More on the infinite sum of reciprocal Fibonacci, Pell and higher order recurrences

Emrah Kılıç, Talha Arıkan*
TOBB Economics and Technology University, Mathematics Department, 06560 Ankara, Turkey

ARTICLE INFO

Keywords:

Reciprocal sums
Fibonacci-Pell numbers
Higher order recurrence

Abstract

Recently [Z. Wenpeng, W. Tingting, Applied Mathematics and Computation 218 (10) (2012) 6164-6167; T. Komatsu, V. Laohakosol, Journal of Integer Sequences 13 (5) (2010) Article 10.5.8.] computed partial infinite sums including reciprocal usual Fibonacci, Pell and generalized order- k Fibonacci numbers. In this paper we will present generalizations of earlier results by considering more generalized higher order recursive sequences with additional one coefficient parameter.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let p and q be real numbers such that $p^{2}+4 q \neq 0$. Define the generalized Fibonacci sequence $\left\{U_{n}(p, q)\right\}$, briefly $\left\{U_{n}\right\}$, and Lucas sequence $\left\{V_{n}(p, q)\right\}$, briefly $\left\{V_{n}\right\}$, as shown: for $n>1$

$$
\begin{aligned}
& U_{n}(p, q)=p U_{n-1}(p, q)+q U_{n-2}(p, q) \\
& V_{n}(p, q)=p V_{n-1}(p, q)+q V_{n-2}(p, q)
\end{aligned}
$$

where $U_{0}=0, U_{1}=1$, and, $V_{0}=2, V_{1}=p$, respectively. The Binet formulae for $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ are

$$
U_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad \text { and } \quad V_{n}=\alpha^{n}+\beta^{n}
$$

where $\alpha, \beta=\left(p \pm \sqrt{p^{2}+4 q}\right) / 2$. Here note that $U_{n}(1,1)=F_{n}$ (nth Fibonacci Number), $V_{n}(1,1)=L_{n}$ (nth Lucas number) and $U_{n}(2,1)=P_{n}$ (nth Pell number).

Ohtsuka and Nakamura [5] introduced and computed the following partial infinite sums including reciprocal Fibonacci numbers:

$$
\left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{F_{k}}\right)^{-1}\right\rfloor= \begin{cases}F_{n-2} & \text { if } n \text { is even and } n \geqslant 2 \tag{1}\\ F_{n-2}-1 & \text { if } n \text { is odd and } n \geqslant 1\end{cases}
$$

and

$$
\left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{F_{k}^{2}}\right)^{-1}\right\rfloor= \begin{cases}F_{n-1} F_{n}-1 & \text { if } n \text { is even and } n \geqslant 2 \\ F_{n-1} F_{n} & \text { if } n \text { is odd and } n \geqslant 1\end{cases}
$$

[^0]where $\lfloor\cdot\rfloor$ is the floor function.
Wenpeng and Tingting [6] gave analogue of the result (1) for the Pell numbers:
\[

\left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{P_{k}}\right)^{-1}\right\rfloor= $$
\begin{cases}P_{n-1}+P_{n-2} & \text { if } n \text { is even and } n \geqslant 2 \\ P_{n-1}+P_{n-2}-1 & \text { if } n \text { is odd and } n \geqslant 1\end{cases}
$$
\]

Also the same authors [7] gave the similar results for partial infinite sums including reciprocal squared-Pell numbers.
Holliday and Komatsu [1] obtained similar results for the terms of generalized Fibonacci sequence $\left\{U_{n}(p, 1)\right\}$:

$$
\begin{align*}
& \left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{U_{k}}\right)^{-1}\right\rfloor= \begin{cases}U_{n}-U_{n-1} & \text { if } n \text { is even and } n \geqslant 2, \\
U_{n}-U_{n-1}-1 & \text { if } n \text { is odd and } n \geqslant 1,\end{cases} \tag{2}\\
& \left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{U_{k}^{2}}\right)^{-1}\right\rfloor= \begin{cases}p U_{n} U_{n-1}-1 & \text { if } n \text { is even and } n \geqslant 2, \\
p U_{n} U_{n-1} & \text { if } n \text { is odd and } n \geqslant 1 .\end{cases}
\end{align*}
$$

In this paper we will consider on the following type higher order recurrence sequences and then give general results similar to the above partial sums. For any positive reals p and q, we define a k th order linear recursive sequence $\left\{u_{n}(p, q, k)\right\}$, briefly $\left\{u_{n}\right\}$, for $n>k$ as follows

$$
\begin{equation*}
u_{n}=p u_{n-1}+q u_{n-2}+u_{n-3}+\cdots+u_{n-k}, \tag{3}
\end{equation*}
$$

with nonnegative initials $u_{t} \geqslant 0$ for $0 \leqslant t<k$ and assumed that at least one of them is different from zero.
The author [2] generalized the results given in (2) for the terms of generalized order- k Fibonacci sequence $\left\{u_{n}(p, q, 2)\right\}$ as shown: then there exist a positive integer n_{0} such that

$$
\left\|\left(\sum_{k=n}^{\infty} \frac{1}{u_{n}(p, q, 2)}\right)^{-1}\right\|=u_{n}(p, q, 2)-u_{n-1}(p, q, 2), \quad\left(n \geqslant n_{0}\right),
$$

where $p \geqslant q$ and $\|\cdot\|$ denotes the nearest integer (clearly $\|x\|=\left\lfloor x+\frac{1}{2}\right\rfloor$).
Recently the authors [3] presented the following results for the order- k recursion $\left\{u_{n}(p, 1, k)\right\}$ (with an arbitrary coefficient p and arbitrary k initials but not all of them are zero):

$$
\begin{aligned}
& \left\|\left(\sum_{k=n}^{\infty} \frac{1}{u_{k}(p, 1, k)}\right)^{-1}\right\|=u_{n}(p, 1, k)-u_{n-1}(p, 1, k), \quad\left(n \geqslant n_{0}\right), \\
& \left\|\left(\sum_{k=n}^{\infty} \frac{(-1)^{k}}{u_{k}(p, 1, k)}\right)^{-1}\right\|=(-1)^{n}\left(u_{n}(p, 1, k)-u_{n-1}(p, 1, k)\right), \quad\left(n \geqslant n_{1}\right)
\end{aligned}
$$

and

$$
\left\|\left(\sum_{k=n}^{\infty} \frac{1}{u_{2 k}(p, 1, k)}\right)^{-1}\right\|=u_{2 n}(p, 1, k)-u_{2 n-2}(p, 1, k), \quad\left(n \geqslant n_{2}\right),
$$

where n_{0}, n_{1}, n_{2} are natural numbers depending on p.
In the rest of this paper, we will obtain generalizations of the results of [3] on the reciprocal sums of order- k recurrence sequence $\left\{u_{n}(p, 1, k)\right\}$ mentioned just above. To obtain such generalizations, we will consider the order- k recurrence sequence $\left\{u_{n}(p, q, k)\right\}$ (with two arbitrary coefficients p, q and arbitrary k initials) instead of the sequence $\left\{u_{n}(p, 1, k)\right\}$.

2. Main results

While considering the order- k sequences defined by (3), we assume that the restriction $p \geqslant q \geqslant 1$ throughout this paper. Our first main result is

Theorem 1. Let $\left\{u_{n}(p, q, k)\right\}$, briefly $\left\{u_{n}\right\}$, be an order- k sequence defined by (3) with the restriction $p \geqslant q \geqslant 1$. Then there exists a positive integer n_{0} such that

$$
\left\|\left(\sum_{k=n}^{\infty} \frac{1}{u_{k}}\right)^{-1}\right\|=u_{n}-u_{n-1}, \quad\left(n \geqslant n_{0}\right) .
$$

Before the proof, we need the following lemmas:

Lemma 2. Let p and q be positive reals with $p \geqslant q \geqslant 1$ and $k \in \mathbb{N}$ with $k \geqslant 2$. Then for the polynomial

$$
\begin{equation*}
f(x)=x^{k}-p x^{k-1}-q x^{k-2}-x^{k-3}-\cdots-x-1, \tag{4}
\end{equation*}
$$

we have
(i) $f(x)$ has exactly one positive real root α with $p<\alpha<p+1$.
(ii) Other $k-1$ roots of $f(x)$ are within the unit circle in the complex plane.

Proof. Let

$$
g(x)=(x-1) f(x)=x^{k+1}-(p+1) x^{k}+(p-q) x^{k-1}+(q-1) x^{k-2}+1
$$

The case $q=1$ was given in [3]. We will consider two cases $p=q$ and $p>q$.
Case 1: If $p=q$, then

$$
g(x)=x^{k+1}-(p+1) x^{k}+(p-1) x^{k-2}+1 .
$$

This case is very similar to the case $q=1$ so we omit it here.
Case 2: For $p>q>1$, we have five nonnegative coefficients in the polynomial $g(x)$ given by

$$
g(x)=x^{k+1}-(p+1) x^{k}+(p-q) x^{k-1}+(q-1) x^{k-2}+1 .
$$

According to Descarte's rule, $f(x)$ has at most one positive real root and so $g(x)$ has at most two positive real roots (clearly one of them is 1).

Now we examine that there exists an another positive real root. Since $p>1$ and $k \geqslant 2$ then

$$
g(p)=\frac{1}{p^{2}}\left(p^{k} q+p^{2}-p^{k}-p^{k+1} q\right)=\frac{1}{p^{2}}\left(p^{k} q(1-p)+\left(p^{2}-p^{k}\right)\right)<0
$$

and also since $p^{2}>p q$ and $p>1$ we have

$$
g(p+1)=\frac{1}{(p+1)^{2}}\left((p+1)^{k}\left(p^{2}-1+p-p q\right)+2 p+p^{2}+1\right)>0
$$

Thus there exist an another positive real root α of $g(x)$ with $p<\alpha<p+1$. As a result of this $f(x)$ has exactly one positive real root $(\alpha \in \mathbb{R})$ with $p<\alpha<p+1$. So the proof of Lemma 2 (i) is complete.

By considering the Lemma (i), we have
if $x \in \mathbb{R}$ such that $x>\alpha, \quad$ then $f(x)>0$,
if $x \in \mathbb{R}$ such that $0<x<a$, then $f(x)<0$
and
if $x \in \mathbb{R}$ such that $x>\alpha$, then $g(x)>0$,
if $x \in \mathbb{R}$ such that $1<x<a$, then $g(x)<0$.
To complete the proof of Lemma 2 (ii), it is sufficient to show that there is no root on and outside of the unit circle.
Claim 1: $f(x)$ has no complex root z_{1} with $\left|z_{1}\right|>\alpha$.
Assume that there exists such a root. So we have

$$
f\left(z_{1}\right)=z_{1}^{k}-p z_{1}^{k-1}-q z_{1}^{k-2}-z_{1}^{k-3}-\cdots-z_{1}-1=0
$$

and then we obtain

$$
\begin{aligned}
& \left|z_{1}^{k}\right| \leqslant p\left|z_{1}^{k-1}\right|+q\left|z_{1}^{k-2}\right|+\left|z_{1}^{k-3}\right|+\cdots+\left|z_{1}\right|+1 \\
& f\left(\left|z_{1}\right|\right)=\left|z_{1}\right|^{k}-p\left|z_{1}\right|^{k-1}-q\left|z_{1}\right|^{k-2}-\left|z_{1}\right|^{k-3}-\cdots-\left|z_{1}\right|-1 \leqslant 0
\end{aligned}
$$

This contradicts with (5).
Claim 2: $f(x)$ has no complex root z_{2} with $1<\left|z_{2}\right|<\alpha$.
Suppose that there exists such a root. Since $f\left(z_{2}\right)=0$,

$$
g\left(z_{2}\right)=z_{2}^{k+1}-(p+1) z_{2}^{k}+(p-q) z_{2}^{k-1}+(q-1) z_{2}^{k-2}+1=0
$$

which implies

$$
(p+1)\left|z_{2}\right|^{k} \leqslant\left|z_{2}\right|^{k+1}+(p-q)\left|z_{2}\right|^{k-1}+(q-1)\left|z_{2}\right|^{k-2}+1 .
$$

So we have $g\left(\left|z_{2}\right|\right) \geqslant 0$. But this is a contradiction with (6).
Claim 3: On the circle $\left|z_{3}\right|=\alpha$ and $\left|z_{3}\right|=1, f(x)$ has the unique root α.

$$
\text { Let } z_{3} \neq \alpha \text { and either }\left|z_{3}\right|=\alpha \text { or }\left|z_{3}\right|=1 \text { and also } f\left(z_{3}\right)=0 \text {, then }
$$

$$
g\left(z_{3}\right)=z_{3}^{k+1}-(p+1) z_{3}^{k}+(p-q) z_{3}^{k-1}+(q-1) z_{3}^{k-2}+1=0
$$

So we get

$$
(p+1)\left|z_{3}\right|^{k} \leqslant\left|z_{3}\right|^{k+1}+(p-q)\left|z_{3}\right|^{k-1}+(q-1)\left|z_{3}\right|^{k-2}+1 .
$$

Since α and 1 are also the roots of $g(z)$,

$$
\left|z_{3}^{k+1}+(p-q) z_{3}^{k-1}+(q-1) z_{3}^{k-2}+1\right|=\left|z_{3}\right|^{k+1}+(p-q)\left|z_{3}\right|^{k-1}+(q-1)\left|z_{3}\right|^{k-2}+1
$$

The equality holds if and only if all parts lie on the same ray issuing from the origin. One of the parts is 1 (see [4]). So the other parts, $z_{3}^{k+1},(p-q) z_{3}^{k-1},(q-1) z_{3}^{k-2}$, must be element of \mathbb{R}^{+}. Since $(p-q),(q-1) \in \mathbb{R}^{+}, z_{3}^{k+1}, z_{3}^{k-1}$ and z_{3}^{k-2} must be elements of \mathbb{R}^{+}. Therefore we obtain $z_{3} \in \mathbb{R}^{+}$. There are two possibilities $z_{3}=1$ or $z_{3}=\alpha$. Since $f(1) \neq 0$ the case $z_{3}=1$ is ruled out. From Lemma (i) we know that $f(x)$ has exact one positive real root α. So the case $z_{3}=\alpha$ has already known. Since multiple roots are counted separately by Descarte's rule, there is not an another positive real root. From these tree claims, Lemma (ii) is proven. Consequently, $f(x)$ has exactly one positive real root α with $p<\alpha<p+1$ and the other roots are within the unit circle.

Lemma 3. Let $k \geqslant 2$, then the closed formula of $\left\{u_{n}\right\}$ is given by

$$
u_{n}=a \alpha^{n}+O\left(c^{-n}\right), \quad(n \rightarrow \infty)
$$

where $a>0, c>1$ and α is the positive real root of (4).

Proof. Let $\alpha, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{t}$ with $\left|\alpha_{i}\right|<1$ for $1 \leqslant i \leqslant t$ be distinct roots of $f(x)$ and r_{j} for $j=1,2, \ldots, t$ denotes the multiplicity of the root α_{j}. Then u_{n} can be written as follows

$$
u_{n}=a \alpha^{n}+\sum_{i=1}^{t} P_{i}(n) \alpha_{i}^{n}
$$

where $P_{i}(n) \in \mathbb{R}[x]$ with $\operatorname{deg} P_{i}=r_{i}-1, r_{1}+r_{2}+\cdots+r_{t}=k-1$ and $a \in \mathbb{R}^{+}$. Since $\left|\alpha_{i}\right|<1$ for $1 \leqslant i \leqslant t$, each term of tail goes to 0 as $n \rightarrow \infty$. So we can find constant $K \in \mathbb{R}$ and $c \in \mathbb{R}$ with $c>1$ for $n>n_{0}$ such that

$$
\sum_{i=1}^{t} P_{i}(n) \alpha_{i}^{n} \leqslant K c^{-n}
$$

which completes the proof (note that if all roots of $f(x)$ are distinct we can choose $c^{-1}=\max \left\{\left|\alpha_{1}\right|,\left|\alpha_{2}\right|, \ldots,\left|\alpha_{k-1}\right|\right\}$ and $K=k-1)$.

Proof (Proof of Theorem 1). From the geometric series as $\epsilon \rightarrow 0$ we have

$$
\frac{1}{1 \pm \epsilon}=1 \pm \epsilon+O\left(\epsilon^{2}\right)=1+O(\epsilon)
$$

Using Lemma 2, we have

$$
\frac{1}{u_{k}}=\frac{1}{a \alpha^{k}+O\left(c^{-k}\right)}=\frac{1}{a \alpha^{k}\left(1+O\left((\alpha c)^{-k}\right)\right)}=\frac{1}{a \alpha^{k}}\left(1+O\left((\alpha c)^{-k}\right)\right)=\frac{1}{a \alpha^{k}}+O\left(\left(\alpha^{2} c\right)^{-k}\right)
$$

Thus

$$
\sum_{k=n}^{\infty} \frac{1}{u_{k}}=\frac{1}{a} \sum_{k=n}^{\infty} \frac{1}{\alpha^{k}}+O\left(\sum_{k=n}^{\infty}\left(\alpha^{2} c\right)^{-k}\right)=\frac{\alpha}{a(\alpha-1)} \alpha^{-n}+O\left(\left(\alpha^{2} c\right)^{-n}\right)
$$

By taking reciprocal we get

$$
\left(\sum_{k=n}^{\infty} \frac{1}{u_{k}}\right)^{-1}=\frac{1}{\frac{\alpha}{a(\alpha-1)} \alpha^{-n}+O\left(\left(\alpha^{2} c\right)^{-n}\right)}=\frac{\alpha-1}{\alpha} a \alpha^{n}\left(1+O\left((\alpha c)^{-n}\right)\right)=\frac{\alpha-1}{\alpha} a \alpha^{n}+O\left(c^{-n}\right)=u_{n}-u_{n-1}+O\left(c^{-n}\right)
$$

So there exists n_{0} such that the last error term becomes less than $1 / 2$ which completes the proof.

Theorem 4. Let $\left\{u_{n}(p, q, k)\right\}$, briefly $\left\{u_{n}\right\}$, be an order- k sequence defined by (3) with a restriction $p \geqslant q \geqslant 1$. Then there exists a positive integer n_{1}, such that

$$
\left\|\left(\sum_{k=n}^{\infty} \frac{(-1)^{k}}{u_{k}}\right)^{-1}\right\|=(-1)^{n}\left(u_{n}+u_{n-1}\right), \quad\left(n \geqslant n_{1}\right) .
$$

Proof. Here we start to the proof with computing the summand term

$$
\frac{(-1)^{k}}{u_{k}}=\frac{(-1)^{k}}{a \alpha^{k}+O\left(c^{-k}\right)}=\frac{(-1)^{k}}{a \alpha^{k}}\left(1+O\left((\alpha c)^{-k}\right)\right) .
$$

Then we have

$$
\sum_{k=n}^{\infty} \frac{(-1)^{k}}{a \alpha^{k}}\left(1+O\left((\alpha c)^{-k}\right)\right)=\frac{\alpha}{a(-\alpha)^{n}(\alpha+1)}+O\left(\left(\alpha^{2} c\right)^{-n}\right)
$$

By taking reciprocal,

$$
\left(\sum_{k=n}^{\infty} \frac{(-1)^{k}}{u_{k}}\right)^{-1}=\frac{a(-\alpha)^{n}(\alpha+1)}{\alpha}\left(1+O\left((\alpha c)^{-n}\right)\right)=(-1)^{n}\left(a \alpha^{n}+a \alpha^{n-1}\right)+O\left(c^{-n}\right)=(-1)^{n}\left(u_{n}+u_{n-1}\right)+O\left(c^{-n}\right)
$$

Then we can find integer n_{1} such that the error term is less than $1 / 2$ for $n \geqslant n_{1}$.
The following result could be proven similar to the previous results.
Theorem 5. For the sequence which defined in (3) with a restriction $p \geqslant q \geqslant 1$. Then there exist positive integers n_{2} and n_{3} such that

$$
\begin{aligned}
& \left\|\left(\sum_{k=n}^{\infty} \frac{1}{u_{t k+r}}\right)^{-1}\right\|=\left(u_{t n+r}-u_{t n-t+r}\right), \quad\left(n \geqslant n_{2}\right), \\
& \left\|\left(\sum_{k=n}^{\infty} \frac{(-1)^{k}}{u_{t k+r}}\right)^{-1}\right\|=(-1)^{n}\left(u_{t n+r}+u_{t n-t+r}\right), \quad\left(n \geqslant n_{3}\right),
\end{aligned}
$$

where t and r positive integers with $0 \leqslant r<t$.
Now we present some examples of our results. When $q=1, t=2, r=0$ and $r=1$ in the previous theorem, respectively, we get same results given in [3].

When we take $p=2, q=1, k=2$, with initials $u_{0}=0$ and $u_{1}=1$, respectively, we have same result in [6]. In addition we have more results such as

$$
\begin{align*}
& \left\|\left(\sum_{k=n}^{\infty} \frac{(-1)^{k}}{P_{k}}\right)^{-1}\right\|=(-1)^{n}\left(P_{n}+P_{n-1}\right), \quad(n \geqslant 1), \tag{7}\\
& \left\|\left(\sum_{k=n}^{\infty} \frac{1}{P_{t k+r}}\right)^{-1}\right\|=\left(P_{t n+r}-P_{t n-t+r}\right), \quad\left(n \geqslant n_{0}\right) .
\end{align*}
$$

Identity (7) can be also found in [3].
When $p=q=1, k=2, t=5$ and $r=3$ with initials $u_{0}=0$ and $u_{1}=1$, we obtain new result as follows,

$$
\begin{aligned}
& \left\|\left(\sum_{k=n}^{\infty} \frac{1}{F_{5 k+3}}\right)^{-1}\right\|=\left(F_{5 n+3}-F_{5 n-2}\right), \quad(n \geqslant 1), \\
& \left\|\left(\sum_{k=n}^{\infty} \frac{(-1)^{k}}{F_{5 k+3}}\right)^{-1}\right\|=(-1)^{n}\left(F_{5 n+3}+F_{5 n-2}\right), \quad(n \geqslant 1) .
\end{aligned}
$$

For example, we consider the sequence $\left\{u_{n}\right\}$ defined for $n>3$ by

$$
u_{n}=7 u_{n-1}+4 u_{n-2}+u_{n-3}+u_{n-4}
$$

with initials $u_{0}=0, u_{1}=1, u_{2}=2$ and $u_{3}=3$. Then, by Theorems 1 and 5 , we obtain

$$
\begin{aligned}
& \left\|\left(\sum_{k=n}^{\infty} \frac{1}{u_{k}}\right)^{-1}\right\|=u_{n}-u_{n-1}, \quad\left(n \geqslant n_{0}\right) \\
& \left\|\left(\sum_{k=n}^{\infty} \frac{(-1)^{k}}{u_{t k+r}}\right)^{-1}\right\|=(-1)^{n}\left(u_{t n+r}+u_{t n-t+r}\right), \quad\left(n \geqslant n_{1}\right)
\end{aligned}
$$

where n_{0} and n_{1} are determined according to the initial values and the roots of characteristic equation of sequence $\left\{u_{n}\right\}$.

References

[1] S.H. Holliday, T. Komatsu, On the sum of reciprocal generalized Fibonacci numbers, Integers 11 (4) (2011) 441-455.
[2] T. Komatsu, On the nearest integer of the sum of reciprocal Fibonacci numbers, Aportaciones Matematicas Investigacion 20 (2011) 171-184.
[3] T. Komatsu, V. Laohakosol, On the sum of reciprocals of numbers satisfying a recurrence relation of order s, Journal of Integer Sequences 13 (5) (2010) 19. Article 10.5.8.
[4] D.S. Mitrinović, Analytic Inequalities, Springer-Verlag, New York, 1970.
[5] H. Ohtsuka, S. Nakamura, On the sum of reciprocal Fibonacci numbers, The Fibonacci Quarterly 46/47 (2008/2009) 153-159.
[6] Z. Wenpeng, W. Tingting, The infinite sum of reciprocal Pell numbers, Applied Mathematics and Computation 218 (10) (2012) 6164-6167.
[7] Z. Wenpeng, W. Tingting, The infinite sum of reciprocal of the square of the Pell numbers, Journal of Weinan Teacher's University (26) (2011) 39-42.

[^0]: * Corresponding author.

 E-mail address: tarikan@etu.edu.tr (T. Arıkan).

