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Abstract  

For any prime p we establish a congruence of Kummer type for the NSrlund polynomial B, (x), 
and determine the highest power of p which divides the coefficient denominators of the NSrlund 
polynomial. This improves the result of Carlitz (Math, Nachr. 33 (1967) 297-311), where only 
an upper bound was proven. We deduce a simple formula for the least common denominator of 
the coefficients. Applications are made for the Stirling polynomials. (~) 1999 Elsevier Science 
B.V. All rights reserved 
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1. I n t r o d u c t i o n  

We are pleased to contribute to this volume dedicated to Gould, whose collection o f  

binomial identities [6] led us into the field o f  Bernoulli and related polynomials [2]. 

The N6rlund polynomials B~ ~) are defined by [10, Ch. 6] 

( ' /  
. n n! = ~ " ( 1 )  

They have many important applications, e.g. B(~ k) is the Bernoulli number o f  order k 

and degree n, and in particular B(n 1) = B ,  is the ordinary Bernoulli number, and B(, ") 
is the N5rlund number [7]. Many other important polynomials for combinatorial al- 

gebra can be expressed in terms of  the NSrlund polynomials, including the Stirling 

polynomials o f  both kinds [2,5] and the Stefani polynomials [4]. 

B(~ x) is a rational polynomial o f  degree n, with highest coefficient ( - 1 / 2 ) " .  Some 
examples are B~X)= 1, BlX)= - x / 2 ,  B~ x) = x ( 3 x -  1)/12, B~X)= - x 2 ( x -  1)/8, B4(X) = 

x(15x 3 - 30x 2 + 5x + 2)/240, and B~ x) = - xe(x - 1)(3x 2 - 7x - 2)/96. 

We proved [2, Lemmas 9.2, 9.4] that x = l is a simple root o f  B (x) if n is odd > 1, 

and that x = 0 is a simple root if  n is even > 0, and a double root if n is odd > 1. 

0012-365X/99/$ - see front matter (~) 1999 Elsevier Science B.V. All rights reserved 
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Carlitz [4] determined many arithmetic properties of the Nrrlund polynomials, in- 

cluding an upper bound for the highest power of a prime p dividing the denominator 
of a coefficient of  B~ x). We prove in this paper that his upper bound is actually a max- 
imum, and can even locate the highest degree term in which this prime power occurs. 
Our result is similar to the description we gave in [1] of the p-adic pole pattern of 
the Bernoulli polynomial B},k)(x), where the order k can be an arbitrary p-adic inte- 
ger. (In that paper, we made the unnecessary assumption that k was a rational integer 
from 0 to n.) If Ix] is the integer part function, Theorem 1 can be restated as follows. 

Theorem 1. I f  m = [ n / ( p -  1)] then (mp)!B(~X)/n! has p-adic integer coefficients, not 
all divisible by p. 

A simple necessary and sufficient condition for B~ x) to be p-integral (denominators 
prime to p)  is an immediate consequence, namely B(, x) is p-integral iff n >. [n/(p-1)]p.  
It follows that if B~ x) is p-integral then n <% p ( p - 2 ) .  Considering all primes, we deduce 
a simple formula for the integer least common denominator of the coefficients of B~ x), 
and it follows easily that the numerators are then relatively prime. 

We have also found a p-adic mod p congruence of Kummer type for B~ x) multiplied 
by the highest power of p in a denominator. Theorem 3 can be restated as follows. 

Theorem 3. I f  m = [ n / ( p -  1)] and a = n -  m ( p -  1 ) = n m o d p -  1, then 

o,x, o,x, 
~"-~ (mod p), (mp)!~.  = ( - 1 )  m Z (x - n - l ) k ( p _ l ) + m ( c  r _ k)------~. 

k 

where the effective range of  summation is O<~k <~ min{a, mmodp}.  

This general congruence has many interesting special cases, including the congruence 

2nB~nX) = (x - n - 1)n (mod 2) 

which is a variant of one which Carlitz found [4, (6.3)], by a more complicated method. 
Since there are simple formulas expressing the Stirling polynomials in terms of the 
Nrrlund polynomials, our theorems have immediate applications to Stifling 
polynomials, i.e. Theorem 1 holds as stated if B(~X)/n! is replaced by a Stirling polyno- 

mial fn(x) or gn(x), and Theorem 3 holds with obvious minor modifications. 
In this paper, we give proofs independent of  those given by Carlitz, to make this 

paper essentially self-contained, and also because we believe that our methods are 
more elementary and in some cases more powerful. They are certainly more con- 
structive. Carlitz makes heavy use of properties of Bernoulli numbers and of the 
theory of  Hurwitz series. We, on the other hand, rely on an explicit formula for 
the 'terms' of a Nrrlund polynomial and use only standard p-divisibility results for 
factorials. 
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It was pointed out to us by a referee that Lundell in [8] proved results equivalent to 
our Theorem 1 and some of its corollaries. Although his method has much in common 
with ours, his proof is much longer and lacks the characterization of the relevant terms 
that is provided by our simple, combinatorial, Lemma 2. Our main result, Theorem 3, 
follows easily form this explicit characterization. 

2. Preliminaries 

If p is prime and n E N, let r(n)= rp(n)= the highest power of p dividing nI. It 
should be noted that this does not conform to the notation of [4], where the author 
uses v(n) for what we call r(n). 

If n --- ~ a l p  i is the base p expansion of  n (with 0 ~< ai ~< p -- 1 ), let S(n) = S p ( n )  = 

~ a i =  the digit sum. Note that S ( n ) = - n ( m o d p -  1). 
The following properties are elementary and well known (cf. [9]): 

(i) If mp<~n<(m + 1)p then r ( n ) = r ( m p ) = m  + r(m). 
(ii) (mp + k)! = ( -  1)mk!m!pm(mod pr(mp)+l ) if 0 ~<k < p. 

(iii) r(n) = (n - S(n)) /(p - 1). 
(iv) r(n + m)>~r(n) + r(m), with equality iff p~ (,+m). 

(v) p~ (,~) iff S(n) = S(m) + S(n - m). 

Recall the following explicit formula for B~ ~) [3, Section 2]: 

B(n x) =(-1)nn! ~ t u ( X  - n - 1) (2) 
w<~n 

summed over all non-negative integer sequences ( u ) = ( u l  . . . . .  un), where w = w ( u ) =  
iui is the weight, and d = d(u)= ~ ui is the degree of the term 

tu(S)= ( S d ) ( u ,  d ' ' ' un) / (2u~ ' ' ' (n+l)u°)=(s)a / (u!Au) '  (3) 

with the shorthand u! = Ul ! ' "  Un !, A u : 2 u~ " "  (n+ 1 )u, and (S)d = S(s-- 1 ) . . .  ( s - d +  1 ). 
If (u) is as above, let v 1 (u) = highest power of p dividing u I A u, i.e. v i (u) = ~ r( u i ) 

+ ~ ui~i where cci = the highest power of p dividing i + 1. 

Lemma 1. Suppose that ( a ) u i > 0  for some i > p  - 1 or (b)ui>~p - 1 for some 
1 < i < p  - 1. Then there exists (u') such that w(u')<<.w(u) and vl(u')>vl(u).  

Proof. First consider (a), and let i = k p  ~ - 1 where a~>0, ( k , p ) =  1, and i>.p. Let 
u~.=uj i f j ~ i  or p -  1, u~=0, and Up_ l =Up-l + ( a +  1)ui. It is easy to verify that 
(u') has the desired properties. 

For case (b), let u )=  uj if j ~ i  or p - 1 ,  u~ = 0, but now Up_ 1 = Up_ l+ [u i / ( p -1 ) ]  +1. 
Again the verification is straightforward. (What is needed is that r(ui)<. [ u i / ( p -  1)] 
and ( p -  1) ([u i / (p-  1)] + 1)<.iui if i~>2 and ui>~p-  1.) [] 
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Thus if  Vl(U) is maximal for all w(u)<<.n then ui=O for all i > p -  1 and u i < p -  1 
for all 1 < i < p - 1. It follows that i f  p > 2 then 

Vl (U) = r(ul  ) ÷ r(Up_ 1 ) ÷ Up_ 1 = r ( u l  ) ÷ r(pup_ 1 )" (4) 

For the remainder of  this paper, let n = m ( p  - 1) ÷ a with O<~a<p - 1, so 

m -- [n/(p - 1 )] and a = n mod p - 1. 

Lemma 2. The maximum value of  •l(U) for all w(u)<<.n is VI(U ) =r(mp). Further- 

more, i f  w(u)<<.n then v , (u)=r(mp)  iff Up_, = m - k ,  u, >~kp, and p{  (~), with k >>.O. 

Proof.  First observe that w(u)<<.n implies that Up_l<~m, i.e. Up_l = m -  k with 

k~>0. But ul + (m - k ) ( p -  1 ) ~ < n = m ( p -  1) + a, so ul <~k(p-  1) + a < ( k  + 1)p. 
Thus r(ul)<<.r(kp), and by (4), i f  Vl(U) is maximal then v , ( u ) = r ( u l ) +  r ( m -  k ) +  
m - k<~r(kp) + r(m - k) + m - k<<.m + r(m), i f  p > 2 ,  with v l (u )=m + r ( m ) =  

r(mp) iff ul >~kp and p~ (~). Clearly if  p = 2 ,  then by Lemma 1, vl(u) is maximal iff 

ul = m = n .  [] 

Remark .  Since w(u)<<.n, we have Ul >~kp iff Ul = k ( p -  1 ) + 6  where k<<.6<~a. Hence 
if U l >i kp then k ~< p - 1, so p ~ (~) iff p { (m)k iff k ~< m mod p. In particular all (u) 
such that w(u)<~n and v l (u)=r(mp)  have Up-1 =m iff a = 0  or p[m. Of  course any 

(u) with w(u)<~n and Up-1 = m satisfies the maximality condition. 

Corollary.  Among all terms with w(u)<~n and maximal vl(u) there is a unique term 

with minimum degree d =- m and a unique term with maximum degree 
d=-m + K ( p -  2 ) +  a, where K =  min{nmod  p -  1, m m o d  p}. 

Proof.  d(u) >>. U l + Up_ 1 >>- kp + (m - k) = m + k ( p  - 1 ), so the minimum degree is m, 

when Up-1 =-m and ui = 0 if  i ¢ p -  1. 
For the maximum degree, if  ui > 0 for some 1 < i < p -  1, we can increase d(u) by 

taking u~ = 0 and u' 1 = ul +iui, which is impossible. Thus we can assume ui = 0 if i ¢ 1 
or p -  I, so up_l = m - k  and uj = k ( p -  1 ) + a ,  giving degree m + k ( p - 2 ) + a ,  with 
k<~K. Taking k = K  clearly gives the unique maximal degree term. [] 

3. Main results 

Observe first that since m = [ n / ( p -  1)], we have 

n<(m + 1)p, so r(n)<.r(mp). (5) 

Theorem 1. pr{'nP)-r(n)B(nX) has p-adic integer coefficients, and r ( m p ) -  r(n) is the 
smallest exponent o f  p with this property, where m = [ n / ( p -  1)]. 
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Proof. pr(mp)-r(n)B(nX) = ( -  1 )nn! p--r(n) pr(mp) ~ w  <<.n tu(x--n-- 1 ). Since vl (u) <<. r(mp) for 

all (u), the coefficients are p-adic integers. Furthermore, by the corollary of Section 2, 
the term of greatest degree such that Vl(U) is maximal gives a unit coefficient for that 
degree, and all higher coefficients are divisible by p. Thus pr(mp)-r(n)B(X) is a primitive 
p-adic integer polynomial, and the corollary locates highest degree unit coefficient. [] 

Remark. There is an equivalent formulation of Theorem 1, that does not explicitly show 
! (x) the p-power but is slightly simpler, namely (mp).B, In. has p-adic integer coefficients, 

not all divisible by p. We can also replace (mp)! by (n + m)! since n + m =mp + a. 

Carlitz [4] defined Pn(x) = n!B(~ -~) and e(n) = the smallest integer such that pe(n)pn(x) 
is a p-adic integer polynomial. He proved that if p = 2  then e ( n ) = n -  r(n) 
[4, Theorem 3], which coincides with our formula since e(n)= r (2n) -2r (n )= n-r (n ) ,  
in case p = 2 .  However, for p > 2  he only proved that e(n)<.r(m + n ) -  2r(n). Since 
obviously r(m + n) = r(mp), the preceding theorem gives the equality 

e(n) = r(m + n) - 2r(n), (6) 

which is clear improvement. 

Corollary 1. B(~ x) has p-adic integer coefficients iff n >1 [n/(p - 1 )]p. 

Proof. By the theorem, B~ x) has p-adic integer coefficients iff r(mp)<<.r(n). But 
as previously noted, n<(m + 1)p, so r(mp)<<.r(n) iff n>>.mp. Observe n ~ m p  iff 
m <~ a. [] 

Corollary 2. I f  B(~ x) has p-adic integer coefficients, then n<<.(p- 2)p. 

Proof. Since t r < p -  1, if m<<.a then n<~(p -  2 ) ( p -  1) + p -  2 = ( p -  2)p. [] 

Putting the p-adic information together for all p, we get a simple formula for the 
least common denominator of the coefficients of B~ x), i.e. we can find the smallest 
positive integer d such that dB(, x) has rational integer coefficients. If Pi ranges over all 
primes, then we have the following corollary. 

Corollary 3. The least common denominator of  the coefficients o f  B(n ~) & 

d=l--[prii(mipi)/n!, where mi = [ n / ( p i -  1)] and ri is rpi. 

This d is a positive integer, and dB(~ ~) is a primitive integer polynomial. 

(7) 

Proof. First note that only primes pi ~<n + 1 must be considered, so the product is 
finite. By (5), d is a positive integer, and by the theorem, dB~ ~) has no denominators 
primes, so is an integer polynomial. Since for each prime p, some coefficient of dB(, ~) 
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is not divisible by p, it is primitive, i.e. when put over the common denominator d, 
the numerators of  the coefficients o f  B~ x) are relatively prime. [] 

The following theorem is essentially the same as [4, Theorem 4], expect that we give 

more information about the prime p = 3. However, our proof  is considerably shorter. 

Theorem 2. I f  p is an odd prime then n!B~, x) & p-integral, except  i f  n = p - 1 or 

p = 3  and n = 8 .  

Proof.  By the preceding theorem, we must show that i f  

n ¢ p - I  and ( n , p ) ¢ ( 8 , 3 )  

and 

m = [ n / ( p -  1)] then 2r(n)>~r(mp). (8) 

Observe that if  n = p -  1 then m =  1, and if  (n, p )  = (8, 3) then m = 4 ,  and in both 
cases 2 r ( n ) -  r ( m p ) = - l .  Also note that inequality (8) is trivial i f  m = 0 ,  if  m =  1 
and n > p -  1, i f n = 2 ( p -  1), or i f  p = 3  and n > 8 .  

Replacing n by m ( p - 1 ) ,  we can assume p - l [ n ,  and consider the equivalent in- 
equality 2 ( n - S ( n ) ) > ~ m p - S ( m p ) ,  for which it will suffice to prove that ( p - 2 ) n ~ >  

2 ( p - 1 ) S ( n ) .  

Consider k = S ( n ) / ( p  - 1 ). I f  k = 0, then n -- 0. I f  k -- 1, since n = 2 ( p  - 1 ) has been 
done, we can assume n>>.3(p- 1), in which case we have 3 ( p -  1 ) ( p - 2 ) / >  2 ( p -  1) 

since p >/3. Clearly, if  S(n)  >>. k ( p  - 1) then n />  ( p  - 1) (p  k-1 + . . .  + 1 ) =  pk _ 1. 
Thus if  k = 2  then n>>.p 2 -  1, and ( p 2 _  1 ) ( p -  2 ) />  4 ( p -  1) for p ~> 5 is obvious. 

Finally, if  k~>3, then we need the inequality ( p k - l  + . . .  + 1)(p -- 2) /> 2 k ( p  - 1), 

which is clearly true if  p / >  3 and k ~> 3. [] 

Corollary.  (n + 1 )!B~ x) has denominators that are all powers o f  2. 

Proof.  We must show that (n + 1 )!B~ ~) is p-integral for every odd prime. But the extra 
factor n + 1 takes care of  all the exceptions in the theorem. [] 

The following theorem gives a mod p congruence for B(~ x), with denominators cleared, 

in terms o f  low-degree N6rlund polynomials. We follow the standard convention that 
two polynomials are congruent (p-adically) if  their corresponding coefficients are. The 
theorem is analogous to one that we have previously proved about p-adic integer order 
Bernoulli numbers [3, Theorem l(i)]. 

Theorem 3. I f  m = [n/(p - 1 )] and G = n mod p - 1, then 

R[x) pr(m) m 1 x u~r--k 
Pr(mP)--n] =- m! Z k ~-~(x-- n - -  1,k(p_l)+m(t;--_-~) ! 

k 
- -  ( m o d  p ) .  
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Proof. First observe that k is unrestricted in the summation, but terms are zero mod p 
m if  k > a  or if  P[(k), SO the effective range is O<<.k<<.K, where K = m i n { a ,  m m o d p } .  

By (2) and Lemma 2, pr(mp)(_ 1 )"B(X)/n! -- pr(mp) ~ tu(X - n - 1 ), summed over all (u) 

such that w(u)<~n and Vl(U)= r(mp), and these terms are characterized by the lemma. 

For fixed k with O<~k<<.K, let S- -{(u)Iw(u)<~n,  vl (u)=r(mp)  and Up-1 = m - k } .  
I f  (u )ES ,  let u~l=ul-kp,  Up_l=0,  and u~=ui if  i ¢ l , p - 1 .  Then w ( u ' ) =  
w ( u ) - m ( p - 1 ) - k  and d ( u ' ) = d ( u ) - k ( p - 1 ) - m .  By Lemma 2, (u)--+(u') gives a 

one-one correspondence of S with {(u)lw(u)<<.a-k}. Furthermore, since r(mp)= 
r ( m - k )  + r(kp) + m - k  for (u) E S, 

pr(m-k) pr(kp) 1 
pr(mp) Z tu(s) ~ (m_k)----~) " (kp)~). 2kP (S)k(p-l)+m Z t , ( s - k ( p -  1 ) - m )  (mod p). 

uCS w<~a-k 

But s = x - n -  1, so s - k ( p -  1 ) - m  = x - ( a - k ) -  1 - ( m + k  ) p. Since the denominators 
of  the terms of the right-hand side are all < p, for the mod p, congruence we can ignore 

the ( m + k ) p  summand in s - k ( p -  1 ) - m ,  and since (kp)!/p ~ - ( -1 )kk!  (mod pr(k)+l ) 

by Wilson's Theorem, and 2 p ~ 2 (mod p)  by Fermat's Little Theorem, the result fol- 
lows for the summand with index k. Now sum over all k. [] 

Remark. By (ii) of  Section 2, we can rewrite the theorem as 

(m p ) ! ~_~__V_ =_ ( _ l )m ~"~ m -- n -- - -  • k ] )k(p- l )+m(a--[~)!  (modp).  
k 

Observe that the degree of the polynomial on the right-hand side of  the congruence 

is precisely m + K ( p  - 2) + a, so this theorem refines the corollary in Section 2. We 

can also replace the factor (mp)! by (m + n)!/a! in the congruence. 

Example. We will consider all cases where m = 1, i.e. n = p -  1 + a where 0 ~< a ~< p -  1. 

For a---- 0, we get /-,Op_-D(X)l -- - x ( m o d p ) ,  while for a > 0  we get 

B(x) G)B(x)/a _, .(x) p+~-I --- - ( ( x  - + (1/2)(x - O)p%_ 1 ) (mod p)  if p > 2 .  

Since ( x -  a)p--X p - x  (mod p),  for p > 2 ,  we get B(p x ) -  - (1/2)(x  p - x  2) (modp),  
which since x21B (x), gives a new proof of  the p-adic congruence B(p l ) -  12/2 (mod pl  2) 
if l is a p-adic integer and pll, which we had previously found [3, Corollary 6] by a 
different method. 

Corollary 1. I f  

u(x) ( x - n - l )  (mod p). p -  lln then pr(mP)Un! --pr(m) m 

Proof. a = 0 implies K = 0, so the sum collapses• Observe that in this case only the 
one term such that Up-i =m has to be considered, and then pr(mp)tu(S ) =(pr(m)/m!) 
( x - n - 1 ) m .  [] 
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Remark .  I f  m = n / (p  - 1), the preceding congruence can be restated as 

(n + m)!B~X)/n[ - ( -1 )m(x  - n - 1)m (mod p) .  

Carlitz [4] establishes congruences for Pn(x) for p - 1 <<.n<<.2p- 1, mostly trivial 

consequences of  Theorem 1. His congruence (7.11) for n = 2 p -  2 is incorrect. The 
correct congruence, which follows from the preceding corollary with m = 2, is 

P2p_2(x)=-(1 /2)x (x -  1 ) ( m o d p )  if p > 2 .  

Carlitz, who is using a cumbersome n-term recursion for Pn(x), apparently overlooked 
a significant term in the recursion. 

The following special case ( p  = 2) o f  Corollary 1 essentially restates [4, (6.3)]. 

Corol lary 2. 

2"B~ x) =-- (x - n - 1)n (mod 2). 

Proof .  Since r ( 2 n ) = n  + r(n)  for p = 2 ,  this follows from the previous corollary. [] 

Corollary 3. I f  

~(x) ( x _ n _ l ) B ~ X )  
plm then pr(mp)~n! =- pr(m) m -~. (mod p) .  

Proof.  Again K = 0, so the sum collapses. [] 

Remark .  By the remarks after Lemma 2, the preceding corollaries give all the cases 
where the sum collapses. I f  p]m, we can rewrite the preceding congruence as 

(m + n)!B(~X)/n! - (--1)m(x -- n -- 1)mBff ) (mod p) .  

I f  m = qp, then using some elementary number theory, we get 

It(x) Dr(q) B~ x) 
p r(mp)~'n =-- ( -  - -  (modp) .  n! 1 ) q E-~! (xP- -X)q- -~ .  (9) 

Again we give the special case for p = 2, which is actually contained in Corollary 2. 

Corollary 4. I f  n is even then 2nB(n x) - (x 2 - x) n/2 (mod 2). 

Applications to Stirlin# polynomials: Recall the definition of  the Stirling numbers. 

(x )n= ~--]Sl(n,k)x k and x n =  ~ S z ( n , k ) ( x ) k .  

In [5], the stirling polynomials f~(x) and On(x) are defined, where 

f , ( m ) = S 2 ( m + n , m )  and 9 n ( m ) = ( - 1 ) n S l ( m , m - n ) .  
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It is not hard to see that f~(x) and 9,,(x) are rational polynomials o f  degree 2n, which 

are linked by the 'Stirling duality' 9,(x)= f~(-x). 
The relations between the Stifling and N6rlund polynomials are [2, Remark 9.3] 

f~(x)= ( x  + n )  and gn(x)=(-1)n ( x - 1 ) B ~  (10) 

Since (x + n),  and ( x -  1), are monic integer polynomials, we deduce immediately 

from Theorem 1, with the same notations, that the p-adic least common denominator 

o f  the coefficients o f  f~(x) and of  9n(x) is pr(mp) or (rap)!, and with the notations of  

Corollary 3 to Theorem 1, the integer least common denominators is 1-I pr~(mipl). 
Also we can get congruences for pr(mp)fn(x) and pr(mp)gn(X) from Theorem 3, e.g. 

( ) ~ ( x -  - 7 ~-k (modp) .  (11) pr(mP)on(X ) ~ (-- 1)n Z m B (x) • k 1)k(p-1)+m+n(6~l~)! 
k 

Finally, as before, we have the special cases p -  lln and pl[n/ (p-  1)], where the 

sums collapse, with several equivalent formulations. 

Remark.  It was pointed out to us by a referee that if plrn then the congruences in 

Theorem 3 and several of  its corollaries appear to hold mod higher powers of  p. We 

have been able to prove that these congruences hold m o d p  l+v(m), where v(m) is the 

highest power o f  p dividing m. Since the proof o f  this refinement is similar to other 

proofs in this paper, we will not include it here• 
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