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power-Bell and derivative subgroups are presented. We also give a

new property for generating stochastic Riordan matrices which are
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and certain Riordan group isomorphisms are also given and proved.

We conclude byproving someproperties connecting similar Riordan

matrices and pseudo-involutions in the Riordan group.
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1. Introduction

The focus of this paper is to highlight some of the algebraic properties of the Riordan group. There

are many interesting papers on Riordan arrays that discuss algebraic properties. For instance, Merlini

et al. [17] present the theory of implicit Riordan arrays and use the arrays to give explicit results for

solving sums involving combinatorial inversions. He and Sprugnoli [12] show that the multiplication

of Riordan arrays can be performed in terms of the formulation rules determining the entries of an

array. The rules are called the A and Z sequences of a Riordan array. He [11] formulates a relationship

between a pair of Laurent series and Riordan arrays. Cheon et al. [4] show that all pseudo-involutions
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of the Bell subgroup of the Riordan group have corresponding �-sequences. The �-sequences are

single sequences of real numbers that characterize the Bell subgroup. Luzon and Moron [15] show

how Banach’s fixed point theorem is used to iterate a contractive first degree polynomial induced by

a certain complete metric in the ring of formal power series whose fixed point is 1/Q where Q is

any quadratic polynomial Q(x) = a + bx + cx2 where a �= 0. Also, Luzon and Moron [16] show how

self-inverse sequences of Sheffer polynomials are used to describe all involutions of the Riordan group.

Although much research has been done on the combinatorics of the Riordan group [3,18,19,21,28,

31,32], few papers focus exclusively on the algebraic structure of the group. Some structural properties

of the group are known and appear in the Riordan array literature. However, the proofs of some prop-

erties are either missing or not well documented. One purpose of this paper is to provide more details

of proofs of some known properties. Another purpose is to present some new algebraic properties. By

focusing more on the algebraic properties of the group, we hope to help fill some of the gaps on this

topic and spark more interest on the structure of the group.

This paper is arranged as follows. The definition of a Riordanmatrix and the Fundamental Theorem

of the Riordan group are presented in Section 2. A few known properties of the Riordan group are

covered in Section 3. In addition, we prove that the centralizer of a certain Riordan element is the

checkerboard subgroup. We also present a new similarity property for certain generalized Riordan

matrices. Some new and known facts are also given and proved in Section 4. Moreover, the elements

of the stabilizer subgroup are described. A relationship between the pair of generating functions g (z)
and f (z) of a Riordan array which leads to the derivation of stochastic Riordanmatrices is established.

The relationship is then used to generate elements of the stochastic subgroup of the Riordan group.

We prove that the set of power-Bell matrices is a subgroup of the Riordan group. We also prove

that the derivative subgroup is isomorphic to the associated and Bell subgroups. Properties of similar

Riordan matrices and pseudo-involutions of the Riordan group are also described, and a new result

for constructing certain pseudo-involutions is presented. Some problems for possible future research

projects are presented in Section 5. Some of the new results in this paper are given in [14].

2. The Riordan group

Let N
∗ denote the natural numbers (including 0) and C the complex numbers. The definition of a

Riordan matrix and two important theorems for proving properties on the algebraic structure of the

Riordan group are presented.

Definition 1. An infinite matrix L = (ln,k)n,k∈N∗ with entries inC is called a Riordanmatrix if the kth

column satisfies∑
n�0

ln,k z
n = g(z)(f (z))k

where g(z) = g0 + g1z + g2z
2 + · · · and f (z) = f1z + f2z

2 + · · · belong to the ring of formal power

series C[[z]] and f1 �= 0 and g0 �= 0.

A formal power series of the form

b(z) = b0 + b1z + b2z
2 + · · · = ∑

n�0

bnz
n

where z is an indeterminate is called the ordinary generating function of the sequence {bn}. A Riordan

matrix L can also be defined by exponential generating functions. The matrices given in this paper

are defined by ordinary generating functions and are the proper Riordan arrays as given by Sprugnoli

[31]. We are also only concerned with Riordan matrices with real valued entries. The matrices are

typically written in pair form as (g(z), f (z)) or (g, f ). Pascal’s trianglewritten in lower triangular form

is denoted by

P = (1/(1 − z), z/(1 − z)) .
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The following theorem is called the Fundamental Theorem of the Riordan Group. It leads to the

next theorem by applying the fundamental theorem to an arbitrary Riordan matrix N, one column of

N at a time.

Theorem1 [29]. If L = (ln,k)n,k∈N∗ = (g(z), f (z)) is a Riordanmatrix andh(z) is the generating function

of the sequence associated with the entries of the column vector h = 〈hk〉Tk∈N∗ , then the product of L and

h(z), defined by

L ⊗ h(z) = g(z)h(f (z)),

is the generating function of the sequence associated with the entries of the column vector〈 ∑n
k=0 ln,khk

〉T
n∈N∗ .

Let us denote by L ∗ N, or by simple juxtaposition LN, the row-by column product of two Riordan

matrices.

Theorem 2 [29]. If

L = (ln,k)n,k∈N∗ = (g(z), f (z)) and N = (νn,k)n,k∈N∗ = (h(z), d(z))

are Riordan matrices, then

LN =
⎛
⎝ n∑

j=0

ln,jνj,k

⎞
⎠

n,k∈N∗
= (g(z), f (z)) ∗ (h(z), d(z)) = (g(z)h(f (z)), d(f (z))) ,

and the setR of all Riordan matrices is a group under the operation of matrix multiplication.

The notation (R, ∗) denotes the Riordan group. See [28,29,31] formore information on the Riordan

group. The Riordan group is also known as the Sheffer or 1-umbral group [13,24].

3. Some structural properties

Some properties of the Riordan group are given in this section. We start with the basic group

properties. Then, we present similar Riordan matrices, various known subgroups with some related

properties, and properties involving pseudo-involutions. We also give a new similarity property and

prove that the Appell subgroup is a normal subgroup of (R, ∗).
The Riordan group is noncommutative and closed under usual matrix multiplication. It is easy to

show associativity. The identity element of (R, ∗) is denoted by I = (1, z), where I is the usual unit

diagonal matrix. The inverse elements of the group are Riordan matrices of the form

L−1 = (g(z), f (z))−1 =
(
1/g(f (z), f (z)

)
where f (z) and f (z) are compositional inverses.

Example 1. The matrix F = (1, z (1 + z)) is called a Fibonacci matrix since its row sums are the

Fibonacci numbers (sequence A800045 [30]) with the first term of the sequence equal to 1. Then,

F−1 = (1, z (1 + z))−1 = (1, zc (−z)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0 1

0 −1 1 · · ·
0 2 −2 1

0 −5 5 −3 1

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where c (z) denotes the Catalan generating function

c(z) =
(
1 − √

1 − 4z
)
/2z. (1)

See Examples 10 and 13, respectively, for the first few Fibonacci numbers and entries of F .

Definition 2. Two Riordan matrices A and B are said to be similar if there exists a Riordan matrix L

such that A = L−1BL.

Example 2. Recall P = (1/(1 − z), z/(1 − z)) is the Pascalmatrix. Let s(z)denote theRNAgenerating

function

s(z) =
(
1 − z + z2 −

√
1 − 2z − z2 − 2z3 + z4

)/
2z2

from discrete mathematical biology. The matrix R = (s(z), zs(z)) is the RNA matrix since the RNA

numbers [30] are the entries of the leftmost column of the matrix. The entries of R count certain RNA

secondary structures [19,20,25].

R in the above example is similar to P since

R = C
−1
0 PC0

where

C0 =
(
c(z2), zc(z2)

)
, C

−1
0 =

(
1

/(
1 + z2

)
, z

/(
1 + z2

))
,

and c (z) is given by Eq. (1).

We now give a property for certain similar generalized Riordan matrices, and we also generalize

Example 2.

Theorem 3. If A and B are similar Riordan matrices, then Ak and Bk are similar Riordan matrices for

integers k � 0.

Proof. The proof is by induction on k, Riordan matrix multiplication and applying associativity. �

Example 3. Let Pk and Rk denote, respectively, the generalized Pascal and RNA matrices where

Pk = (1/(1 − kz), z/(1 − kz))

and

Rk = (s(z), zs(z))k =
(
tc(t2), ztc(t2)

)

where t =
(
1/(1 − kz + z2)

)
and c (z) is given by Eq. (1). Then, the generalized RNA and Pascal

matrices are similar since P and R are similar. The matrices are also similar since

Rk = C
−1
0 PkC0.

More examples of similar Riordan matrices are given in [20,21].

3.1. Some Riordan subgroups

There are several known subgroups of (R, ∗).Wehighlight in this subsection someof the subgroups

and briefly describe some of their properties.
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The associated subgroup [29]: Elements of the associated subgroup are of the form (1, f (z)). The Fi-

bonaccimatrices given in Example 1 are elements of the associated subgroup. The associated subgroup

is isomorphic to the group of formal power series under composition [11].

The Appell subgroup [29]: Elements of the Appell subgroup are of the form (g(z), z). The Appell

subgroup is isomorphic to the group of invertible formal power series under multiplication [11] . If

g(z) = ∑
n�0

gnz
n = g0 + g1z + g2z

2 + · · · ,

then the coefficients of g(z)determine theentries of theelementsof theAppell subgroup. Theelements

are Riordan matrices of the form

(g(z), z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g0

g1 g0 · · ·
g2 g1 g0

g3 g2 g1 g0
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We call the elements Appell matrices. An Appell matrix (g(z), z) is the transpose of a semi-circulant

matrix [21]. Semi-circulant matrices are of the form (g(z), z)T where (g(z), z)T denotes the transpose

of (g(z), z).
We now provide a proof that the Appell subgroup is normal.

Theorem 4 [29]. The Appell subgroup is normal.

Proof. Let a = (h(z), d(z)) be an arbitrary element of (R, ∗) and N = (g(z), z) be an element of the

Appell subgroup. Then

a−1Na = (h(z), d(z))−1 ∗ (g(z), z) ∗ (h(z), d(z))

=
(
1/h(d(z)), d(z)

)
∗ (g(z), z) ∗ (h(z), d(z))

=
(
1/h(d(z)), d(z)

)
∗ (g(z) · h(z), d(z))

=
(
g(d(z)) · h(d(z))/h(d(z)), d(d(z))

)
=

(
g(d(z)), z

)
.

Thus, this shows that a−1Na is an element of the Appell subgroup. �

Given normality in (R, ∗), we now present a semi-direct product in (R, ∗). That is, the Riordan

group is a semi-direct product of the Appell and associated subgroups [29]. The product is given by

(g(z), z) ∗ (1, f (z)) = (g(z), f (z)) .

The Bell subgroup [29]: Elements of the Bell subgroup are of the form (g(z), zg(z)) or (f (z)/z, f (z)) .

The RNA, Pascal, C0, and C
−1
0 matrices in Examples 2 and 3 are elements of the Bell subgroup. The

Riordan group is also a semi-direct product of the Bell and Appell subgroups [1]. The product here is

given by

(zg(z)/f (z), z) ∗ (f (z)/z, f (z)) = (g(z), f (z)) .

The checkerboard subgroup [1,28]: Elements of the checkerboard subgroup are of the form

(ge(z), fo(z)) where ge(z) denotes an even function and fo(z) denotes an odd function. The follow-

ing matrix is an interesting example of an element of the checkerboard subgroup
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J = (ge(z), fo(z)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0 1

1 0 1 · · ·
0 4 0 1

6 0 7 0 1

0 31 0 10 0 1

53 0 65 0 13 0 1

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where

ge(z) =
(
1 − √

1 + 4z
) (

1 − √
1 − 4z

)
z

(√
1 − 4z − √

1 + 4z
)

and

fo(z) = 2 −
(√

1 − 4z + √
1 + 4z

)
√

1 + 4z − √
1 − 4z

.

The row sums of J are c (z) where c (z) is given by Eq. (1). The matrices C0 and C
−1
0 in Examples 2 and

3 are also elements of the checkerboard subgroup.

We now prove that the centralizer of the Riordan element (1, −z) is the checkerboard subgroup.

Theorem 5 [28]. The centralizer of the element M = (1, −z) is the checkerboard subgroup.

Proof. In order to prove that the centralizer of M = (1, −z) is the checkerboard subgroup, we need

to show that an arbitrary element L = (g(z), f (z)) of (R, ∗) is in the checkerboard subgroup if and

only if

(g(z), f (z)) ∗(1, −z) = (1, −z)∗ (g(z), f (z))

⇐⇒
(g(z), −f (z)) = (g(−z), f (−z))

⇐⇒ g(z) = g(−z) and −f (z) = f (−z) ⇐⇒ g(z) is even and f (z) is odd. Thus, we obtain the

checkerboard subgroup. �

Cheon subgroup [6]: Let H0 denote the set of all complex valued functions such that h0 �= 0. Then,

the set of all Riordan matrices of the form (g(z), zf (zm)) where g(z), f (z) ∈ H0 and m is any integer

is a subset of (R, ∗). We note that the checkerboard subgroup is a subgroup of the Cheon subgroup

since they are both subgroups of the Riordan group and the elements of the checkerboard subgroup

form a subset of the elements of the Cheon subgroup.

The stochastic Riordan subgroup [28]: The elements of this subgroup are the Riordanmatrices whose

row sums equal one. Equivalently, this is the stabilizer of the column vector 〈1, 1, 1, . . .〉T where

〈1, 1, 1, . . .〉T denotes the transpose of the row vector 〈1, 1, 1, . . .〉. We note that the definition of

stochastic matrix here differs from the usual definition since thematrices are infinite lower-triangular

and some entries of some Riordan matrices can be negative.

The derivative subgroup [26]: Elements of this subgroup are of the form (f ′(z), f (z)) where f ′(z)
denotes the first derivative of f (z). The following matrix is an element of the derivative subgroup
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(1 + 2z, z (1 + z)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2 1

0 3 1 · · ·
0 2 4 1

0 0 5 5 1

0 0 2 9 6 1

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

The hitting time subgroup [22]: The elements of this group are of the form
(
zf ′(z)/f (z), f (z)

)
. The

Pascal matrix is also an element of this subgroup.

We now present a definition of divisibility for the hitting time subgroup. The divisibility property

of the Pascal triangle is well-known. An interesting feature of Theorem 6 below is that it generalizes

the divisibility property of Pascal’s triangle to all elements of the hitting time subgroup.

Definition 3 [22]. A subset of Riordanmatrices is said to have the “divisibility property” if eachmatrix

(mn,k)n,k�0 of the subset satisfies the property that n divides k · mn,k whenever 0 < k < n.

Theorem 6 [22]. Let M = (mn,k)n,k�0 = (zf ′(z)/f (z), f (z)). Then n divides k · mn,k for all 0 < k < n.

Corollary 1 [22]. If p is a prime, then p divides mp,k for 0 < k < p.

3.2. Riordan group involutions

Wenow present Riordan group elements of finite order. Recall, in this paper we are only concerned

with Riordan matrices with real valued entries. The only elements of finite order in the group of non-

zero real numbers under multiplication are −1 and 1. Thus, it follows that any Riordan matrix with

real valued entries and of finite ordermust have order 2 [7]. Elements of order 2 are called involutions.

Example 4. The element

M = (1, −z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0 −1

0 0 1 · · ·
0 0 0 −1

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

is an involution in (R, ∗).
Proposition 1 [2]. If T = (1, f (z)) is an element of the associated subgroup, then T is an involution if

and only if f (z) = f (z) .

Example 5. Let T = (1, −z/ (1 + z)). Then T is an involution in (R, ∗) since f (z) = f (z) . The result

here can also be obtained by Riordan matrix multiplication.

There are uncountably many formal power series f (z) of compositional order 2. Thus, there are

uncountablymany elements of the associative subgroup (1, f (z)) of order 2. So, there are uncountably
many Riordan group elements of order 2 [8].
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Wenowpresent the definition of a pseudo-involution of (R, ∗) and give someexamples. The results

for the examples can be obtained by Riordan matrix multiplication.

Definition 4 [2]. An element L of the Riordan group is called a pseudo-involution or is said to have

pseudo-order 2 if LM or equivalently ML has order 2 where M is given by Eq. (3).

Example 6. The identity element I is a pseudo-involution that is not an involution. The element

T = (1, −z/ (1 + z)) in Example 5 is an involution but not a pseudo-involution.

Example 7. The Pascal matrix P is not an involution but is a pseudo-involution. More generally, for

k � 0 thegeneralizedPascalmatrixPk is not an involutionbut is apseudo-involution since (PkM)2 = I.

The set of matrices Pk is a subset of a larger subset of Riordan matrices of the form

(1/(1 − rz), z/(1 − rz))

where r is any real or complex number. These matrices are elements of the Bell subgroup and are also

pseudo-involutions.

Example 8. The RNA matrix R is not an involution but is a pseudo-involution since (RM)2 = I.

Proposition 2. If L = (g(z), f (z)) is a pseudo-involution, then

L−1 = (g(−z), −f (−z)).

Example 9. Consider the RNA matrix R. Then,

R−1 = (s(−z), zs(−z)).

Note that a computer algebra system likeMaple orMathematica can be used to confirm that RR−1 = I.

An interesting featureof Proposition2 is that it canbeused tofind the inverseof apseudo-involution

with complicated computations involving the compositional inverse.

Proposition 3. The generalized RNA matrix

Rk = C
−1
0 PkC0

is a pseudo-involution.

Proof. Wemust show (MRk)2 = I. By associativity, we have

(MRk)2 =
(
M

(
C

−1
0 PkC0

))
∗

(
M

(
C

−1
0 PkC0

))
=

((
MC

−1
0

)
PkC0

)
∗

((
MC

−1
0

)
PkC0

)
.

Then, by MC
−1
0 = C

−1
0 M, associativity and Pk being a pseudo-involution we have

(MRk)2 =
((

C
−1
0 M

)
PkC0

)
∗

((
C

−1
0 M

)
PkC0

)
=

(
C

−1
0 MPk

)
∗(C0C−1

0 )∗(MPkC0)

= C
−1
0

((
MPk

) (
MPk

))
C0

= C
−1
0 C0

= I. �
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Recall that thematricesPk andRk are similar.A linkbetweenpseudo-involutionsandsimilarRiordan

matrices is given in the next section. More information on pseudo-involutions in the Riordan group

can be found in [1,3–5,16,20].

4. More structural properties

In this section, we present more structural properties. We start with the stabilizer subgroup.

4.1. Stabilizer subgroup

Recall that the stochastic Riordan subgroup is the stabilizer of the column vector 〈1, 1, 1, . . .〉T .
In order for a Riordan group element to stabilize a column vector whose entries are given by the

generating function h(z), the following condition must be satisfied

(g(z), f (z)) ⊗ h(z) = h(z). (4)

This leads to the following propositions.

Proposition 4. Let h(z) be the generating function associated with the coefficients whose entries form the

column vector 〈h0, h1, h2, . . .〉T . The stabilizer of the column vector is the set of all Riordan matrices of the

form

(h(z)/h(f (z)), f (z)) .

Proof. Applying the fundamental theorem to Eq. (4) gives

g(z) · h(f (z)) = h(z). (5)

Solving Eq. (5) for g (z) gives

g(z) = h(z)/h(f (z)). �

Remark 1. It is well-known that the stabilizer of an element of a set on which a group G acts forms a

subgroup [10]. Nonetheless, we present a short proof below using Riordan matrix multiplication.

Proposition 5. The set of elements of the form (h(z)/h(f (z)), f (z)) is a subgroup of the Riordan group.

Proof. Let

a = (h(z)/h(f1(z)), f1(z)) and b = (h(z)/h(f2(z)), f2(z))

be two elements of the set. Then,

ab = (h(z)/h(f2(f1(z))), f2(f1(z))) .

This shows closure. The inverse element is

a−1 =
(
h(z)/h(f (z)), f (z)

)
.

Hence, the set forms a subgroup. �

If h(z) = 1, then the associated subgroup is obtained as mentioned by Shapiro [28]. By applying

the fundamental theorem we obtain

(g(z), f (z)) ⊗ h(z) = 1 ⇐⇒ g(z) · 1 = 1 ⇐⇒ (g(z), f (z)) = (1, f (z))

where h(z) is the generating function associated with the column vector 〈1, 0, 0, . . .〉T .
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4.2. Generating stochastic Riordan arrays

We now give a definition and property for a Riordan array to be stochastic. The definition differs

from the usual definition of a stochastic matrix as given in [23].

Definition 5. A stochastic Riordan array is a Riordan array written in Riordan pair form (g(z), f (z))
where the kth column is of the form g(z) · (f (z))k and the row sums equal one.

Lemma 1. A Riordan array L = (g(z), f (z)) is stochastic if and only if

f (z) = −g(z) + zg(z) + 1.

Proof. The stabilizer of the column vector whose coefficients are associatedwith the generating func-

tion 1/(1 − z) is the stochastic Riordan subgroup. That is, (g(z), f (z)) is an element of the stochastic

Riordan subgroup if and only if

(g(z), f (z)) ⊗ 1/(1 − z) = 1/(1 − z).

By the fundamental theorem, this is true if and only if

g(z) · 1/(1 − f (z)) = 1/(1 − z)

⇐⇒
g(z) · (1 − z) = 1 − f (z)

⇐⇒
f (z) = −g(z) + zg(z) + 1. �

As a result of Lemma 1, we can generate stochastic Riordan arrays for certain sequences of count-

ing numbers. We now present an example of a stochastic Riordan array generated for the Fibonacci

numbers with the first term equal to 1. The array is not a proper Riordan array but is of interest since

the Fibonacci numbers appear in the leftmost column.

Example 10. The generating function for the Fibonacci numbers with the first term equal to 1 is

F(z) = 1/(1 − z − z2).

By Lemma 1, if g(z) = F(z), then f (z) = −z2F(z). Then, in matrix form

F1 = (F(z), −z2F(z)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1 0

2 −1 0 · · ·
3 −2 0 0

5 −5 1 0 0

8 −10 3 0 0 0

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that the row sums of the above first few entries are 1. This can be confirmed by multiplying the

pair form by 1/(1 − z). This also gives the following interesting relationship involving the Fibonacci

generating function

F(z)
/(

1 + z2F(z)
)

= 1/(1 − z).
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Remark 2. The Riordan array given in Example 10 is a stochastic Riordan array that is not invertible.

Thus, F1 is not a Riordan matrix. The array; however, is an example of a vertically stretched Riordan

array. We note that the vertically stretched arrays have left inverses. For more information on left

inverses of Riordan arrays see [9].

The following theorem gives conditions for a stochastic Riordan array to be a stochastic Riordan

matrix.

Theorem 7. A stochastic Riordan array is a stochastic Riordan matrix provided g0 = 1 and g1 �= 1where

g0 and g1 are the leading coefficients of the generating function

g(z) = ∑
n�0

gnz
n = g0 + g1z + g2z

2 + · · · .

Proof. Recall by Lemma 1, a Riordan array (g(z), f (z)) is stochastic if

f (z) = 1 − g(z) + zg(z).

From this relationship, we obtain

f (z) = (1 − g0 − g1z − g2z
2 − · · · ) + (g0z + g1z

2 + g2z
3 + · · · )

= 1 − g0 + (g0 − g1)z + (g1 − g2)z
2 + (g2 − g3)z

3 + · · ·

From the definition of a Riordanmatrix, the constant termof f (z) is 0. So 1−g0 = 0 implies g0 = 1.

In addition, f1 cannot be 0, hence g0 − g1 �= 0 implies 1 − g1 �= 0 or g1 �= 1. �

We now give an example of a stochastic Riordan matrix. An interesting feature of the example

is that the Hex numbers (sequence A002212 [30]), excluding the first term of the sequence, appear

in the leftmost column of the matrix. The Hex numbers count the number of restricted hexagonal

polyominoes with n cells [30].

Example 11. If

g(z) =
(
1 − 3z −

√
1 − 6z + 5z2

)/
2z2,

then

f (z) =
(
1 − 2z − z2 − (z + 1)

√
1 − 6z + 5z2

)/
2z2.

Now, let H = (g(z), f (z)). Thus, H is a stochastic Riordan matrix and an element of the stochastic

Riordan subgroup. In matrix form

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

3 −2 · · ·
10 −13 4

36 −67 40 −8

137 −321 277 −108 16

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As expected, the row sums here are also 1.
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4.3. The power-Bell subgroup

The following problem was mentioned by Shapiro in 2008. The problem is whether Riordan ma-

trices of the form (g(z), zgn(z)) , n � 0 (fixed integer), is a subgroup of (R, ∗). When n = 0, 1,
we respectively, get the Appell and Bell subgroups. The question is what matrices do we get when

n �= 0, 1?We generalize the problem to Riordan matrices of the form (g(z), zgr(z)) where r is a fixed

real number. We call these matrices power-Bell matrices and provide a solution to the problem in the

following proposition.

Proposition 6. The set of Riordan matrices (g(z), zgr(z)), where r is a fixed real number, is a subgroup of

the Riordan group.

Proof. When r = 0, we get the Appell subgroup. Now, let’s consider when r �= 0. Note that the pair

form of the matrices can be rewritten as

(
(f (z)/z)

1
r , f (z)

)
.

This simplifies the proof of the proposition since expressing the compositional inverse of f (z) is much

simpler than that of zgr(z). In order to show that these matrices form a subgroup, we need to show

closure under multiplication and taking inverses.

Consider a and bwhere

a =
(
( f1(z)/z)

1
r , f1(z)

)
and b =

(
( f2(z)/z)

1
r , f2(z)

)

are elements of the set. Then, multiplying a and b gives the following

ab =
(
( f1(z)/z)

1
r , f1(z)

)
∗

(
( f2(z)/z)

1
r , f2(z)

)

=
((

( f1(z)/z)
1
r

)
·
(
( f2( f1(z))/f1(z))

1
r

)
, f2( f1(z))

)

=
(
( f2( f1(z))/z)

1
r , f2( f1(z))

)
.

This shows closure.

Next, we show closure under inverses. Thus, for an arbitrary element of the set, we obtain

(
(f (z)/z)

1
r , f (z)

)−1

=
⎛
⎜⎜⎝ 1(

f (f (z))/f (z)
) 1

r

, f (z)

⎞
⎟⎟⎠

=
((

f (f (z))/f (z)
)− 1

r , f (z)

)

=
((

f (z)/z
) 1

r , f (z)

)
.

Thus, the set is a subgroup of (R, ∗). �

We call this subgroup the power-Bell subgroup of (R, ∗).
Example 12. For r = 2, we give an example where F(z) is the Fibonacci generating function. Let

g(z) = (F(z))
1
2 and f (z) = zF(z). Then,
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((F(z))
1
2 , zF(z)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1/2 1

7/8 3/2 1

17/16 27/8 5/2 1 · · ·
203/128 95/16 55/8 7/2 1

583/256 1395/128 245/16 91/8 9/2 1

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that if we take g(z) = 1/
√

1 − 4z, then we get an element of the power-Bell subgroup with

integral entries. Another element of the power-Bell subgroupwith integral entries can also be obtained

by using the Fine numbers (sequence A000957 [30]). The Fine numbers count Dyck paths with no hills

[1,30].

4.4. Isomorphism of subgroups

We establish that the derivative subgroup is isomorphic to the associated and Bell subgroups.

Starting with the associative subgroup, if we remove the leftmost column and topmost row of an

element, then we get an element of the Bell subgroup [28].

Example13. Removing the leftmost columnand topmost rowof theFibonaccimatrix F = (1, z(1+z))
gives ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0 1

0 1 1

0 0 2 1 · · ·
0 0 1 3 1

0 0 0 3 4 1

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1 1

0 2 1 · · ·
0 1 3 1

0 0 3 4 1

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This mapping is given by (1, z(1 + z)) → (1 + z, z(1 + z)).

The above example illustrates that the associated subgroup is isomorphic to the Bell subgroup via

the mapping that takes (1, f (z)) to (f (z) /z, f (z)) . Thus, we have the following proposition.

Proposition 7. The mapping φ : (1, f (z)) → (f (z)/z, f (z)) is an isomorphism.

Proof. Consider the mapping φ which takes (1, f (z)) to (f (z)/z, f (z)). Clearly φ is one-to-one and

onto. We now show φ is a homomorphism. By Riordan matrix multiplication and the definition of the

mapping we obtain

φ ((1, f (z)) ∗ (1, h(z))) = φ (1, h(f (z)))

= (h(f (z))/z, h(f (z)))

= (f (z)/z, f (z)) ∗ (h(z)/z, h(z))

= φ (1, f (z)) ∗φ (1, h(z)) .

This proves the result. �
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Remark 3. Similar to Proposition 7, the mapping

� : (1, f (z)) →
(
(f (z)/z)1/r, f (z)

)
is an isomorphism between the associative and power-Bell subgroups.

We now establish an isomorphism between the derivative and associated subgroups.

Proposition 8. The mapping α : (
f ′ (z) , f (z)

) → (1, f (z)) is an isomorphism.

Proof. Consider the mapping α that takes (f ′, f ) to (1, f ). Clearly, α is one to one and onto. We now

show α is a homomorphism. By Riordan matrix multiplication and the definition of the mapping we

obtain

α[(f ′1, f1)∗(f ′2, f2)] = α[(f ′1f ′2(f1), f2(f1))]
= (1, f2(f1))

= (1, f1)∗(1, f2)
= α(f ′1, f1)∗α(f ′2, f2).

This proves the result. �

The fact that the derivative and associated subgroups are isomorphic and the associated and Bell

subgroups are isomorphic, we know that the derivative and Bell subgroups are isomorphic since iso-

morphism is an equivalence relation [10]. By using the Fundamental Theorem of Calculus, we give a

proof of the isomorphismbetween the derivative and Bell subgroups. The proof gives a nice application

of the Fundamental Theorem of Calculus.

Proposition 9. The mapping β : (
f ′ (z) , f (z)

) → (f (z)/z, f (z)) is an isomorphism.

Proof. Consider the mapping β defined by

β(f ′, f ) =
(
1/z

∫ z

0
f ′(t)dt, f (z)

)
.

Clearly β is one-to-one and onto. We now show β is a homomorphism. By Riordan matrix multiplica-

tion, the definition of the mapping, and the Fundamental Theorem of Calculus we get the following.

β[(f ′, f ) ∗ (h′, h)] = β
(
f ′ · h′(f ), h(f )

)
=

(
(1/z)

∫ z

0

(
(h(f ))′ (t)dt

)
, h(f )

)
= ((1/z) · h(f ), h(f ))
=

(
(1/z)

∫ f (z)

0
h′(t)dt, h(f )

)

=
(
(1/z)f (z)(1/f (z))

∫ f (z)

0
h′(t)dt, h(f )

)

=
(
(1/z)

∫ z

0
f ′(t)dt(1/f (z))

∫ f (z)

0
h′(t)dt, h(f )

)

=
(
(1/z)

∫ z

0
f ′(t)dt, f (z)

)
∗

(
(1/z)

∫ z

0
h′(t)dt, h(z)

)
= β(f ′, f )∗β(h′, h).

This proves the result. �
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Fig. 1. Commutative diagram.

By combining Propositions 7, 8 and 9, we give in Fig. 1 an illustration of a commutative diagram

where U = (f ′, f ), V = (1, f ), andW = (f /z, f ).

4.5. Similar Riordan matrices and pseudo-involutions

We now give some properties in this subsection that link similar Riordan matrices and pseudo-

involutions. We start by giving a property that can be used to construct certain generalized pseudo-

involutions of (R, ∗). Then, we give a lemma and theorem connecting similar Riordan matrices and

pseudo-involutions where similarity involves elements of the checkerboard subgroup.

Proposition 10. Let L be an arbitrary Riordan matrix, M = (1, −z) and D a pseudo-involution. Then, a

Riordan matrix A of the form

A = (L−kM)D(LkM)

is a pseudo-involution in the Riordan group.

Proof. (Sketch) By Definition 4, the fact thatM2 = I and D is a pseudo-involution gives

(AM)2 =
((

(L−kM)D(LkM)
)
M

)2 = I. �

Example 14. If D = R is the RNA matrix, then by Proposition 10

A =
(
L−kM

)
R

(
LkM

)
is a pseudo-involution. This result can also be obtained by Riordanmatrix multiplication, associativity

and the fact that M and R are pseudo-involutions.

We showed in Examples 2 and 3 that the Pascal and RNA matrices are similar. We also showed in

Example 7 that the Pascal and generalized Pascal matrices are pseudo-involutions and in Example 8

that the RNA matrix is a pseudo-involution. In addition, we proved in Proposition 3 that the gener-

alized RNA matrix is a pseudo-involution. Therefore, we have similar Riordan matrices that are also

pseudo-involutions. However, there are cases when Riordan matrices are similar and neither matrix

is a pseudo-involution. In addition, there are cases when two Riordanmatrices are similar and one is a

pseudo-involution and the other is not. We now give an example to illustrate this last point.

Recall that P denotes the Pascal matrix which is a pseudo-involution. For k > 0 (integer), let Qk

denote the following generalized Riordan matrix

Qk =
((

(1 − z)2k−1 / (1 − 2z)k
)
, z/(1 − z)

)
.
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Thus, Qk is similar to P since

Qk = E−kPEk

where

Ek =
(
1/(1 − z)k, z

)
and E−k =

(
(1 − z)k, z

)
.

We now show that Qk is not a pseudo-involution. Consider

QkM =
((

(1 − z)2k−1 / (1 − 2z)k
)
, z/(1 − z)

)
∗(1, −z).

Then, we obtain

(QkM)2 =
((

(1 + z)2k−1 / (1 + 2z)k
)
, −z/(1 + z)

)2
=

((
(1 + z)

/(
1 + z − 2z2

))k
, z

)
.

Hence, (QkM)2 �= I since

(
(1 + z)

/(
1 + z − 2z2

))k �= 1.

Thus,Qk is similar to P where P is a pseudo-involution andQk is not.We now give properties that show

when similar Riordan matrices are also pseudo-involutions.

Lemma 2. If A and B are similar Riordan matrices of the form B = S−1AS where S is an element of the

checkerboard subgroup, then A is a pseudo-involution if and only if B is a pseudo-involution.

Proof. Theproof uses associativity and the fact that the centralizer ofM = (1, −z) is the checkerboard
subgroup. In order to prove that B is a pseudo-involution, we show that (BM)2 = I. Now, we assume

that A is a pseudo-involution. Then,

(BM)2 =
((

S−1AS
)
M

) ((
S−1AS

)
M

)
= S−1A(SMS−1)ASM

= S−1AMASM

= S−1(AMA)SM

= S−1(AMA)MS

= S−1(AMAM)S

= S−1(AM)2S

= S−1S

= I.

The reverse direction of the proof follows since similarity is an equivalence relation. �

Theorem 8. If

B = S−1AS

where S is an element of the checkerboard subgroup, then Ak is a pseudo-involution if and only if Bk is a

pseudo-involution.

Proof. The proof follows from Theorem 3 and Lemma 2. �
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4.6. Conclusion

This paper presents some properties on the algebraic structure of the Riordan group. The elements

of the Riordan group have been mainly used as combinatorial objects with little emphasis placed on

the algebraic structure. There is still much about the group that is unknown. For instance, some work

has been done on finding the commutator subgroup [26,27]. This is of interest since the commutator

is a proper normal subgroup which seems to be relatively rare. Also, finding other commutative sub-

groups and cyclic subgroups of (R, ∗) is of interest. We showed that the associated subgroup stabilizes

the column vector associated with the coefficients of the generating function h(z) = 1. The stochas-

tic Riordan subgroup stabilizes the column vector associated with the coefficients of the generating

function h(z) = 1/(1− z). Thus, finding other column vectors that are stabilized by subgroups of the

Riordan group is of interest. We presented a property linking similarity of Riordan matrices, elements

of the checkerboard subgroup, and pseudo-involutions. Determining if there are other Riordan matri-

ces not in the checkerboard subgroup for which the matrices are similar and pseudo-involutions is of

interest. Given that the Riordan group is a tool for solving combinatorial identities, it is also of interest

to apply the new group properties and stochastic Riordan arrays developed in this paper to problems

from combinatorics and graph theory. Lastly, we note that the properties presented in this paper are

suitable for inclusion in university level abstract and linear algebra courses.
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