ij=0
is a matrix polynomial in ¢,s.

Proposition 2.1. The generating matrix function of the generalized inverse [H]l
from Theorem 2.1 is found by the formula

L(t) — L(s)

t—s

G(t.s) =V

Proof. Apply the operator ﬂ-ﬂl = TyH; to the sequence
E=(l,,sl,s1,...).

Let 0 < |s| < 1. Then the sequence belongs to /. (Z") and the symbol (i.c. the
Fourier transform) of the sequence H!E coincides with the generating matrix
function G(¢,s). Let us find the symbol of the sequence
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T

s ’ s2

Here Lo, L,, ... are the coefficients of the matrix polynomial L(z). Denote by 4
the degree of L(z).

Then the generating function of H) E is

L(_S) — Ly v L(S) — Lo — L]St L(é) —Lo—Lis—---— L,',,ls;"l

g = bt S !
L A _ L ) .
_ (:)(1-{—ts"+~~+t”’1s”'”)—To(l+ts"+~~-+t"’1s_"“)
L; o2 il o

Lyt W L
—Tf(l dasTi b T = (L4as™) ——1

L{s)(1 — t/'-s‘/'-) Lo(1 - t;‘s’;‘) _th(] _ t}.A]S-H])
s—1t S —1 s —1

L 21 —2s3) L '(1 -7

s—1t S —1t
N % [L(s) = ¢'s7"L(s) = L(t) + Lot" + 's7"L(s) — L;t']
_L(s) - L(1)
Tos—t

Since the matrix polynomial (L(t) — L(s))/(t — s) in ¢ belongs to W . and
V(1) € W,,,, the symbol of T H} E coincides with V' (r)(L(z) — L(s))/(t — s). The
condition 0 < |s| < 1 can be omitted because (L(¢f) — L(s))/(¢t — ) is a matrix

polynomial in s. The proposition is proved. U

3. Generalized inversion of block Toeplitz and Hankel matrices with finite
number of rows

In this section we will consider a generalized inversion of Toeplitz and
Hankel operators acting from the space E,.;(Z.) into the finite-dimensional
space C"*!, These operators are determinated by the block Toeplitz or Hankel
matrices

Co C_1 C_2 a_ -2 a.s

C) Co C a, 43 a_q4
= H, =

Ch-1 Cp2 Cp3 ... a., d-p-1 A2
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having finitely many rows. We will assume that the symbols of these operators
e(t) = " et and a(t) = 3! aus* are rational matrix functions and r~"¢(r),
a(¢) have poles in D, only.

Denote by P, the projector from E,,(Z,) onto the first i coordinates. It is

easily seen that P, =1~ T,;, T,;,. Here [ is the identity operator and /, is the
identity p x p matrix. Obviously, now we have
I.=FT..

Similarly, if P/ =1- T}, T,, is the projector from E,;(Z) onto the first i
coordinates, then

H, = PH,.

Let us now show that the fractional factorization of the symbols ¢(¢r) and
a(t) allows to obtain a generalized inversion of the operators 7, and H,. Denote
by a(z) the strictly proper rational matrix function #~"c(¢). Let

a(t) = L' ()N (¢) (3.2)

be its left coprime fractional factorization with the row proper matrix poly-
nomial L(¢). Let (U(¢), ¥ (¢)) be an arbitrary solution of the Bezout equation

LU + NV (1) = L.
Denote by py, ..., p, the degrees of the rows of L(z). Let
d(t) = diag[t”, ... "), L_(t) =d ' ()L(r).

As we show in Section 1, L_(¢) is an invertible element of the algebra #, . The
fractional factorization (3.2) gives now the following factorization of c¢(r)

c(t) = L7'd ()N (r). (3.3)

Theorem 4.1. The operator
7:( = T]—VTT,ﬂ.dP,,TLP,,[Im P,, (34)

is a generalized inverse of the operator T, = P,T,. Moreover, T!T.T! = T. If
p;znfor j=1,...,p, then T} is a right inverse of T..
Proof. It follows from Eq. (1.2) that
PT, P,=PT, .
Hence

=TT, T, P,Im P,.
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Moreover, in virtue of Eq. (3.3), we have

T. =P T, T Ty
Since

—I]—N-“-V = TI’NV = l] - -H_LTUs
we obtain

TTT =P U, Tpg Tong Uy P T = PT o T T Ty T T, BT
Taking into account the relations

PU o Tpg T =BT pg, = B Tw, =0, (3.5)
Pn-[r(' = _H_Lj'Tt"d*'T]—N - Tt”lp—[]—l""m

T, T =0 Twgar TongTpgr = Tpger,
we have
TTT. =BT, Tpgr Ty = PT o Tt Tiong Trp, T
Using Eq. (3.5) and
Top =Ty Ty,
we finally obtain
TTT.=PT, gy =P T, =T.
Similarly we can prove the relation
T/T.T =T
If p; > n, then "d~'(r) € W, and it is easily seen that
T.

T =1

The theorem is proved. O

Obviously, the matrix J7.,, where
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coincides with the matrix H,. Hence T},J is a generalized inverse of H,. Since J
is the matrix of the operator A,H,, F,|Im P, and

)
T, Hz"l HI”L

we arrive to the following proposition on a generalized inversion of the block
Hankel matrix H, with finite number of rows.

Proposition 3.1. The operator Hi = TyT,-+,P,H.,, Pi|lm P, is a generalized
inverse of the operator H, = P,H,. Moreover, HIH,H} = H}. If p; >n for
J=1,...,p, then H} is a right inverse of H,.

Now we find generating functions for the matrices of the operators 7/, H/.
If t;; (h;) are the entries of the matrix 77 (), then, by definition, the gener-
ating matrix function of this matrix is

in ]r,/tis’j, (]f(t,s) = Xx:nzl:hi,-tisj.

i=0 j=0 i=0 j=0

Let us introduce the operator B=T,T,..,T, acting from l1 (Z,) into
1l ((Z,). Tt is easily seen that B is determined by the infinity block matrix

= |1byll75=0 (b € C¥7), having absolutely summable block columns and
rows. Hence we can define the generating function of B:

) = Zb[jtis’j, 1) <1, |s| > 1.
ij=0
Then the generating function for the matrix of the operator
T]—V-U_r'"d-U‘L |Im R1 is
T (t,5) = P(—n+1,0)8B(1,s),

where #,(—n + 1,0) is the projector acting by the rule

oc n—1

P—n+1,0)B(t,5) =Y > byt's™.

=0 j=0

Proposition 3.2. The generating matrix function of the generalized inverse T}
Jrom Theorem 3.1 is found by the formula

V(0dy (1)L (s)

g—(tas) = '7:(_n+ 1,0) 1 — £~

1 <1

Here

d,(1,5) = diag[s" ", ... sP=", e o]
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and the integer o is found from the condition

pl< "'gpa<n<pa+l< 'ngp'

Proof. Apply the operator B to the sequence E = (I,,s7'1,,57%I,,...). For
Is] > 1 the sequence belongs to / },Xl and has the symbol (the Fourier transform)

= . 1
S ot — —

;ts Iy =1——l» <L
The symbol of the sequence BE is the function )" b,#'s™/, that is the gen-
erating function of B.

On the other hand, the sequence T, E = (L_(s),s 'L (s),s *L_(s)....) has

the symbol L_(s)/(1 —ts~'). Hence the symbol of the sequence T, T, E is
P, (t"d(t)L_(s)/(1 —ts™")). Since

k

/ T k=0,
T f
1—ts -1y k < 07
we have
td(L_(s)  ds(t,s)L_(5)
P, = :

1 —ts7! 1 — 57!

Thus the symbol of the sequence T, T,-.,T; E is the function

p ) VOO,

Hence #(t,s) is the generating function of the operator B:

X

Ble,s) =YY byt's, <1, fs| > 1.

=0 j=0

Then the generating function of the matrix of the operator 7/ coincides with
the matrix function 2,(—n + 1,0)#(z. s). Since this function is a polynomial in
s~!, we can omit the condition |s| > 1. The proposition is proved. [J

From this proposition it follows at once the formula for the generating
function of H/.

Proposition 3.3. The generating matrix function of the generalized inverse H|
from Proposition 3.1 is found by the formula
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V(0)d,(t,s)L(s)

H(t,s)=2,0,n—1) —

|t < 1.

Here
d,(t,s) = diag[1,...,1, (™)'= 7" .. (ts7H)" ™"
and the integer ¢ is found from the condition

P  SPeSN< Py <o S,
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