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Recently [Z. Wenpeng, W. Tingting, Applied Mathematics and Computation 218 (10) (2012)
6164–6167; T. Komatsu, V. Laohakosol, Journal of Integer Sequences 13 (5) (2010) Article
10.5.8.] computed partial infinite sums including reciprocal usual Fibonacci, Pell and gen-
eralized order-k Fibonacci numbers. In this paper we will present generalizations of earlier
results by considering more generalized higher order recursive sequences with additional
one coefficient parameter.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Let p and q be real numbers such that p2 þ 4q – 0. Define the generalized Fibonacci sequence fUnðp; qÞg, briefly fUng, and
Lucas sequence fVnðp; qÞg, briefly fVng, as shown: for n > 1
Unðp; qÞ ¼ pUn�1ðp; qÞ þ qUn�2ðp; qÞ;
Vnðp; qÞ ¼ pVn�1ðp; qÞ þ qVn�2ðp; qÞ;
where U0 ¼ 0; U1 ¼ 1, and, V0 ¼ 2; V1 ¼ p, respectively. The Binet formulae for fUng and fVng are
Un ¼
an � bn

a� b
and Vn ¼ an þ bn;
where a; b ¼ ðp�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4q

p
Þ=2. Here note that Unð1;1Þ ¼ Fn (nth Fibonacci Number), Vnð1;1Þ ¼ Ln (nth Lucas number) and

Unð2;1Þ ¼ Pn (nth Pell number).
Ohtsuka and Nakamura [5] introduced and computed the following partial infinite sums including reciprocal Fibonacci

numbers:
X1
k¼n

1
Fk

 !�1
6664

7775 ¼ Fn�2 if n is even and n P 2;
Fn�2 � 1 if n is odd and n P 1

�
ð1Þ
and
X1
k¼n

1
F2

k

 !�1
6664

7775 ¼ Fn�1Fn � 1 if n is even and n P 2;
Fn�1Fn if n is odd and n P 1;

�
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where �b c is the floor function.
Wenpeng and Tingting [6] gave analogue of the result (1) for the Pell numbers:
X1
k¼n

1
Pk

 !�1
6664

7775 ¼ Pn�1 þ Pn�2 if n is even and n P 2;

Pn�1 þ Pn�2 � 1 if n is odd and n P 1:

�

Also the same authors [7] gave the similar results for partial infinite sums including reciprocal squared-Pell numbers.
Holliday and Komatsu [1] obtained similar results for the terms of generalized Fibonacci sequence fUnðp;1Þg:
X1
k¼n

1
Uk

 !�1
6664

7775 ¼ Un � Un�1 if n is even and n P 2;
Un � Un�1 � 1 if n is odd and n P 1;

�
ð2Þ

X1
k¼n

1
U2

k

 !�1
6664

7775 ¼ pUnUn�1 � 1 if n is even and n P 2;
pUnUn�1 if n is odd and n P 1:

�

In this paper we will consider on the following type higher order recurrence sequences and then give general results sim-
ilar to the above partial sums. For any positive reals p and q, we define a kth order linear recursive sequence funðp; q; kÞg,
briefly fung, for n > k as follows
un ¼ pun�1 þ qun�2 þ un�3 þ � � � þ un�k; ð3Þ
with nonnegative initials ut P 0 for 0 6 t < k and assumed that at least one of them is different from zero.
The author [2] generalized the results given in (2) for the terms of generalized order-k Fibonacci sequence funðp; q;2Þg as

shown: then there exist a positive integer n0 such that
X1
k¼n

1
unðp; q;2Þ

 !�1
������

������ ¼ unðp; q;2Þ � un�1ðp; q;2Þ; ðn P n0Þ;
where p P q and �k k denotes the nearest integer (clearly xk k ¼ xþ 1
2

� �
).

Recently the authors [3] presented the following results for the order- k recursion funðp;1; kÞg (with an arbitrary coeffi-
cient p and arbitrary k initials but not all of them are zero):
X1
k¼n

1
ukðp;1; kÞ

 !�1
������

������ ¼ unðp;1; kÞ � un�1ðp;1; kÞ; ðn P n0Þ;

X1
k¼n

ð�1Þk

ukðp;1; kÞ

 !�1
������

������ ¼ �1ð Þn unðp;1; kÞ � un�1ðp;1; kÞð Þ; ðn P n1Þ
and
X1
k¼n

1
u2kðp;1; kÞ

 !�1
������

������ ¼ u2nðp;1; kÞ � u2n�2ðp;1; kÞ; ðn P n2Þ;
where n0;n1;n2 are natural numbers depending on p.
In the rest of this paper, we will obtain generalizations of the results of [3] on the reciprocal sums of order-k recurrence

sequence funðp;1; kÞg mentioned just above. To obtain such generalizations, we will consider the order-k recurrence se-
quence funðp; q; kÞg (with two arbitrary coefficients p; q and arbitrary k initials) instead of the sequence funðp;1; kÞg.

2. Main results

While considering the order-k sequences defined by (3), we assume that the restriction p P q P 1 throughout this paper.
Our first main result is

Theorem 1. Let funðp; q; kÞg, briefly fung, be an order-k sequence defined by (3) with the restriction p P q P 1. Then there exists
a positive integer n0 such that
X1
k¼n

1
uk

 !�1
������

������ ¼ un � un�1; ðn P n0Þ:
Before the proof, we need the following lemmas:
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Lemma 2. Let p and q be positive reals with p P q P 1 and k 2 N with k P 2. Then for the polynomial
f ðxÞ ¼ xk � pxk�1 � qxk�2 � xk�3 � � � � � x� 1; ð4Þ
we have

(i) f ðxÞ has exactly one positive real root a with p < a < pþ 1.
(ii) Other k� 1 roots of f ðxÞ are within the unit circle in the complex plane.
Proof. Let
gðxÞ ¼ x� 1ð Þf ðxÞ ¼ xkþ1 � pþ 1ð Þxk þ p� qð Þxk�1 þ q� 1ð Þxk�2 þ 1:
The case q ¼ 1 was given in [3]. We will consider two cases p ¼ q and p > q.

Case 1: If p ¼ q, then
gðxÞ ¼ xkþ1 � pþ 1ð Þxk þ p� 1ð Þxk�2 þ 1:
This case is very similar to the case q ¼ 1 so we omit it here.
Case 2: For p > q > 1, we have five nonnegative coefficients in the polynomial gðxÞ given by
gðxÞ ¼ xkþ1 � pþ 1ð Þxk þ p� qð Þxk�1 þ q� 1ð Þxk�2 þ 1:
According to Descarte’s rule, f ðxÞ has at most one positive real root and so gðxÞ has at most two positive real roots (clearly
one of them is 1).

Now we examine that there exists an another positive real root. Since p > 1 and k P 2 then
gðpÞ ¼ 1
p2 pkqþ p2 � pk � pkþ1q
� �

¼ 1
p2 pkq 1� pð Þ þ p2 � pk

� �� �
< 0
and also since p2 > pq and p > 1 we have
gðpþ 1Þ ¼ 1

pþ 1ð Þ2
pþ 1ð Þk p2 � 1þ p� pq

� �
þ 2pþ p2 þ 1

	 

> 0:
Thus there exist an another positive real root a of gðxÞ with p < a < pþ 1. As a result of this f ðxÞ has exactly one positive
real root (a 2 R) with p < a < pþ 1. So the proof of Lemma 2 (i) is complete.

By considering the Lemma (i), we have
if x 2 R such that x > a; then f ðxÞ > 0; ð5Þ

if x 2 R such that 0 < x < a; then f ðxÞ < 0
and
if x 2 R such that x > a; then gðxÞ > 0;

if x 2 R such that 1 < x < a; then gðxÞ < 0: ð6Þ
To complete the proof of Lemma 2 (ii), it is sufficient to show that there is no root on and outside of the unit circle.

Claim 1: f ðxÞ has no complex root z1 with z1j j > a.
Assume that there exists such a root. So we have
f ðz1Þ ¼ zk
1 � pzk�1

1 � qzk�2
1 � zk�3

1 � � � � � z1 � 1 ¼ 0
and then we obtain
zk
1

�� �� 6 p zk�1
1

�� ��þ q zk�2
1

�� ��þ zk�3
1

�� ��þ � � � þ z1j j þ 1;

f ð z1j jÞ ¼ z1j jk � p z1j jk�1 � q z1j jk�2 � z1j jk�3 � � � � � z1j j � 1 6 0:
This contradicts with (5).
Claim 2: f ðxÞ has no complex root z2 with 1 < z2j j < a.
Suppose that there exists such a root. Since f ðz2Þ ¼ 0,
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gðz2Þ ¼ zkþ1
2 � pþ 1ð Þzk

2 þ p� qð Þzk�1
2 þ q� 1ð Þzk�2

2 þ 1 ¼ 0;
which implies
pþ 1ð Þ z2j jk 6 z2j jkþ1 þ p� qð Þ z2j jk�1 þ q� 1ð Þ z2j jk�2 þ 1:
So we have gð z2j jÞP 0. But this is a contradiction with (6).
Claim 3: On the circle z3j j ¼ a and z3j j ¼ 1; f ðxÞ has the unique root a.

Let z3 – a and either z3j j ¼ a or z3j j ¼ 1 and also f ðz3Þ ¼ 0, then
gðz3Þ ¼ zkþ1
3 � pþ 1ð Þzk

3 þ p� qð Þzk�1
3 þ q� 1ð Þzk�2

3 þ 1 ¼ 0:
So we get

pþ 1ð Þ z3j jk 6 z3j jkþ1 þ p� qð Þ z3j jk�1 þ q� 1ð Þ z3j jk�2 þ 1:
Since a and 1 are also the roots of gðzÞ,
zkþ1
3 þ p� qð Þzk�1

3 þ q� 1ð Þzk�2
3 þ 1

�� �� ¼ z3j jkþ1 þ p� qð Þ z3j jk�1 þ q� 1ð Þ z3j jk�2 þ 1:
The equality holds if and only if all parts lie on the same ray issuing from the origin. One of the parts is 1 (see [4]). So the other
parts, zkþ1

3 ; p� qð Þzk�1
3 ; q� 1ð Þzk�2

3 , must be element of Rþ. Since p� qð Þ; q� 1ð Þ 2 Rþ; zkþ1
3 ; zk�1

3 and zk�2
3 must be elements of

Rþ. Therefore we obtain z3 2 Rþ. There are two possibilities z3 ¼ 1 or z3 ¼ a. Since f ð1Þ – 0 the case z3 ¼ 1 is ruled out. From
Lemma (i) we know that f ðxÞ has exact one positive real root a. So the case z3 ¼ a has already known. Since multiple roots
are counted separately by Descarte’s rule, there is not an another positive real root. From these tree claims, Lemma (ii) is proven.
Consequently, f ðxÞ has exactly one positive real root a with p < a < pþ 1 and the other roots are within the unit circle. h
Lemma 3. Let k P 2, then the closed formula of fung is given by
un ¼ aan þ Oðc�nÞ; ðn!1Þ;
where a > 0; c > 1 and a is the positive real root of (4).
Proof. Let a;a1;a2; . . . ;at with aij j < 1 for 1 6 i 6 t be distinct roots of f ðxÞ and rj for j ¼ 1;2; . . . ; t denotes the multiplicity of
the root aj. Then un can be written as follows
un ¼ aan þ
Xt

i¼1

PiðnÞan
i ;
where PiðnÞ 2 R x½ � with deg Pi ¼ ri � 1; r1 þ r2 þ � � � þ rt ¼ k� 1 and a 2 Rþ. Since aij j < 1 for 1 6 i 6 t, each term of tail goes
to 0 as n!1. So we can find constant K 2 R and c 2 R with c > 1 for n > n0 such that
Xt

i¼1

PiðnÞan
i 6 Kc�n;
which completes the proof (note that if all roots of f ðxÞ are distinct we can choose c�1 ¼maxf a1j j; a2j j; . . . ; ak�1j jg and
K ¼ k� 1). h
Proof (Proof of Theorem 1). From the geometric series as �! 0 we have
1
1� � ¼ 1� �þ Oð�2Þ ¼ 1þ Oð�Þ:
Using Lemma 2, we have
1
uk
¼ 1

aak þ Oðc�kÞ ¼
1

aak 1þ Oð acð Þ�kÞ
	 
 ¼ 1

aak
1þ Oð acð Þ�kÞ
	 


¼ 1
aak
þ O a2c

� ��k
	 


:

Thus
X1
k¼n

1
uk
¼ 1

a

X1
k¼n

1
ak
þ O

X1
k¼n

a2c
� ��k

 !
¼ a

a a� 1ð Þa
�n þ O a2c

� ��n
	 


:

By taking reciprocal we get
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X1
k¼n

1
uk

 !�1

¼ 1
a

a a�1ð Þa�n þ O a2cð Þ�n� � ¼ a� 1
a

aan 1þ O acð Þ�n� �� �
¼ a� 1

a
aan þ O c�nð Þ ¼ un � un�1 þ O c�nð Þ:
So there exists n0 such that the last error term becomes less than 1=2 which completes the proof. h
Theorem 4. Let unðp; q; kÞf g, briefly fung, be an order-k sequence defined by (3) with a restriction p P q P 1. Then there exists a
positive integer n1, such that
X1
k¼n

ð�1Þk

uk

 !�1
������

������ ¼ �1ð Þn un þ un�1ð Þ; ðn P n1Þ:
Proof. Here we start to the proof with computing the summand term
ð�1Þk

uk
¼ �1ð Þk

aak þ Oðc�kÞ ¼
�1ð Þk

aak
1þ O acð Þ�k

	 
	 

:

Then we have
X1
k¼n

�1ð Þk

aak
1þ O acð Þ�k

	 
	 

¼ a

að�aÞn aþ 1ð Þ
þ O a2c

� ��n
	 


:

By taking reciprocal,
X1
k¼n

ð�1Þk

uk

 !�1

¼ a �að Þn aþ 1ð Þ
a

1þ O acð Þ�n� �� �
¼ �1ð Þn aan þ aan�1� �

þ O c�nð Þ ¼ �1ð Þn un þ un�1ð Þ þ O c�nð Þ:
Then we can find integer n1 such that the error term is less than 1=2 for n P n1. h

The following result could be proven similar to the previous results.

Theorem 5. For the sequence which defined in (3) with a restriction p P q P 1. Then there exist positive integers n2 and n3 such
that
X1
k¼n

1
utkþr

 !�1
������

������ ¼ utnþr � utn�tþrð Þ; ðn P n2Þ;

X1
k¼n

ð�1Þk

utkþr

 !�1
������

������ ¼ �1ð Þn utnþr þ utn�tþrð Þ; ðn P n3Þ;
where t and r positive integers with 0 6 r < t.

Now we present some examples of our results. When q ¼ 1; t ¼ 2; r ¼ 0 and r ¼ 1 in the previous theorem, respectively,
we get same results given in [3].

When we take p ¼ 2; q ¼ 1; k ¼ 2, with initials u0 ¼ 0 and u1 ¼ 1, respectively, we have same result in [6]. In addition we
have more results such as
X1
k¼n

�1ð Þk

Pk

 !�1
������

������ ¼ �1ð Þn Pn þ Pn�1ð Þ; ðn P 1Þ; ð7Þ

X1
k¼n

1
Ptkþr

 !�1
������

������ ¼ Ptnþr � Ptn�tþrð Þ; ðn P n0Þ:
Identity (7) can be also found in [3].
When p ¼ q ¼ 1; k ¼ 2; t ¼ 5 and r ¼ 3 with initials u0 ¼ 0 and u1 ¼ 1, we obtain new result as follows,
X1
k¼n

1
F5kþ3

 !�1
������

������ ¼ F5nþ3 � F5n�2ð Þ; ðn P 1Þ;

X1
k¼n

ð�1Þk

F5kþ3

 !�1
������

������ ¼ �1ð Þn F5nþ3 þ F5n�2ð Þ; ðn P 1Þ:
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For example, we consider the sequence fung defined for n > 3 by
un ¼ 7un�1 þ 4un�2 þ un�3 þ un�4;
with initials u0 ¼ 0; u1 ¼ 1; u2 ¼ 2 and u3 ¼ 3. Then, by Theorems 1 and 5, we obtain
X1
k¼n

1
uk

 !�1
������

������ ¼ un � un�1; ðn P n0Þ;

X1
k¼n

ð�1Þk

utkþr

 !�1
������

������ ¼ �1ð Þn utnþr þ utn�tþrð Þ; ðn P n1Þ;
where n0 and n1 are determined according to the initial values and the roots of characteristic equation of sequence fung.
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