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ABSTRACT 

An analog of a Wiener-Hopf factorization method is proposed for finite block 
Toeplitz matrices. For an arbitrary rational matrix polynomial, notions of essential 
indices and polynomials are introduced. A connection between these notions and a 
Wiener-Hopf factorization of some block triangular matrix functions is studied. A 
formula for a generalized (one-sided, two-sided) inversion of a block Toeplitz matrix is 
found in terms of indices and essential polynomials of its symbol. Well-known 
inversion formulas are obtained as special cases of this formula. 0 1998 Elsevier 
Science Inc. 

INTRODUCTION 

A method of a Wiener-Hopf factorization was first applied to a study of 
convolution equations on a finite interval by M. P. Ganin [9]. In this work it 
was shown that solving of these equations is equivalent to solving of a 
Riemann boundary problem with a triangular 2 X 2 matrix function. Subse- 
quently the method was developed in the works [22, 211, and others. 

In the discrete case this idea was first used in [19]. It turned out that the 
inversion of a finite scalar Toeplitz matrix can also be obtained in terms of the 
Wiener-Hopf factorization of a triangular 2 X 2 matrix function. However, 
for this method one requires an explicit solution of the problem of the 
Wiener-Hopf factorization. 

LINEAR ALGEBRA AND ITS APPLICATIONS 27423-124 (1998) 

0 1998 Elsevier Science Inc. All rights reserved. 0024.3795/98/$19.00 
655 Avmue of the Americas, New York, NY 10010 PI1 s0024-3795(97)00.304-2 



86 VICTOR M. ADUKOV 

In the present paper finite block Toeplitz matrices 

Il~,-jlli=O,l,...,n 
j=o, 1 ,...,m 

with p X q blocks are considered. The goal of the work is to propose an 
analog of the Wiener-Hopf factorization method and to find an explicit 
method for a generalized inversion of these matrices. 

We obtain a connection between a generalized (one-sided, two-sided) 
inversion of such a matrix and a Wiener-Hopf factorization of an auxiliary 
block triangular ( p + q) X ( p + q) matrix function 

t-m-’ 

4 0 
A(t) = 

c;= -muktk tn+ 1 
6 

(see Section 2). In order to find the generalized inverse G in an explicit form, 
we shall need an explicit method for a construction of the Wiener-Hopf 
factorization of A(t). In the case p = q = 1 there exists the effective 
algorithm of G. N. Chebotarev [s] for a computation of the factorization 
indices of A(t) and the factors A,(t). Another explicit method of the 
Wiener-Hopf factorization of A(t) for this case was found in [l]. Since A(t) 
is a rational matrix polynomial, in the common case there also exists an 
explicit solution of the factorization problem (see, e.g., [12]). This solution use 
finite block Toeplitz matrices formed from the moments of A-‘(t) with 
respect to the unit circle T. 

In the present paper we obtain an explicit method for a construction of a 
generalized inverse of a block Toeplitz matrix directly in terms of the 
sequence a_,, . . . , a,, . . . , a,. To do this, we study in detail a kernel 
structure of a family of block Toeplitz matrices and define notions of essential 
indices and polynomials (Section 3). These notions were first introduced in 
connection with an explicit construction of a Wiener-Hopf factorization for 
triangular 2 X 2 matrix functions [l]. In [2] the technique of indices and 
essential polynomials was developed for a sequence of square matrices, and a 
family of inversion formulas for block Toeplitz matrices with square blocks 
was obtained. Moreover, the technique can be used for an explicit solution of 
the factorization problem for meromorphic matrix functions [5]. The same 
notions (characteristic numbers and polynomials) were independently intro- 
duced for a scalar case in [17]. In this work the notion of indices was also 
defined in the more general case of Toeplitz-like operators. The specifics of 
the block Toeplitz case were discussed, not knowing about the paper [2], in 
[141 and [16]. 
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For an application of the technique of essential polynomials one requires 
an essentialness criterion, which allows one to check that the given integers 
are indices and the given vector polynomials are essential polynomials of the 
given sequence of matrices (Section 4). Using this criterion, we obtain a 
formula for a generalized inverse G of a block Toeplitz matrix in terms of 
essential indices and polynomials of the sequence a_,,,, . . . , a,, . . . , un (Sec- 
tion 5). Another method of generalized inversion in the more general case of 
Hankel and Toeplitz mosaic matrices was proposed in [15]. The same 
arguments as for Toeplitz operators allow us to find a formula for a generat- 
ing polynomial of G (Section 6). Well-known inversion formulas and the 
formula for a generalized inversion of scalar Toeplitz matrices [3, 61 are 
special cases of our results (Section 7). 

1. NOTATION AND USUAL DEFINITIONS 

Let C Px 9 be the set of complex p X 9 matrices. For a matrix A we shall 
denote by ker, A its right kernel and by ker,. A its left kernel: 

ker, A = {xl& = 0}, ker, A = {ylyA = O}. 

BY [A!, (LAP) d enote the jth row (the jth column) of the matrix A. Let A 
be a block matrix with blocks in @P’q, and let A has the block size 
(n + 1) X (m + 1). We partition the column R E ker, A into m + 1 blocks 
(the size of the blocks is 9 x 1): 

I \ 
f-0 

R= 41, 

and for R we define its generating vector polynomial in the variable t to be 
the polynomial 

R(t) = r. + r,t + 1.. +r,,,t”‘. 

Similarly, for a row in ker, A we define the generating vector polynomial in 
t-l. 
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Let a_,, . . . , a,, . . . , a, (n > 0, m 3 0; n, m are not zero simultane- 
ously) be a finite sequence of complex p x q matrices. Let us denote by 
a(t) = Cy= _,uj tj the generating matrix polynomial in t and t- ’ of this 
sequence. Using the terminology of the work [ 121, we shall call a(t) a rational 
matrix polynomial. Let us form the block Toeplitz matrix 

‘a0 \ 
a_, *a* a-, 

T, = “.’ “.” 
. . . U -7nt1 

consisting from the elements of the sequence. We note that an arbitrary 
matrix A can be considered as a block Toeplitz matrix with rectangular 
blocks. To do this, we can partition A into rows (m = 0) or into columns 
(72 = 0). 

In the sequel we shall consider T, as the matrix of a finite section of a 
Toeplitz operator U=. Recall (see, e.g., [lo]) that the infinite Toeplitz matrix 

I 
a0 a_, a_2 ... 

a, a, a-, **a 

a2 a1 a, ... 

. . 

\ . 

defines the Toephtz operator Ua acting from the vector space 1; x i into 1; x i 
(1 < s < m>. Here (ujy= _ m is an infinite sequence of complex p X q matri- 
ces such that X7= _ ,,]a,/ < cc (1.1 is a matrix norm on the set of p X q 
matrices). The matrix function u(t) = Cy= _,ujtj, ItI = 1, is called a symbol 
of the operator UO. Denote by Pi the projector onto the first i coordinates 
from the Banach space ZjX i, and by Qi the complementary projector. It is 
easily seen that 

Here 0 is the identity operator and Zj is the j X j identity matrix. Then the 
block Toeplitz matrix T, is the matrix of the operator P, + ,Ua Z’, + i IIm P, + i. 
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In complete analogy with the theory of Toeplitz operators, we shall say that 
the matrix polynomial a(t) is the symbol of the block Toeplitz matrix T,. 

BY Wpxy denote the Banach space of all p X q matrix functions of the 
form a(t) = Cy= _,,ujtj, ItI = 1, (ujrS_=_, E Zb,,; by WIXq [Wix,] denote 
the subspace of WPX y consisting of all matrix functions of the form a(t) = 
CTZouJt’ [u(t) = CT= _,ujtj]. If p = q, then Wpxr is a Banach algebra and 
W,: p are its subalgebras. For brevity, we shall use the designation W = W, X , , 
w*= w,:,. 

It is easily seen that there is the following partial multiplicativity of the 
mapping a + TO: 

for any u(t) E WPXy, u+(t) E W,:xk, a_(t) E W;,. By virtue of this prop- 
erty the basic method in the theory of Toeplitz operators with invertible 
symbols is a Winer-Hopf factorization of symbols. 

Let u(t) be an invertible element of WPX ,‘. The representation of u(t) in 
the form 

u(t) = a-(t)d(t)u,(t) 

is called a right Wiener-Hopf factorization of u(t) with respect to the unit 
circle T. Here u,(t) are invertible elements of WP:P and d(t) = 
diag[t Pi, . . . , t “~1. The integers pI,. . . , p, are called the right factorization 
indices of u(t). They are uniquely determined by a(t). It is known that all 
invertible elements of WPXl, admit a Wiener-Hopf factorization. 

We shall also need the following definition (see, e.g., [ll]). A linear 
bounded operator A acting in a Banach space is called generalized invertible 
if there exists a linear bounded operator G (a generalized inverse of A) such 
that AGA = A. In matrix theory G is also called a (l)-inverse [7]. We shall 
say that a generalized invertible operator A is strictly generalized invertible if 
A is not one-sided invertible. 

As we shall see in the following sections, it is natural to include the matrix 
T,{ in the family of block Toeplitz matrices 

For brevity, we shall use the designation Tk = T,-L ,,. 



90 VICTOR M. ADUKOV 

2. GENERALIZED INVERSION OF BLOCK TOEPLI’IZ MATRICES 
AND WIENER-HOPF FACTORIZATION OF BLOCK 
TRIANGULAR MATRIX FUNCTIONS 

In this section we establish a connection between a generalized inversion 
of the finite block Toeplitz matrix 

Ta = Il~,-jlli=o,~....,n 
j=O,l ,...,m 

and the Wiener-Hopf factorization of the block triangular ( p + 9) X ( p + 9) 
matrix function 

t-m-l I, 0 
A(t) = 

C;= _,aktk tn+l 

Let 

A(t) = A_(t)D(t)A+(t) (2.1) 

be a right Wiener-Hopf factorization of A(t) with respect to the unit circle T. 
We partition the matrix functions A ,(t) and D(t) into blocks: 

where q:(t) and d,(t) have size 9 X 9. In a similar manner we represent 
A,‘(t): _ 

A,'(t) = 

THEOREM 2.1. The block Toeplitz matrix T, is invertible Clefi invertible, 
right invertible) if and only if the right factorization indices of A(t) are equal 
to zero (nonnegative, nonpositive). Zf A(t) has both positive and negative 
factorization indices, then TO is strictly generalized invertible. 
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The matrix of the operator 

is a generalized (one-sided, two-sided) inuemr of T, 

Proof. It is easily seen that for any matrix functions (Y *(t> with entries 
in the algebra W, we have 

Hence 

Recall that we consider T, as the matrix of a finite section of the Toeplitz 
operator Ucl, that is, T, = P,, + lUO P,,, + 1 IIm P,,, + 1. Let us find the operator 
A = P7,+iT,GT,P,,L+i. Taking into account the partial multiplicativky of 
Toeplitz operators (1.1) and the definition of the operators P, + , , P,,, + , , we 
obtain 

Now we transform the first term A,. It follows from the factorizations 
A(t) = A_(t)D(t) and A-‘(t)A(t) = D(t)A+(t) that 

a(t)b:,(t) = a,(t)d,(t) - t”+‘h&(t), 

a(t)b&(t) = a,(t)d,(t) - tn+l17&(t) 
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b,(t)a(t) = d,(t)a:,(t) - tF-‘b;,(t), 

b,(t)a(t) = d,(t)a&(t) -t-“-%,(t). 

Taking into account the relations P,, + ,Utt,,+ t, = 0, Utmrr8 - 1 I I’, + , = 0, 
U,,,T,-lT, = U,;I (j = LB, we have A, = Pn+;O;l,d::l:,+~~*ri~~~,P~+~‘,. 

&t it follo\ivs from the factorization A(t) = A_(t)D(t)A+(t) that 

Hence 4 = P,, + I%~ P,,, + I. 
Since t II+ lb;(t) = d,(t)a&(t) and tn+ lb,(t) = d,(t)u&(t), we have for 

the second term A, 

Here we use the equality 

Gw4(+xt) + u,(t)d,(t)u,+,(t) = tn+lzp, 

which follows at once from the factorization of A(t). 
Similarly, we can obtain A, = A, = 0. Thus A = P, + ,Ua P,,, + 1, that is, 

T,GT, = T,. This means that G is a generalized inverse of I’,. If all factoriza- 
tion indices of A(t) are nonnegative (nonpositive), then in the same manner 
one can prove that GT, = T, (Z’,G = T,). In particular, if all factorization 
indices are equal to zero, then G is the inverse of T,. The theorem is proved. 

??

For p = 4 = 1 and zero factorization indices of A(t) we arrive at 
Theorem 1 of [19]. If we denote 
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then (2.2) can be rewritten in the following form: 

Now in order to obtain the generalized inverse G in an explicit form we 
require an explicit method for a construction of the Wiener-Hopf factoriza- 
tion of A(t) or an explicit method for the construction of S’(t), _Y((t), and 
D(t) = diag[t”l, . . . , t flp+q] in terms of the sequence a_.,, . . . , a,, . . . , a,. 

We shall need the following lemma, which can be proved by standard 
methods (see, e.g., [lo, Chapter VIII]). 

LEMMA 2.1. Let A(t) = A_(t)D(t)A+(t) be the Wiener-Hopffuctoriza- 

tion of A(t). Then 

(1) -m - 1 < pj < n + 1, j = 1,2 ,..., p + q, 
(2) [ A; ’ (t>]j is a vector polynomial in t of degree ut most m + P, + 1, 
(3) [ AI’(t)], is a tiector polynomial in t - ’ of degree nt most n - p,, + 1. 

In particular, R,(t) = [S?(t)]-’ (L,(t) = [5?(t)],>, j = 1,2,. . . , p + q, is 
a vector polynomial in t (t-l) of’ degree at most m + CL, + 1 (n - p, + 1). 

Let us denote 

r-(t) = (G(t) G(t)), l+(t) = (G(t) b,:(t) j. 

Then it follows from the factorization A(t) = A_(t)D(t) that 

u(t)S(t) = r_(t)D(t) - tn+lZ+(t), 

or 

u(t)Rj(t) = tPJrim(t) - t”+‘Z,T(t>, (2.4) 

where t-,-(t) = [r_(t)]-', Zi?(t) = [Z+(t)]j, j = 1,2,. . . , p + 9. 

LEMMA 2.2. Let a ( w) be the multiplicity of - m - 1 (n + 1) ns the 
factorization index of A(t). Then 

(Y = dim ker, T ,)1 , w = dim ker, T,, . 



94 VICTOR M. ADUKOV 

proof It follows from (2.4) that a_, Rj = -a. = a,Rj = 0 and r]:(t) E 
Z;(t) = 0, j = 1,2,. . . , a. Since 

Rj = [(‘A(t) b:~(t))]’ l,+(t) = [(G(t) W))]j, 

we have 

j= 1,2 >...I (Y. 

Hence R,, . . . , R, are linearly independent vectors in ker, T_,. Thus the 
dimension of this space is not less than cz. 

Conversely, let R,, . . . , R, be a basis of kers T_,. We form the matrix 

(I% .a. Rd) and extend it to an invertible 4 X 4 matrix C,,. Let us define 

C,, 0 
c= o I. 

i 1 P 

Then 

( 

t-m-l 

C-‘A(t)C = 4 O 

a(t)Cr, 
i 

tn+lzr . 

Since a(t)C,, = CO,,, al(t)), the matrix C-lA(t)C has the following struc- 
ture: 

t-W1 
1, 0 0 

0 t-nl?l I q-d 0. 
0 q(t) tn+'z, i 

This means that LY is not less than d. Hence d = a. In an analogous manner 
we can obtain the second part of the lemma. m 

Let now j = 1,2,. . . , p + q - co. It follows from the expansion (2.4) that 
the coefficient of tk in the vector polynomial u(t)Rj(t> is equal to zero for 
k = CL, + 1, pj + 2,. . . , n, that is, the coefficients of the vector polynomial 
Rj(t) satisfy the system of equations 

n-p,+ 1 
iFo ak-jR{ = 0, k=pj+l,pj+2,...,n. 
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In other words, the column formed from the coefficients of the column 
polynomial Rj(t) is the element of the space ker, T,,, 1 (j = 1,2, . . . , p + y 
- w). Similarly, if we denote 

then from the factorization AI’(t)A(t) = D(t)A+(t) we have 

_Y(t)a(t) = D(t)?-+(t) - P-‘Z_(t). 

or 

L,(t)a(t) = tb-,‘(t) - t-“LT’z,-(t), (2.Fj) 

where r,?(t) = [r+(t)& Z,-(t) = [Z-(t)],. F rom this expansion it follows that 
the row formed from the coefficients of the row polynomial 
elementofthespaceker,T,_l (j=ol+ 1, a+2,...,p+q). 

L,(t) is the 

These considerations show that we shall need a detailed study of a 
structure of the right and left kernels for block Toeplitz matrices of the family 
]I’&, _ “2. This will be done in the following section. 

3. DEFINITION OF INDICES AND ESSENTIAL POLYNOMIALS 

In the following two sections we develop a technique that we shall use in 
the sequel. The main results were obtained in 1985 [2] for p = 4. 

Our nearest aim is to describe a structure of the right and left kernels of 
Tk- 

Since it is more convenient to deal not with vectors but with generating 
vector polynomials, we pass from the spaces ker, Tk and ker, Tk to the 
isomorphic spaces of generating vector polynomials in t or in t ‘. To do this, 
we introduce operators ~a and aL. For p = q = 1 the operator as = u,. is 
the Stieltjes functional used in the theory of orthogonal polynomials. 

We define on the space of rational matrix polynomials of the form 
B(t) = I;! pnrjtj, 1; E Cqx’, the operator ~a into the space C r’ x’ accord- 
ing to the formula 
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(We use the notation a, for all 1 2 1 because there will be no possibility of 
misinterpretation.) 

By N: ( -m < k < n) we denote the space of vector polynomials of the 
form R(t) = Cj’!!+O’rjtj, rj E @qxl, such that 

u~{tPR(t)} = 0, i=k,k+l,..., n. (3.2) 

It is easily seen that ’ Nk is the space of generating polynomials of vectors in 
ker, Tk. For convenience, we put NR,,, _ i = 0 and denote by N,“+ 1 the 
(n + m + 2)qdimensional space of all vector polynomials in t of formal 
degree n + m + 1. 

It follows from the definition (3.1) that aa(tPR(t)) coincides with the 
coefficient of t ” in the vector polynomial a( t)R(t). Hence R(t) E NkR, 1 
(-m<k<n)iff 

u(t)R(t) = t%(t) + tn+lR+(t), (3.3) 

where R+(t) [R_(t)] is a vector polynomial in t [t-l] of formal degree 
m + k. 

Similarly, we define on the space of rational matrix polynomials of the 
form L(t) = Cy= _,,ljtj, Zj E C”P, the operator crL into the space Clx9: 

uL( L(t)} = E zjapj. 
j= -n 

The space ker, Tk is naturally isomorphic to the space Nk of vector 
polynomials in t ~ ’ of the form L(t) = Cj”:tZjt-j, Zj E C=lxP, such that 

u,(tPL(t)} = 0, i=k,k-l,..., -m. 

We put N:+ i = 0 and denote by N!, _ 1 the (n + m + 2)pdimensional 
space of all vector polynomials in t -’ of formal degree n + m + 1. It is 
easily seen that L(t) E N,f_ 1 (-m < k < n) iff 

_L(t)u(t) = t%+(t) + t-m-lL(t), (3.4) 

where L+(t) [L_(t)] is a vector polynomial in t [t-l] of formal degree 
n - k. 

Let a = dim N!, and w = dim N,“. We shall say that the sequence 
a-,, . . .) a,, . . . , a, is left regular (right regular) if (Y = 0 ( w = 0). The 
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sequence is said to be regular if (Y = w = 0. We shall also apply the notion 
of regularity to the symbol a(t). 

By d: (d,L) denote the dimension of the space NF (N,L). Let A: = Ctt - 
clf_r (-m < k < n + l), Ai = (1; - dt+i (-m - 1 < k < n). 

PROPOSITION 3.1. For any sequence a-,,, . . . . , a,,, . . . , a,, of complex 
p x q matrices we have 

(Y = AR -m < ARn,+1 < ... < A”, < Aft,1 = p + q - w, (3.5) 

p + q - (Y = A”_,, _, > A’;., > “. > A;_, > A5; = o. (3.6) 

Proof. It follows from the definition (3.2) that NkH and tNkR are sub- 
spaces of NR k+, and Nt fl tNF = tNf_, for -m < k < n. Hence, by the 
Grassman formula, 

dim(Nt + tNF) = 2df - d:_,. (3.7) 

Let us denote by hf+ 1 the dimension of any complement Hk”, , of the 
subspace NkR + tNf in the whole space NkH, r. From (3.7) we have hc+ , = 

A?+, - A!, that is, AR k + 1 > A;. It is easily seen that A!? ,,, = (Y and Afl + , = 
p + y - w. In a similar manner we can prove the statement of the proposi- 
tion on the sequence Ai. ??

It follows from the inequalities (3.5) that there exist ~2 + 9 - (Y - w 
integers ~~+i < a*. < pP+y_w such that 

A”-,,, = ... = A;,,, = a. 

A”,,+, = . . . = A:,+, = i, 

A;P,+<,my+i = ... = A”,+r = p + q - w. 

If the ith row in these relations is absent, then we assume that 
definition, put pi = ... = p, = -m - 1 if (Y z Oand /++,, 

J?LI?+c/ = ~2 + 1 if w # 0. 

(3.8) 

Pi = PI+ I’ *J- 
-w+l = ... = 
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Similarly, from (3.6) we have 

A”,_, = **. = Ain+,pl = p + q - (Y, 

A”,, = ... = At;,+,pi = p + q - i, (3.9) 

AL, = . . . 
p+,,-W 

=A+&) 

for some integers va+i < **a < vp+y_w. Put vi = *** = v, = -m - 1 (for 
(Y # 0) and v~+~_~+, = a** = v~+~ = n + 1 (for w # 0). 

PROPOSITION 3.2. For any sequence a _m, . . . , q,, . . . , a,, of complex 
p x q matrices the integers pl, , . . , pp + y coincide with vl, . . . , vp +4. More- 
over, 

‘24 = -indT,. 
j=l 

(3.10) 

Proof. It is easily seen that Ai = p + q - At+ i. This implies that 
vi=vj,j=l ,..., p+q.G~cedf+~ = Cyz!,AT, it follows from (3.8) that 

7) + 9 
c pj = (n + 1)p - (m + 1)q = -indT,. 

j=l 

DEFINITION 3.1. The integers pl, . . . , pp +q defined in (3.8) will be 
called the essential indices (briefly, indices) of the sequence a_,, . . . , 
%J,..., n,, and its symbol u(t). 

From the relations (3.8) we get at once a way to compute the indices of 
the sequence in terms of the ranks rk of the matrices Tk (-m < k < n): 

pj = card{klq + rkPl - rk <j - l};:!,, - m - 1, (3.11) 

j = 1,2,. . . , p + q. Here card A is the cardinality of the set A, and by 
definition r_,,L _ , = rn + 1 = 0. 
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Since the dimension hf+ 1 of the complement HkH,, of the subspace 
Nt + tNF in the space NkA, 1 is equal to A!+ , - At, it follows from (3.8) 
that hf+ 1 # 0 iff k = pj (j = (Y + 1,. . . , p + q - 01. In this case hf, , 
coincides with the multiplicity kj of the index P,~. Hence for k + pi 

NkH+ 1 =N;+tN;. (3.12) 

and for k = CL, 

Nk”t I = (Nk" + tNk"> i H;+,. (3.13) 

DEFINITION 3.2. If cy + 0, then any column polynomials R,(t), . . . , 
R,(t) that form a basis for the space N!,,, will be called right e.ssentiul 
poZynomi& of the sequence a m, . . . , a,, . . . , a, [and its symbol act )I corre- 
sponding to the index p1 = 1.. = pa. 

Any polynomials Rj(t), . . . , IS]+~._ ,(t> that form a basis for H;+, will be 
called right essential polynomials hf the sequence [and its symbol act )I 
corresponding to the index pj, cz + 1 < j < p + 1 - w. 

Similarly, for k # pj 

and for k = pj 

N;_, = (Nk" + t-IN:) i- H:_, 

Choosing bases for the space N,) (if w # 0) and for the spaces HL; , 
(a + 1 <j < p + 9 - w), we obtain a sequence of vector polynomials 
J&+,(t), . . . > Lp+4 (t) that will be called Zefc essential polynomiuls of the 
sequence a_,, . . . , a,, . . . , a, and its symbol u(t). 

Therefore, for any sequence u_,?~, . . . , a,,, . . . , a,, there are p + q indices, 
p + 9 - w right essential polynomials, and p + 9 - (Y left essential polyno- 
mials. The remaining essential polynomials we shall define in the sequel. 

Now we can describe the structure of the right and left kernels of the 
matrices Tk in terms of the indices and essential polynomials of the sequence 
U -,n>*..> (10,. . . ) a,. 
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THEOREM 3.1. Let the integers pl, . . . , pp +4 be the indices of the 
sequence a_,, . . . , a,, . . . , a, 
LP+q(t) be th 

and let R,(t), . . . , Rp+q-w(t); L,+,(t), . . . , 
e essential polynomials of this sequence. Then the vector 

polynomials 

(3.14) 

are the generating polynomials for elements of a basis of the space ker, Tk for 
k E (pi; F~+~], 1 < i < p + q - w. Here we put pup+q+l = n if o = 0. 

Similarly, the vector polynomials 

(3.15) 

are the generating polynomials for elements of a basis of the space ker, Tk for 
k E L~ui.1; pi), CY + 1 < i < p + q. Here we put /A,, = -m if (Y = 0. 

Proof. It follows from (3.12) and (3.13) that the polynomials (3.14) 
generate the space NkR. Since d: = Xi= _m A;, we have 

d,R=ik- ipj. 
j=1 

(3.16) 

It is easily seen that the number of polynomials (3.14) is equal to dc. Hence 
they form a basis for the space NF. 

The second part of the theorem is proved in a similar manner. ??

In particular, it follows from Theorem 3.1 that the kernel structure of a 
finite Toeplitz matrix T, is just like that of a Toeplitz operator with an 
invertible symbol. This fact was first obtained by G. Heinig (see, e.g., [I7]). 

4. CRITERION OF ESSENTIALNESS 

In this section we solve the following problem. What are the conditions in 
order that given integers shall be the indices and given polynomials shall be 
the essential polynomials of the sequence a _m, . . . , a,, . . . , a,? The following 
theorem gives a criterion for checking essentialness. 
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THEOREM 4.1. Let a_, , . . . , a,, . . . , a, be an arbitrary sequence of 
complex p X q matrices and o = dimker, T,. Let K~,..., K~+~_~ be inte- 
gers such that -m - 1 < K1 < **. < Kk+rl-o < n an d 

r+q-0 

c Kj = (n + l)( p - w) - (m + 1)q. (4.1) 
j=l 

Let U,(t), . . . . Ur+q-w (t) 
1<j<p+q-W. Zf 

be column polynomials such that q(t) E No:+ 1, 

n+lifw=O. 
o Z 0, then we put K,,+~,~~+~ = ... = kp+‘, = 

The integers K~, . . . , K~+~ are the indices and the polynomials U,(t), . . . , 
u p+q _ ,(t) are right essential polynomials sf the sequence if and only if the 
(p+q)x(p+q-w)matrix 

Aa = 
cF[t-“wl( t)} ... 

u l,m+ki+l “’ C:,+‘,-W,“‘+~KI,+,,~“+l 

or the (p + q) x (p + q - w> matrix 

is lef invertible. 
Similarly, let CY = dim ker, T- 11,, and let K, + , , . . . , K,’ + ‘, be integers <such 

that -m < K,+ I =g ‘.. < ~~~~~ < n i- 1 and 

P +4 
c Kj = (n + l)p - (m + l)(q - (.y). 

j=u+l 

Let V,+,(t),..., V,+,(t) be row polynomials such that V,(t) E N$ , , a + I 
<j<p+q.zfc~#O,thenweput~~= ... =K,= -m-l. 

The integers K~, . . . , K~+~ are the indice.s and the polynomials V,, ,(t ), 
. . . . Vp+ ,,(t) are left essential polynomials of the sequence if and only if the 
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(p + q - a> X (p + 9) matrix 

IV a+ 1.0 &{trn+Y7+ lG>} ’ 

A,= : 

V P+Y.o 6L(t”‘t’iP+,(t)} 

or the ( p + 9 - CY) x ( p + 9) matrix 

‘V a+l,n-Ka+,+l &It 
-Ka+ IV 

a+lWI ’ 

fi,= ; 

V \ P+q.n-Q+<!+l &{t- “P+lfV . p+riw}, 

is tight invertible. 
Here GR, GL are the Stieltjes operators for the extended sequence 

a_,_,,a_, ,..., a, )..., a,, where a em _ 1 is an arbitrary matrix; Uj, m + )( + 1 
is the leading coeflicient of the column polynomial .!_$(t>; and aVj,o, is ihe 
constant term of the row polynomial V&t>. In the matrices A,, A, the 
operators eR, eL correspond to the extended sequence a_,, . . . , a,, . . . , a,,, 
a ,,+ 1, where anfl is an arbitrary matrix. 

Proof. Necessity: Let k,, . . . , kp+q be the indices, and let U,(t), . . . , 
Up+ y _ ,,,( t) be the right essential polynomials of the sequence. Put r = p + 9 
- w. Suppose that the rank of the matrix A, is less than r. Then there exist 
numbers al,. . . , ar, not all zero, such that 

al~R(t-K~Ul(t)} + *** +ariTfJ-K’Ur<t)} = 0 (4.2) 

and 

@4,.,+.,+1 + ... +aru, m+K +1 = 0. % r (4.3) 

Let the index K, has the multiplicity v, that is, K,+, < K,_ u+l = *** = K, 

< kr+ 1. We introduce the polynomial 

Q(t) = qt”~-“lul(t) + **. +aLY,_“tK~-K’-~Ur_.(t) + a,_Y+lUT_-Y+l(t) 

+ .** +a,q.(t). 
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From (4.3) it follows that the degree of this polynomial is not greater than 
m + K,. Then (4.2) means that crs{t-“rQ(t)) = 0. Since Q(t) E N,,,, we 
have Q(t) E NKy and 

CY r-v+1 u r-“+l(t) + *** +o,_V,(t) 

= Q(t) - t[a,tKr-K1-]U,(t) + ... +(Y,~.tK’~Kr.u.-‘C!~“(t)] 

E NKt + tN,‘. (4.4) 

However, U,_ “+ ,(t>, . . . , U,(t) are the right essential polynomials corre- 
sponding to the index K,. Therefore the condition (4.4) is fulfilled iff 
cY,_ u+l = *** = (Y, = 0. By repeating these arguments for the indices 
K,-.,...,K1, we obtain cr, = ... = cr, = 0. The contradiction shows that 
the rank of the matrix As is equal to T. In an apalogousnmanner we obtain 
the proofs of the statements about the matrices A,, A,, A,,. 

The proof of sufficiency is just like that of Theorem 3.1 from [5] and is 
omitted. w 

We shall call As, A, (AL, A,> test matrices for right (left) essential 
polynomials. 

5. CONSTRUCTION OF THE GENERALIZED INVERSE IN 
TERMS OF ESSENTIAL POLYNOMIALS 

Now we consider a connection between the indices and essential polyno- 
mials of a(t) and the Wiener-Hopf factorization of A(t). 

THEOREM 5.1. The factorization indices qf A(t) coincide with the cmerl- 
tial indices of a(t). Moreooer, the polynomials 

qt) = [(G(t) G(t))]‘> j = 1,2,.. 

are right essential polynomials of a(t), and 

p + Cl - w . 

..>p +y> 

are lef essential polynomials of a( t ). 
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Proof. Let w be the multiplicity of n + 1 as the factorization index of 
A(t). Recall that o = dim ker, T, (Lemma 2.2). If pi, . . . , p, +4 are the 
factorization indices of A(t), then 

p+9-w 
C pj = (n + l)( p - 0) - (m + 1)9. 

j=l 

Moreover, in Section 2 we showed that Rj(t) E iVl+ 1, j = 1,2,. . . , p + 4 
-to. Let us compose the test matrix A, for this system of polynomials. Put 

a _-m _ i = 0 and find GR{tpPjRj(t>}. It follows from Equation (2.4) that 

c?~{~-~JR,(~)} = r;(w) = [(Allah)]'. 

We denote S_(t) = t-“-l S’(t)D-l(t). It is evident that the leading coeffi- 
cient of the polynomial R,(t) coincides with [S_(w>]j. From the factoriza- 
tion A(t)A,‘(t)D-‘(t) = A_(t) we have 

s-(t) = (G(t) G(t)) 

Thus the matrix As is obtained from the invertible matrix 

by deleting the last w columns. Therefore A, is a matrix of full rank, and, by 
Theorem 4.1, pl, . . . . pp+q are the essential indices and the polynomials 
Rj(t), 1 <j Q p + 9 - w, are the right essential polynomials of a(t). 

The second part of the theorem is proved similarly. W 

This theorem gives a way to compute the factorization indices of A(t) in 
terms of the essential indices of the sequence a_,, . . . , a,,, . . . , a,. Hence the 
factorization indices can be explicitly found by (3.11). 

Now we show that the factors A *(t) can be explicitly found in terms of 
the right essential polynomials R,(t), . . . , Rp+q-o(t) (for p < 9) or in terms 
of the left essential polynomials L,+,(t), . . . , Lp+q(t) (for p > 9). 

First we extend the system R,(t), . . . , R,+,_,(t) (for w # 0 and p < 91 
or the system L,, ,(t>, . . . , L, + y (t) (for (Y # 0 and p > 9) to a full system 
consisting of p + 9 polynomials. 
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Let w # 0 and p < 4. Let us define essential polynomials Rp+ 4 _ ,(t ), 
. . . , Rp+<,(t) corresponding to the index n + 1 of multiplicity o. To do this, 

we extend the left invertible matrix A, to an invertible matrix h”s and 
partition the additional columns [ Pa]j of the matrix h”a into blocks o;~ E 
@PXl and 7; E @qxl: 

[Ag] = 7; ) l I p+q-o+l<j<p+q. 
3 

Moreover, we extend the sequence a _m 1, a _ ,n, . . . , a,, . . . , a,, by an arbi- 
trary right invertible matrix a,, r. Then the matrix (a, + , , a,,, . . . , a _ ,,I, 
a_,,, ,> is also right invertible. Hence the equation 

=a ,I+1xo + anxl + ... +a..,,,x,+,,,+l + a-,,,-~x~+,,,+2 = Y 

(xi E @qxl, y E Cpxl) is solvable for any y. 

DEFINITION 5.1. Let w # 0, p < 4. Arbitrary column polynomials 
R T’+‘I-W+l(t)-., Rptq (t) of formal degree n + m + 2 such that 

i?It{t-(fL+l)Rj(~)} = o;~, R, ,,+,,,+z = rj, 

j=p+q-w+l,...,p + 1, are called right essential polynomials of the 
sequence a_,,, , . . . , a,, . . . , a, corresponding to the index n + 1. 

In a similar manner we define deficient left essential polynomials 
L,(t), . . . , L,(t) is cr # 0 and p > q. 

DEFINITION 5.2. Let cr z 0 and p > q. We extend the right invertible 
matrix A,, to an invertible matrix MI* by the rows 

j = l,..., a. The sequence a_,,, ,, a-,,,, . . . , a,, . . . , a”, is extended by an 
arbitrary left invertible matrix a,, ,. Arbitrary row polynomials L,(t ), . . . , 
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L,(t) in t-l of formal degree 12 + m + 2 such that 

&{t”‘+‘Lj(t)} = $’ Lj,O = lj> 

j = 1, . . . ) a, are called lef essential polynomials of the sequence 
a- m, . . . , a,, . .., a, corresponding to the index -m - 1. 

Note that the equations GL{t m+ ‘L&t )} = qL are solvable because a, + 1 
is left invertible. 

Thus for any sequence of matrices there are p + q right essential 
polynomials or p + q left essential polynomials. 

THEOREM 5.2. Let a(t) = CJ’= _,a,tj be a rational p x q matrix poly- 
nomial. Suppose that a(t) 
essential indices, and let 

isrtghtregularorp <q. Letpl,...,+,+q bethe 

9(t) = (W) *** ~p+qw) 

be the matrix of the right essential polynomials of a(t). 
Then the tight Wiener-Hopf factorization of A(t) with respect to T can be 

constructed by the formula 

A(t) = A_(t)D(t)B;‘(t), (54 

where 

A-(t) = 
t-m-lLqt)Wl(t) 

i r-(t) ’ 

and the matrix polynomials r_(t ),I +(t) are uniquely determined by the 
expansion 

a(t)%(t) = r_(t)D(t) - tnfll+(t). (5.2) 

Similarly, ifaCt> is left regular or p > q, then 

A(t) = BI’(t)D(t)A+(t), (5.3) 
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is the right Wiener-Hopf fadorization of A(t). Here A,(t) = (r+(t) 
t”+ ‘D-VtLY~t)), B_(t) = U_(t) -Bt>>, 

I 4(t) ’ 
23(t) = ; 

\ L,+,(t), 

is the matrix of the left essential polynomials of act 1, and l_ (t ), r+ (t) are 
uniquely determined by the expansion 

P(t)a(t) = D(t)r+(t) - tKm-lZ_(t). (5.4) 

Proof. For the construction of the factorization we shall use the full 
system of right or left essential polynomials. Hence we must consider the two 
cases. 

Suppose that a(t) is a right regular of p < q. Let pl, . . . , pp + 4 be the 
essential indices, and let R,(t), . . . , R, +4 (t) be right essential polynomials of 
a(t). Recall that ~~+~_~+i = ... = pr+(, = n + 1 if w = dimkerL T,, Z 0. 
The polynomials R, + ‘I _ o+ i( t ), . . . , R, + 4( t ) corresponding to the index n + 
1 are constructed by the matrix pa (see Definition 5.1). 

If pj < n, then the condition R,(t) E N:+ 1 is equivalent to the following 
relation: 

a(t)Rj(t) = t”Irjj-(t) - t”+‘llT(t) (5.5) 

[see Equation (3.3)]. Here rJy( t > [ Zj?< t >I is a column polynomial in t 1 [t I of 
degree at most m + pj if pj > -m, and rj(t) = Z,?(t) = 0 if pj = -m - 
1. The polynomials r]:(t), Z;(t) are uniquely determined by the above 
expansion. Let us compare the coefficients of t 3 in (5.5) for CL, > -mm: 

aqRj,o + a@ _lRj 1 + *** i a_,Rl,,,F i = rj~(~). 

In the matrix A, we put a-,,, _ i = 0. Then the previous equation can be 
rewritten as follows: 

6E{t-PjRj(t)} = r;(m). (5.6) 

It is easily seen that this equation is valid for pj = -m - 1 too. 



108 VICTOR M. ADUKOV 

Now let pj = n + 1, and let Rj(t) be a right essential polynomial 
corresponding to the index n + 1. The expansion (5.5) is also valid in this 
case, and all coefficients of the polynomials rj (t), Zj’(t> except the constant 
terms are uniquely determined. Let us compare the coefficients of t”+’ in 
(5.5): 

U”RjJ + a,_lRj,z + *-* +a_,Rj,“+,+, = r]p) - Z,‘(O). 

Let an+ 1 be the right invertible matrix from A; (see Definition 5.1). The 
constant terms Tag and I]?(O) are related by the equation 

&{t-‘~+l’Rj(t)} = rj(@J) - Z,+(O) + un+lRj# 

In (5.5) we put 

‘T(O) = 'n+lRj,O F-7) 

for /.L~ = n + 1. Then rj~(m) is uniquely determined by the equation 

&p+l)Rj(t)} = rj(@J). 

Now the relations (5.5)-(5.6) are fulfilled for all right essential polynomi- 
als. We rewrite these equations in the matrix form 

( u(t) tn+lzp 9(t) )i I Z+(t) 
= r-(t)D(t), (5.8) 

( { c?~ tPRl(t)} ... a& Pp+‘Rp+,(t,}) = r_(a). (5.9) 

Here 

9(t) = (R,(t) *** R,+,(t)), r_(t) = (c(t) *** q+,(t)) 

Z+(t) = (w ... z;+q<q. D(t) = diag[tP1,...,tPp+q]. 
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9_(t) = t-m-lsy -p’(t). (5.10) 

Since the column [~~?(t>]j = Rj(r) is a polynomial in t of formal degree 
m + ~~ + 1, the column [s_(t>]j is a polynomial in t- ’ of the same formal 
degree: We rewrite (5.10) as follows: * ’ 

t-m%zqr) =9_(t)ll(t). 

Now from (5.8), (5.11) we obtain 

(5.11) 

Let us introduce ( p + q) X ( p + y) matrix functions 

A-(t) = 

B+(t) [A_(t)] is a matrix polynomial in t [t-l]. Hence B+(t) [A_(t)] is 
analytic in the inner domain D, [the outer domain D-1 bounded by the 
contour 8. Thus we get 

A(t)R+(t) = A_(t)D(t). 

Since the sum of the essential indices of a(t) is (n + 1)~ - (m + l)y, 
we obtain det B+(t) = det A_(t) = const. Let us find A_(m). From (5.9). 
(,5.10) we have 

R 1,n,+p,i-1 ... 

~R{t-~q t)} ... 
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It follows from this that 

A_(m) = (5.12) 

Hence det I+ = det A_(t) f 0, and B,‘(t) [A~‘(t)I is a m&-ix polio- 
mial in t [t-i]. Thus 

A(t) = A_(t)D(t)B;‘(t) 

is a Wiener-Hopf factorization of A(t) with respect to U. 
The case when a(t) is left regular or p > 9 can be analyzed in a similar 

manner. ??

Using Theorems 5.2 and 5.1, now we can recover left (right) essential 
polynomials if we know p + 9 right (left) ones. We can do this by the 
following procedure. Let a(t) be a right regular rational matrix polynomial or 
p < 9. Let R,(t), . . . , RP+q(t> be right essential polynomials of a(t). The 
matrix a(t)S(t) can uniquely be expanded in the form 

u(t)Lqt) = r_(t)D(t) - t”+‘Z+(t). 

Let us form the matrix 

A-(t) = 
i 

By Theorem 5.2, this matrix is the factor of the right Wiener-Hopf factoriza- 
tion of A(t). Then, by Theorem 5.1, the row polynomials 

j=a+1,a+2 ,...) p+9, 

are left essential polynomials of a(t). Here 

AI’(t) = 
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If (Y z 0, then the system of these left essential polynomials can be extended 
by the polynomials Lj(t), 1 <j < (Y. We shall call them the Zef essential 
polynomials corresponding to the index - m - 1. 

DEFINITION 5.3. Let L,(t), . . . , Lp+q(t) be the left essential polynomi- 
als that are constructed with the help of the right essential polynomials 
R,(t), . . . , Rp+$t) according to the above-mentioned procedure. The essen- 
tial polynomials L,(t), . . . , Lp+4(t> and R,(t), . . . , Rp+(,(t) are called the 
conforming essential polynomials of u(t). 

Similarly, if we know p + q left essential polynomial [a(t) is left regular 
or p > q], then we can recover the right essential polynomials R,(t), . . . , 
R,+,(t) and constructed the conforming polynomials. 

REMARK 5.1. Let R,(t), R,(t) be right essential polynomials of a scalar 
sequence. It is easily seen that if 

L,(t) = & (m+P2+“R2(t), L,(t) = &“‘+‘1+‘)R,(t), 

UO CO 

then R,(t), R,(t), L,(t), L,(t) are the conforming essential polynomials of 
this sequence. Here go = g{tPP2R, ,+P,+lRP(t) - teP’R, ,,,+P2+lR,(t)] 
and, by the essentialness criterion, a0 ‘Z 0. 

Now we can formulate our results (Theorem 2.1, Theorem 5.1, Theorem 
5.2) on the generalized inversion of block Toeplitz matrix T, without the use 
of the Wiener-Hopf factorization of the auxiliary matrix function A(t). 

THEOREM 5.3. Let a(t) = C;= _,,a,tj be a rational p X q matrix poly- 
nomial. Let Pi,..., CL, + 1 be the essential indices, and let 

( L,(t) ’ 

9(t) = (R,(t) ... R,+,(t)), L?(t) = : 

\ L,+:,(t) , 

be the matrices of the conforming right and lef essential polynomials of act >. 
Then the matrix of the operator 

G = P,+;O~P,+,uo~IP,+,u~P,-,IIm p,+17 
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where D(t) = diag[tPl, . . . , t b+q], is a generalized (one-sided, two-sided) 
inverse of T,. 

Let us find the formula for G in terms of the coefficients of the matrix 
polynomials B(t), T(t). Let A, < .a* < A, be the distinct essential indices 
of a(t), and let vi,..., V, be their multiplicities (ui + ..* + v,. = p + 4). 
Then 

Eli = 
’ i 

1, i = VI + *** +Vj_] + l,..., VI + .-* +vj, 

0 otherwise. 

Put Is, = 0 for -n < k < m, k # -A,, . . . , A,. Then the matrix II of 
the operator P, + lUn- 1 P, + 1 1Im P, + i has the following form: 

II= 

/ 

\ 

s ; It is easily seen that II i: 

n, n_, *** n-, 
rI, rI” *a* K,,, 

n, n,,_l ... n,_, 
a subpermutation matrix. 

From Theorem 5.3 we have 

Here sj E @Px(P+Y) [_2j E c(p+9)xp] are the coefficients of B(t) [.2(t)]. 
We note that Theorem 5.2 can be applied to the problem of the explicit 

construction of a Wiener-Hopf factorization for block 
I 

triangular matrix func- 
tions of the form 

G(t) = 
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where G,,(t) [G,,(t)] is a 9 X 9 [p X pl matrix function admiting 
Wiener-Hopf factorization of the form 

G,,(t) = Gll(t)tY’G:i(t) [G,,(t) = G,( t)tVpG&( t)] . 
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a right 

In particular, we can obtain an explicit solution of the factorization 
problem for an arbitrary 2 X 2 triangular matrix function. This was done in 
the paper [I]. 

6. GENERATING MATRIX POLYNOMIALS FOR THE 
GENERALIZED INVERSES 

In this section we obtain a formula for the generating matrix polynomial 

G(t, s) = c c gijt”s---’ 
i=o j=o 

for the generalized inverse 

G = Ilg,~Il~=,~.,,,,,, . 
~j=o.....,, 

Let 9(a, P> (- m < (Y < /? < n) be the projector acting by the formula 

9( a!, p> i rJ’ = ; r,t’. 

i= -m 1=01 

If the operator p(a, p> acts on a polynomial in t and s, then the notation 
~~(a, P> means that the operator acts on the variable t. 

PROPOSITION 6.1. The generating matrix polynomial of the generalized 
incerse G from Theorem 5.3 is found by the formula 

G(t, s) =gt(O, m)Ts( -n,O) 
~‘(t)Q?(t, s)-qs) 

1 - t.s-’ . (6.1) 

Here 9(t), P(s) are the matrices of the conforming essential polynomials, 
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and the integer CT is found from the condition 

Proof. Consider the matrix function 

Since for the conforming essential polynomials the condition 
9(t)D-1(t>_Y(t> = 0 is fulfilled, S’(t, s) is a polynomial in t of order at 
most max(m + +,+y, m), and s -’ of order at most max(n - pr, n). 

Let B = IlbijllyjZo (bij E C=4xP) be the matrix of the operator B = 
URUDm~U9. Recall that B is an operator from Zbx r into Zix r. We shall show 
that 9(t, s) is the generating polynomial of B. The proof is similar to the 
proof of a formula for the generating function of the inverse of a Toeplitz 
operator [ 181. 

Apply the operator B to the sequence E = (I,, smlZp, se2Zp,. . .I. For 
(s( > 1 the sequence belongs to Zbx I and has the symbol (the Fourier 
transform) 

m 1 
C tjs-jlp = ItI = 1. 

j=o 
1 _&P, 

The symbol of the sequence LEI E is the function CT j= ,bijtid, that is, the 
generating function of B. 

On the other hand, the sequence U&.E = (P(s), S-~-Y(S), sf29’(s), . . . > 
has the symbol _Y’(s)/(l - ts-‘). Hence the symbol of the sequence UD-~UYE 
is 

p ~-‘w~w 
+ 1-ts-' ’ 

where the projector P, acts by the formula 

p, 
i 

5 rjtj = 5 rjtj . 

j= --oo j=O I 
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Since 

we have 

Thus the symbol of the sequence U9Un~U2E is the function 

Hence, 9(t, s) is the generating function of the operator B: 

sqt, s) = f f bijtis-j, JtJ = 1, ISJ > 1. 
i-0 j=O 

Since &J(t, s) is a polynomial in t, s-l, we can omit the conditions Jt 1 = 1, 
ISI > 1. 

It is evident that the generating polynomial of the matrix of the 
operator G = P,,,+ 1U9UD- IU~ P, + ,lIm P, + 1 coincides with the polynomial 
pt(O, m).9s( - n, O)S(t, s). The proposition is proved. ??

If in (6.1) we replace D,(t, s) by 

Q(t, s) = diag[tF1 ,..., t”“, .scLk+I ,..., s++q], 

O<k<p+q,th en we obtain the generating polynomial of another general- 
ized inverses of T,. 
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PROPOSITION 6.2. The matrix polynomial 

G,(t, s) =Pt(O, m)gS( -n, 0) 
9’(t)W(c s).Jqs) 

1-ts-l ’ 
O<k<p+q, 

(6.2) 

is the generating polynomial of some generalized inverse G, of T,. 

Proof. For k = CT the statement is proved in Proposition 6.1. Hence it is 
sufficient to prove that for all k (1 < k < p + q) the matrices G, and G, _ 1 
are generalized inverses of T, simultaneously, that is, T, KT, = 0, where 
K = Gk_l - G,. For the generating function K(t, s> = GkPl(t, s) - G,(t, s) 
the last condition can be rewritten in the following form: 

u&T;{t-iSqt, s)} = 0, i = 0,l ,...,n, j = 0,l ,...,m. 

If 

then 

1-ts-’ ’ 

where dk(t, s> = (1 - (ts-l>-pk>/(l - ts-‘1. Hence 

K(t, s) =pt(o, m)p,( -n,o)Rk(t)S-pkdk(t, s)Lk(s). 

Let & < 0. Then 

II+1 
dk(t,s) = c tjsPJ 

j=O 

and 

K(t,s) = c tjRk(t)[~~(-n,O)s-‘-UL~k(s)]. 
j=o 
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Therefore, 

l&-l 
crR”{tPK(t, s)} = c ~+{t-~+~R~(t)}9~( -~,O)S-J-~“‘L~(S) = 0 

j := (J 

for i = 0, 1, . . . , n. Here we use the inequality pk + I < i - j < n and the 
definition of the right essential polynomial R,(t). Thus I;, K = 0. 

In a similar manner we can prove that KT, = 0 for /..Q > 0. If /.L~ = 0, 
the d,(t, s) = 0 and K == 0. Thus, we always have T, KT, = 0. The proposi- 
tion is proved. ??

‘i. SOME SPECIAL CASES OF THE GENERALIZED 
INVERSION FORMULAS 

Now we consider some special cases of (5.13), (6.1), and (6.2). 

If all indices of a(t) are equal to zero, then the sequence is regular and 
the matrix T, is invertible. Let 

be the matrix of arbitrary right essential polynomials, and let 

’ L”,(t) ’ 
q.(t) = ; 

\ L;;+,(t) , 

be the matrix of conforming left essential polynomials. If L,(t), . . . , L,, +,(t> 
are arbitrary left essential polynomials, then there exists an invertible matrix 
C such that 

x(t) = cz(t), where 9(t) = 

f -h(t) 

\ L,,. ,(t 

\ 

1; 
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It follows from this that ML = CA,, where kL [A,] is the test matrix for 
2$,(t) [9(t)]. From the definition of conforming left essential polynomials we 
have 

0 z,-l 
lYL = B-p) _I 

i 1 9 
0 ’ 

where 

-1 

B_(W) =A+) = Ai1 . 

Here AR is the test matrix for 9(t). Thus C = A-l, where 

A,. 

Applying Theorem 5.3 and Proposition 6.1, we arrive at the following 
result. 

COROLLARY 7.1. Let R,(t), . . ., R,+,(t) be any linearly independent 
polynomials in the space NF, and L,(t), . . . , Lp+q(t) be any linearly indepen- 
dent polynomials in NL.,. (The dimension of these spaces is not less than 

P + 4.) 
The block Toeplitz matrix T, is invertible if and only if the matrix 

GR{R~+~(~)} 
R p+q,m+l 

or the matrix 

1 L 1.0 C?L(tm+lL1( t)} ’ 

A,= ; 

L 
\ P-c430 
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is invertible. Here Rj, m + I is the leading coefficient of the polynomial Rj(t); 
Lj,O is the constant term of Lj(t); and GB, GL are the Stieltjes operators 
for the sequence aP,_lr a_, ,..., a, ,..., a,, where a-,-, is an arbitrary 
matrix. 

If the matrix A, is invertible, AL is also invertible, and vice versa. 
Moreover, in this case the polynomials R,(t), . . . , R,+,(t); L,(t), . . . , L,+,(t) 
are the essential polynomials of the sequence a_, , , . . , a,,, . . . , a,,, and the 
generating polynomial for the inverse of T, is constructed by the formula 

’ L’(S) ’ 
( 0 R, t ... R ,+,W)h ; 

Lqt,s) = 
\ L,+,(s), 

1 - ts-l (7.1) 

where A = A, 

This result was first established in 1985 [2] for p = q (scalar case in [4]). 
Since the coefficients of essential polynomials are solutions of systems of 
homogeneous linear equations, they are nonuniquely determined parameters. 
Therefore (7.1) contains a family of inversion formulas. Choosing special 
bases for the spaces NP, Nk r (the spaces of essential polynomials), we mav 
obtain some special cases of the inversion formula. 

For example, if we normalize the essential polynomials by the conditions 
A, = A, = I, +4, then we obtain 

COROLLARY 7.2. The block Toeplitz matrix T, is invertible if and only if 
there exist solution of the systems of matrix equations 

E ai_jcxj = SiOZP, i=O,l,..., n, 
j=o 

F aiPjPj = -a,_,,~_,, i=O,l,..., n, 
j=o 

(7.2) 
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k S,+,a,_, = -a_,pl, i=O,l,..., m, 
j=o 

(7.3) 
2 r,+laj-, = simzqa i = 0, 1, . . . , m, 

j=o 

where a _m _ 1 is an arbitrary matrix. Zf the systems (7.2) are solvable, then 
the systems (7.3) are also solvable and vice versa. The inversion formula for 
T, has the following form: 

B = qa,,..., a,)U(Zp, a,,..., 8,) - q&a...> P?n)u(o~Yl~---~~n). 

Here 

(Yo ‘** Ym *** yn ’ 
UC Y O,“‘, yn) = : -.* : ..* ; 

0 . . . 
Yo ... Yn-m, 

for m < n, and 

L(q),..., 
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’ Yo *** Yn 

qy,,..., yn) = ; . . . ; 
\o . . . YO 

for m > n. 
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The parameters a;., bj, aj, r, are the coefficients of the matrix normalized 
essential polynomials. In the scalar case an analogous result was first obtained 
by Li-Gun-Y [20]. In the block case the invertibility of T, was proved in [13]. 
In that article the inversion formula, which use only the solutions of systems 
(7.2) or only the solutions of systems (7.31, was found. 

In an similar manner we can obtain from (7.1) other well-known inversion 
formulas (the Sakhnovich formula, the Gohberg-Heinig formula, and the 
Gohberg-Krupnik formula). 

7.2 
Let ~1 = 4 = 1. Applying Theorem 5.3, Proposition 6.2 for k = 0, and 

Remark 5.1, we obtain 

COROLLARY 7.3. Let pl, puQ be the indices and let R,(t), R,(t) be the 
right essential polynomials of a scalar sequence a_,,, , . . . , a(,, . . , , a,,. Then the 
polynomial 

G(t, s) = iPf(O, m)S$(-n,O)r-(“+I) 
R,(s)R,(t) - R,(t)%(s) 

1 - ts - ’ 

is the generating polynomial of a generalized (one-sided, two-sided) inver.ve 

(jf T,,. 

This result was establish by a different method in [3]. For Hankel matrices 
a similar formula was found in [I7]. 

We note that Theorem 3 of [3] b a ou a recovery of the initial sequence by t 
indices and essential polynomials can be generalized to the block case. 

7.3 
In conclusion we note that the results of this paper can be formulated in 

the same form as the results of the theory of Toeplitz operators. This enables 
us to state that the proposed technique of indices and essential polynomial is 
an analog of the Wiener-Hopf factorization method. 
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From Equations (5.2) (5.4) ‘t 1 is easily seen that an arbitrary rational 
p X 9 matrix polynomial a(t) = Cy= _ ,u,tJ can be represented in the form 

u(t) = r-(t)D(T)r+(t). (7.4) 

Here the matrix polynomials T f (t) in t ’ ’ satisfy the following conditions: 

(I) there exists a matrix polynomial ~-l-~‘(t) [r’_“(t)] in t [t-l] such that 
f-~-l’(t)?-+(t) = I, [r_(t)?-L-l)(t) = I,]; 

(2) r!-l)(t)o-‘(t>r(-l)(t) = 0; 
(3) 9_(t) = t-m-‘r$-l)(t)D-l(t> [P+(t) = tn+lDel(t)r(_l)(t)] is a 

matrix polynomial in 5’ [t]; 

are constants. 

It turns out that any r+ (-l)(t) r<-‘)(t) are matrices of conforming essen- 
tial polynomials of a(t). The repiesentation (7.4) of a rational matrix polyno- 
mial u(t) we shall call an essential factorization of u(t). 

The following theorem shows that in the finite-dimensional case the 
essential factorization plays a role of a Wiener-Hopf factorization. 

THEOREM 7.1. Let 

Ta = IIui-jIIi=o,...,n 
j=O,...,m 

be an arbitrary block Toeplitz matrix. T, is strictly generalized invertible if 
and only if its symbol a(t) = Cj”= _m J a.tJ has both positive and negative 
essential indices. T, is le$ (tight) invertible if and only if all essential indices 
of a(t) are nonnegative (nonpositive). Thus, T, is invertible if and only if all 
indices are equal to zero. Moreover, 

+ 
indT, = - ‘zqpj, 

j=l 

dimker T, = - c pj, dim coker T, = c pj. (7.5) 
PjLj<O Pj>O 

u(t) = r-(t)D(t)r+(t) 
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is a essential factorization of a(t), then the matrix of the operator 

123 

G = P,+lU~!-l,P,+,U~-lP,+,U~(-I,P,,+,IImP,+, 

is a generalized (one-sided, two-sided) inverse of T,. 
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