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Summary

A filter provides an estimation of an unknown quantity, typically an output of a dynami-
cal system. The filter design procedure aims at minimizing the estimation error with respect
to some norm. The present work deals with equalized filtering for discrete–time processes,
in presence of unknown – but bounded – noise, an approach introduced by Blanchini and
Sznaier [1], which allows for the synthesis of bounded complexity filters. The main idea of
their paper is to attain a fixed order recursive filter, for systems subject to `∞ bounded
disturbances, such that the estimation error is guaranteed to be asymptotically confined in
a hyperrectangle whose “size” should be minimized. As it is proved in [1], the problem can
be solved by means of linear, time–invariant filters, which can be synthesized by solving a
convex optimization feasibility problem.

The aim of this thesis is to:

• analyse the class of filters proposed in [1];

• apply these filters to systems affected by noise also in presence of control or, more in
general, of a known signal ;

• test these filters on several examples and compare their performance with that achieved
by means of standard Kalman filters.

A MATLAB code has been implemented to simulate numeric examples.
The simulations have evidenced a good behaviour: the filter obtained with the proce-

dure explained in [1] typically outperforms the performance of the Kalman filter, which is
statistically optimal, if compared in terms of the worst case error.
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red; below, the estimation error is shown and its limits ±µopt are marked . . 64

7



8 LIST OF FIGURES

6.15 Simulations of the filter behaviour for car suspension with sinusoidal input
function, in the case k1 = 1, k2 = 1. Above z, in blue, is compared with ẑ, in
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Chapter 1

Introduction

Problem Statement and Goal
We consider linear, time–invariant systems subject to `∞ bounded disturbances. Two

types of noises are considered: a process noise, that affects directly the system evolution, and
a measurement noise, that affects the measurement output. The goal is to estimate a certain
system variable, the estimated output, which is in general different from the measured one.
Clearly, the norm of the estimation error, defined as the difference between the estimated
output and the estimating variable, has to be rendered as small as possible.

Our purpose is to synthesize filters – of bounded complexity – which assure that the error
is asymptotically confined within the tightest possible hyperrectangle.

Literature Review
When hard bounds on estimation errors are desired and the only information available on

exogenous disturbances is a pointwise bound on a suitable norm, the so called deterministic,
unknown–but–bounded approach is usually preferred to the classical stochastic estimation
methods. The typical goal is to design an estimator that minimizes the worst case estimation
error due to exogenous inputs which is only known to belong to a given set.

Among the pioneering papers devoted to this problem, [9] and [10] analysed the state
consistency set, i.e. the set of states compatible with both a–priori assumptions and experi-
mental measurements. It was shown that, in the case of `2 bounded exogenous disturbances,
the set of states consistent with the experimental observations is an ellipsoid whose center
and covariance matrix can be recursively obtained via a Kalman–filter–like estimator. Yet
the property does not hold for pointwise in time (e.g. `∞ like) constraints on the distur-
bance: in this case, even constraining the disturbances to belong to an ellipsoid at each
point in time does not lead to easily characterizable consistency sets for the states, although
these sets can be conservatively overbounded by an ellipsoid.

Worst case estimation in the presence of `∞ bounded disturbances was studied in [11],
[12], [13] (see also the survey [14]). The main result of these papers shows that pointwise
optimal estimators can be obtained as the product of a subset of past measurements and a
time varying gain. Both the gain and the set of relevant measurements result from solving a
linear programming optimization problem. However, this optimization problem involves all
past measurements. Thus, the complexity of these estimators grows with time. Moreover,
the filter is non–recursive: current estimates are obtained by solving a linear programming
problem that involves all available information, rather than by propagating past estimates.

The use of nonlinear recursive filters was proposed in [15]: the idea is to bound the set of
possible states consistent with the output observations by a set whose center is propagated
recursively and whose shape can be found by solving (at each instant) an optimization
problem. Still, the complexity of the resulting observer is potentially high.

A semi–recursive algorithm was proposed in [16]. In the case of known initial conditions,
the optimal `∞ estimation problem is reduced to an `1 model matching problem ([17], [18],
[19]) that can be solved with arbitrary precision by using the techniques in [18]. In the case

11



12 CHAPTER 1. INTRODUCTION

of unknown initial conditions, the complete, semi–recursive estimator is obtained by using a
non–recursive pointwise optimal estimator similar to that in [13] for the first time steps and
switching afterwards to the recursive `1 estimator. Again, this estimator complexity cannot
be bounded a–priori.

An alternative approach involves set–valued observers ([20], [21]): pointwise optimal
estimators are obtained by recursively applying the Fourier–Motzkin algorithm to construct
a polyhedral set guaranteed to contain the states of the plant. An `∞ pointwise optimal
estimator is then obtained from these sets, by simply using as estimate of the unknown
output z the center zc of the set of all output values compatible with the present set estimate
of the state. However, propagation of these estimates is not recursive, e.g. zc(k+1) cannot be
directly constructed from the past estimates zc(k− i). Moreover, in principle the complexity
of the estimator is not bounded a–priori and increases with time.

So, previous work dealing with the problem, based on constructing the consistency set for
the states of the plant, led to filters whose complexity can be arbitrarily large and potentially
grows online.

Equalized Filtering: Concept and Benefits
Since complexity is very high in observers based upon the idea of propagating a set known

to contain the unknown state of the plant, to avoid this difficulty Blanchini and Sznaier
([1]) recently proposed a different approach, based on the idea of equalized performance
(first introduced in their paper [2], concerning suboptimal `1 controller design). This new
approach allows to easily attain the goal to synthesize fixed order recursive filters for systems
subject to `∞ bounded disturbances, with guaranteed worst case estimation error.

Rather than attempting to confine the state of the system to a given set, it is more
desirable to work directly with the estimation error : the new approach leads to the synthesis
of bounded complexity filters linear recursive that confine the estimation error to the tightest
possible hyperrectangle, for a set of suitable initial conditions. For initial conditions outside
this set, the estimation error converges, in finite time, to the design value.

As we will see, the simulations performed in this work show a good behaviour of the
filters so obtained, also in challenging situations.

Chapters Overview
The first part, dedicated to theoretical preliminaries, includes three chapters: Chapter

2 deals with the new convex optimization approach to synthesizing bounded complexity `∞
filters, proposed by Blanchini and Sznaier; Chapter 3 extends the application of such filters
to systems in presence of control or, more in general, of a known input; Chapter 4 shows
how to obtain a discrete–time Kalman filter, in order to compare it with the filter obtained
via convex optimization.

In the second part, several examples and applications are presented. The general proce-
dure of filter synthesis and simulation is described in Chapter 5; in Chapter 6, examples of
systems affected only by unknown–but–bounded noises are considered, while in Chapter 7
systems with known inputs too are considered. General conclusions follow.

Some source code of the simulation programs is reported in Appendix A and its usage
is explained; all the MATLAB code is enclosed in a CD. Appendix B contains some hints
about convex optimization derived from [8].
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Theoretical Preliminaries
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Chapter 2

Filter Synthesis via Convex
Optimization

In this chapter we report results exposed by Blanchini and Sznaier in their paper [1] to
synthesize bounded complexity `∞ filters. Their work provides the theoretical background
for the present thesis. For the sake of completeness the essential results from [1] are quoted.

2.1 Notation, Definitions and Preliminary Results
In the thesis we will adopt the following notations.

‖y‖∞ ∞ norm of the vector y ∈ Rn: ‖y‖∞
.
= maxi |y|i.

M(j, :) jth row of the matrix M .
‖M‖1 ∞ → ∞ induced norm of matrix M ∈ Rn×m: ‖M‖1

.
=

maxi
∑
j |Mij |

`1n, `
∞
n extended Banach spaces of vector valued real sequences {y}∞0 ∈

Rn equipped with the norms ‖y‖`1
.
=
∑∞
i=0 ‖yi‖∞ and ‖y‖`∞

.
=

supi ‖yi‖∞, respectively.
B`1, B`∞ unit balls in `1, `∞.
B`∞(µ) scaled unit ball in `∞n . Given µ .

=
[
µ1 . . . µn

]
B`∞(µ)

.
= {e ∈ `∞n : ei/µi ∈ B`∞}

‖G‖`∞→`∞ `∞ to `∞ induced norm of the operator G : `∞ → `∞, e.g.
‖G‖`∞→`∞

.
= supy 6=0

‖Gy‖`∞
‖y‖`∞

Y (λ) λ–transform of a sequence {yk}∞0 : Y (λ)
.
=
∑∞
k=0 ykλ

k

We consider a scalar ARMA (Auto Regressive Mobile Average) model of the form

y(k) = −
n∑
i=1

aiy(k − i) +

m∑
i=0

biv(k − i); n ≥ m (2.1)

in which the value of the output y at time–instant k is computed as a mobile average on a
finite set of values of input and output at time–instants before k and of input at time–instant
k.

An ARMA model is associated to its λ–transform representation, which corresponds to
setting λ = 1/z in the usual z–transform representation.

y(λ) =

∑m
i=0 biλ

i∑n
i=0 aiλi

v(λ) (2.2)

The notion of equalized performance introduced in [2] (see also [3]) is here reported.

15
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Definition 1. Consider an LTI (Linear Time Invariant) plant described by a model of the
form (2.1). Given r ≥ n, the plant is said to achieve an equalized r–performance level µ if,
whenever the input and output sequences {v}, {y} satisfy |v(t)| ≤ 1 and |y(t)| ≤ µ for all
t = k, k−1, . . . , k− r+ 1, then ‖y(k+ 1)‖ ≤ µ (thus ‖y(k+ i)‖ ≤ µ, for i > 0). In particular
the case r = n is simply referred to as equalized performance.

Any stable plant achieves finite r–equalized performance for some large enough r. Fur-
ther, if a SISO (Single Input Single Output) plant achieves r–performance µ for some finite
r, then it achieves r′–performance µ for any r′ > r.

Some properties concerning the relationship between equalized performance and the `∞
induced norm are exposed in a lemma that we quote from [3].

Lemma 1. Given a stable, LTI SISO plant y(λ) = G(λ)v(λ), as in (2.2), with finite r–
equalized performance level µ(ro) for some ro ≥ n, the following holds:

1. ‖G‖`∞→`∞ ≤ µ(ro), with the equality holding for Finite Impulse Response (FIR)
plants.

2. µ(r) ↓ ‖G‖`∞→`∞ .

The purpose is

• to design a filter such that, if at some time instant to the past r values of the estimation
error are contained in a µ–hyperrectangle, then this property will hold for all t > to
and all disturbances ||v||`∞ ≤ 1, ‖w‖`∞ ≤ 1

• to obtain the tightest hyperrectangle satisfying this property.

The concept is illustrated in Fig. 2.1.

Figure 2.1: The equalized filtering idea: full dots are the true trajectory, empty dots are the
estimated trajectory (from [1])
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2.2 Problem Statement and Formulation
Consider an LTI plant subject to `∞ bounded disturbances, with state space realization

x(k + 1) = Ax(k) +Bvv(k)
z(k) = Hx(k)
y(k) = Cyx(k) +Dw(k)

(2.3)

or with λ–transform representation

z(λ) =
M(λ)

d(λ)
v(λ) (2.4)

y(λ) =
N(λ)

d(λ)
v(λ) +Dw(λ) (2.5)

where z ∈ Rs is the output to be estimated, y ∈ Rq are the measurements available to the
filter, v ∈ Rp is process noise and w ∈ Rq is measurement noise; besides d(λ) = det(I−λA).

As pointed out in [1], the assumption that the plant is strictly proper, with respect to
the input v, is made for notational simplicity and it can be removed at the price of a more
involved notation in the subsequent development. We will also assume now that z is a scalar,
but this assumption will be relaxed later, in section 2.5.

The filter to be designed is of the form

ẑ(λ) =
B(λ)

a(λ)
y(λ) (2.6)

such that the estimation error
e(λ) = z(λ)− ẑ(λ) (2.7)

is confined to a hyperrectangle. The complete filtering scheme is illustrated in Fig. 2.2.

Figure 2.2: The filtering scheme (from [1])

We will consider only filters that belong to the class of generalized Luenberger observers
defined as follows [4].

Definition 2. A system of the form

ξ(k + 1) = Pξ(k) + Ly(k) (2.8)
x̂(k) = Qξ(k) +Ry(k) (2.9)
ẑ(k) = Hx̂(k) (2.10)

is a generalized Luenberger (state) observer for system (2.3) if P is a stable matrix and
x̂(k)− x(k)→ 0 as k →∞, when w(k) ≡ 0 and v(k) ≡ 0.
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Lemma 2. The system (2.8)–(2.10) is a generalized observer for (2.3) if and only if P is
stable and there exists a full column rank matrix T such that

TA− LCy = PT (2.11)
QT +RCy = I (2.12)

Proof. See [4], [5].

The standard n–order Luenberger observer corresponds to the choice T = I and R = 0.
Selecting a “tall” T matrix leads to a higher order observer, with additional degrees of
freedom that can be used to optimize performance.

It is easy to show that, if P is stable and (2.11)–(2.12) are valid, x̂(k) − x(k) → 0 as
k →∞, when w(k) ≡ 0 and v(k) ≡ 0. In fact

[Tx− ξ](k + 1) = TAx(k) + TBvv(k)− Pξ(k)− Ly(k)

= TAx(k) + TBvv(k)− Pξ(k)− LCyx(k)− LDw(k)

= PTx(k) + TBvv(k)− Pξ(k)− LDw(k)

= P [Tx− ξ](k) + TBvv(k)− LDw(k)

Since P is stable, when w(k) ≡ 0 and v(k) ≡ 0, [Tx− ξ](k)→ 0 as k →∞. Thus

x̂(k)− x(k) = Qξ(k) +R[Cyx(k) +Dw(k)]− Ix(k)

= Qξ(k) + [RCy − I]x(k) +RDw(k)

= Qξ(k)−QTx(k) +RDw(k)

= −Q[Tx− ξ](k) +RDw(k)

So, when w(k), v(k) ≡ 0, as k →∞ x̂(k)− x(k)→ 0, because [Tx− ξ](k)→ 0.
Restricting the filter to be a generalized observer imposes a constraint on its structure.

Lemma 3. If the filter (2.6) is a generalized state observer for system (2.3), then the poly-
nomial matrices M(λ) (of dimension 1×p), N(λ) (of dimension q×p), B(λ) (of dimension
1× q) and the polynomials a(λ) and d(λ) satisfy the following condition:

M(λ)a(λ)−B(λ)N(λ) = C(λ)d(λ) (2.13)

for some polynomial matrix C(λ).

We report, for completeness, the proof written by Blanchini and Sznaier in [1], since
some details will be required later.

Proof. From equations (2.8)–(2.12) it follows that

[Tx− ξ](k + 1) = TAx(k)− Pξ(k)− L[Cyx(k) +Dw(k)] + TBvv(k)
= P [Tx− ξ](k) + TBvv(k)− LDw(k)

x(k)− x̂(k) = x(k)−Qξ(k)−RCyx(k)−RDw(k)
= Q[Tx− ξ](k)−RDw(k)

(2.14)

Furthermore,

e(k) = z(k)− ẑ(k) = Hx(k)−Hx̂(k)

= H[x(k)− x̂(k)] = HQ[Tx− ξ](k)−HRDw(k)

With the change of variables η = x and ϑ = [Tx− ξ], the state space representation of the
combined plant–filter system becomes[

η(k + 1)
ϑ(k + 1)

]
=

[
A 0
0 P

] [
η(k)
ϑ(k)

]
+

[
Bv 0
TBv −LD

] [
v(k)
w(k)

]
e(k) =

[
0 HQ

] [ η(k)
ϑ(k)

]
+
[
0 −HRD

] [ v(k)
w(k)

]



2.3. EQUALIZED PERFORMANCE FILTERING 19

Thus η is unobservable from e. Hence, the modes of A are cancelled in the transfer function
Te,η. From (2.4)–(2.7) it follows that

e(λ) =

[
M(λ)

d(λ)
− B(λ)

a(λ)

N(λ)

d(λ)

]
v(λ)−

[
B(λ)

a(λ)

]
Dw(λ)

=

[
M(λ)a(λ)−B(λ)N(λ)

a(λ)d(λ)

]
v(λ)−

[
B(λ)

a(λ)

]
Dw(λ)

Since d(λ) = det(I−Aλ), the cancellation of the modes of A in Te,η implies thatM(λ)a(λ)−
B(λ)N(λ) has d(λ) as a factor, precisely what (2.13) states.

We are interested in generalized-observer-like filters, so we will consider only polynomial
matrices satisfying (2.13) for some C(λ). In this case the estimation error is governed by
the equation

e(λ) =
C(λ)

a(λ)
v(λ)− B(λ)

a(λ)
Dw(λ) (2.15)

and the corresponding ARMA model is

e(k) = −
r∑
i=1

aie(k − i) +

r∑
i=0

Civ(k − i)−
r∑
i=0

BiDw(k − i) (2.16)

2.3 Equalized Performance Filtering
Now the equalized–performance filtering problem is formally stated.

Problem 1. Given an integer r ≥ n and µ > 0, the aim is to find a filter of the form (2.6)
of order r satisfying the constraint (2.13) and such that a(λ) is stable (i.e. all its poles are
outside the unit circle1) and

|e(k − j)| ≤ µ, j = 1, 2, . . . , r ⇒ |e(t)| ≤ µ
for all t ≥ k and all sequences v, w ∈ B`∞ (2.17)

The problem above does not explicitly make any assumptions on xo, the initial condi-
tions of the plant. As we will show later, in section 2.6, if the plant achieves an equalized
performance level µ < ∞, then there exist a set of initial conditions Xo(µ) such that if
xo ∈ Xo(µ) then |e(k)| ≤ µ for all k. For initial conditions outside this set, the condition
will be satisfied after a finite number of steps.

Theorem 1. An rth order filter of the form (2.6) with

a(λ) = 1 + a1λ+ · · ·+ arλ
r

B(λ) = B0 +B1λ+ · · ·+Brλ
r

C(λ) = C0 + C1λ+ · · ·+ Crλ
r

solves Problem 1 above if and only if

µ‖[a1 a2 . . . ar]‖1 + ‖[C0 C1 . . . Cr]‖1
+ ‖B0D . . . BrD‖1 ≤ µ

(2.18)

Proof. See [1].

Note that condition (2.18) implies the stability of the filter, since we have that

‖[a1 a2 . . . ar]‖1 =

r∑
i=1

|ai| = ρ < 1

Hence stability is assured.
Filters satisfying (2.18) are r–equalized filters with performance µ. The infimum feasible

value of µ
µopt = inf {µ > 0 : such that (2.18) holds}

is referred to as the optimal equalized filtering level.
1since λ = 1/z
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2.4 Optimal Fixed–Order Synthesis
Fixed complexity equalized filters can be efficiently synthesized by combining convex

optimization and line search. This is shown in [1] by rewriting (2.13) as the following linear
constraint in the variables ak, Bk and Ck:

MA−B


N0

N1

:
Nl

 = CD

where

M .
=



M0 0 . . . 0 0
M1 M0 . . . 0 0
...

...
. . . . . .

...
Mr Mr−1 . . . M1 Mo

...
... . . .

...
...

Mn Mn−1 . . . Mn−r+1 Mn−r

0 Mn Mn−1
...

...
...

... 0 Mn Mn−1
0 0 . . . 0 Mn



A .
= block-diag {a, a, . . . , a} , a .

=
[
1 a1 . . . ar

]T

B .
=



B0 0 . . . 0 0
B1 B0 . . . 0 0
: B1 . . . B0 0
Br : . . . B1 B0

0 Br . . . : :
0 : . . . Br Br−1
0 0 . . . 0 Br


, C .

=



C0 0 . . . 0 0
C1 C0 . . . 0 0
: C1 . . . C0 0
Cr : . . . C1 C0

0 Cr . . . : :
0 : . . . Cr Cr−1
0 0 . . . 0 Cr


,

D .
= block-diag {d, d, . . . , d} , d .

=
[
1 d1 . . . dr

]T
Since for a fixed µ, (2.18) is also convex in ak, Bk and Ck, it follows that establishing

feasibility of (2.13)–(2.18) reduces to a convex problem. Finally, the optimal filter (and its
associated optimal filtering error µopt) can be found via bisection as follows.

Algorithm 1. 0. Select µ > 0 and tolerance δ; set µ− = 0.

1. Solve the feasibility problem (2.13)–(2.18). If it is unfeasible set µ = 2µ and go to step
1; else set µ+ = µ.

2. Solve the feasibility problem for µ = (µ+ + µ−)/2.

3. If it is feasible, set µ+ = µ; else set µ− = µ.

4. If µ+ − µ− < δ then set µopt = µ and STOP; else go to step 2.

2.5 The Multi–Output Case
The results can be extended to the multiple outputs case, z ∈ Rs, by simply considering

an array of single–output filters, each of which estimates one of the components of z.
The definition of equalized filtering performance in the multi–output case becomes the

following.
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Definition 3. The filter (2.6) with error z− ẑ = e ∈ Rs is said to achieve a vector equalized
performance level µ .

=
[
µ1, µ2, . . . , µs

]
if it is stable and

e(k − j) ∈ B`∞(µ), j = 1, 2, . . . , r ⇒ e(k) ∈ B`∞(µ);
for all sequences v, w ∈ B`∞ (2.19)

Vector equalized performance is equivalent to componentwise scalar equalized perfor-
mance.

Theorem 2. A filter F : y ∈ `∞n → ẑ ∈ `∞s achieves a vector equalized performance level µ
if and only if each component Fi : y ∈ `∞n → ẑi ∈ `∞ achieves scalar equalized performance
(in the sense of (2.17)) µi, where ẑi denotes the ith component of ẑ.

Proof. See [1].

Hence, optimal MIMO filters can be synthesized by simply applying Algorithm 1 com-
ponentwise.

2.6 Filter Initialization
We report for completeness the initialization problem from [1]. Given an initial set of

r measurements, y .
=
[
yo, y1, . . . , yr−1

]
there exist a finite performance level µ and a filter

initial condition ξo such that the estimation error satisfies e(k) ∈ B`∞(µ) for all k. Let Ko,
Ty and T jz denote respectively the rth order Kalman observability matrix of the system (2.3)
and the Toeplitz operators mapping v to y and to the jth component of z, e.g.

Ko =


Cy
CyA

...
CyA

r−1

 Ty =


0 0 0 . . . 0

CyBv 0 0 . . . 0
CyABv CyBv 0 . . . 0

...
...

. . .
. . .

...
CyA

r−2Bv CyA
r−3Bv . . . CyBv 0



T jz
.
=


0 0 0 . . . 0

H(j, :)Bv 0 0 . . . 0
H(j, :)ABv H(j, :)Bv 0 . . . 0

...
...

. . .
. . .

...
H(j, :)Ar−2Bv H(j, :)Ar−3Bv . . . H(j, :)Bv 0


Then, after r measurements, the filter can be initialized as follows (see Fig. 2.3):

1. For k = 0, . . . , r − 1 and j = 1, . . . , s compute:

zj,+k
.
= max
x,v,w

H(j, :)Ak−1x + T jz (k, :)v

zj,−k
.
= min
x,v,w

H(j, :)Ak−1x + T jz (k, :)v

subject to: x ∈ Xo
y = Tyv +Dw, w,v ∈ B`∞

(2.20)

where D .
= diag{DT } and where Xo is a set known to contain the initial condition (if

no information is available then Xo = Rn).

2. Define:
zj,ck

.
=

zj,+k +zj,−k

2 ,

µjk
.
= 1

2 |z
j,+
k − zj,−k |

(2.21)

3. Let µinit,j = max
0≤t≤r−1

{µjt} and choose a filter initial condition such that the first r filter

estimates are ẑt = zj,ct , t = 0, . . . , r − 1. This is always feasible, since the order of the
filter is precisely r.
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If Xo is convex, then the optimization problem (2.20) is convex. Further, if Xo is a
polytope2, the problem reduces to LP (Linear Programming). Thus z+, z−, and zc above
can be found efficiently.

Figure 2.3: The filter initialization (from [1])

Since ‖
[
a1 . . . ar

]
‖1 < 1 by construction, if (2.18) holds for some µ̃, then it also holds

for all µ ≥ µ̃, and so does (2.17). It follows that if µinit,j ≤ µjopt (where µ
j
opt is the optimal

equalized performance level in (2.18)), then the filter (2.6), with the initialization above,
achieves optimal equalized performance level µjopt for all t ≥ r. On the other hand, if
µinit,j > µjopt, then the worst case `∞ estimation error is bounded above by µinit,j and
converges, in a finite number of steps, to µjopt.

Theorem 3. Consider a filter of the form (2.6), with the initialization above. Then, for
all t, |e(t)| ≤ µinit. Moreover, given µ ≥ µopt satisfying (2.18), for any plant and filter
initial condition pairs {xo, ξo} there exists a finite time T (xo, ξo, µ) such that for all t > T ,
|e(t)| ≤ µ.

Proof. See [1].

In the sequel we will be concerned with the steady–state performance of the filter. There-
fore we will not consider the initialization problem and the filter will be always initialized
at zero.

2A polytope is a bounded polyhedron; a polyhedron is the solution set of a finite number of linear
equalities and inequalities, thus the intersection of a finite number of halfspaces and hyperplanes: P =
{x|aTj x ≤ bj , j = 1, . . . ,m, cTj x = dj , j = 1, . . . , p}.



Chapter 3

Filtering in the Presence of Known
Inputs

The purpose of this chapter is to analyse the behaviour of the class of filters developed
by Blanchini and Sznaier [1] in a more general context.

Now we will consider systems not only affected by unknown, `∞ bounded disturbances,
but also controlled by an external, known input.

3.1 Problem Statement
Consider an LTI plant subject to `∞ bounded disturbances, with state space realization

x(k + 1) = Ax(k) +Bvv(k) + Eu(k)
z(k) = Hx(k)
y(k) = Cyx(k) +Dw(k)

(3.1)

or with λ–transform representation

z(λ) =
M(λ)

d(λ)
v(λ) +

Ψ(λ)

d(λ)
u(λ) (3.2)

y(λ) =
N(λ)

d(λ)
v(λ) +

Φ(λ)

d(λ)
u(λ) +Dw(λ) (3.3)

where z ∈ Rs is the output to be estimated, y ∈ Rq are the measurements available to
the filter, u ∈ Rm is the known (control) input, v ∈ Rp is process noise and w ∈ Rq is
measurement noise; besides d(λ) = det(I − λA).

Again, the purpose is to obtain an estimation ẑ of z such that e(λ) = z(λ) − ẑ(λ) is as
small as possible.

To this aim, we look for a filter of the form

ẑ(λ) =
B(λ)

a(λ)
y(λ) +

Γ(λ)

a(λ)
u(λ), (3.4)

where B is the same polynomial matrix and a the same polynomial that form the filter (2.6),
obtained with the same procedure described in [1] and reported in the previous chapter.

We consider filters belonging to the class of generalized Luenberger observers, i.e. systems
of the form

ξ(k + 1) = Pξ(k) + Ly(k) + TEu(k) (3.5)
x̂(k) = Qξ(k) +Ry(k) (3.6)
ẑ(k) = Hx̂(k) (3.7)

with P stable and x̂(k)− x(k)→ 0 as k →∞, when w(k) ≡ 0 and v(k) ≡ 0.

23
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As Lemma 2 in the previous chapter claims, the system (3.5)–(3.7) is a generalized
Luenberger state observer for (3.1) if and only if P is stable and there exists a full column
rank matrix T such that

TA− LCy = PT (3.8)
QT +RCy = I (3.9)

We show that, if P is stable and (3.8)–(3.9) are valid, x̂(k)− x(k)→ 0 as k →∞, when
w(k) ≡ 0 and v(k) ≡ 0.

[Tx− ξ](k + 1) = TAx(k) + TBvv(k) + TEu(k)− Pξ(k)− Ly(k)− TEu(k)

= TAx(k) + TBvv(k)− Pξ(k)− LCyx(k)− LDw(k)

= (TA− LCy)x(k) + TBvv(k)− Pξ(k)− LDw(k)

= PTx(k)− Pξ(k) + TBvv(k)− LDw(k)

= P [Tx− ξ](k) + TBvv(k)− LDw(k)

Since P is stable, when w(k) ≡ 0 and v(k) ≡ 0, [Tx− ξ](k)→ 0 as k →∞.

x̂(k)− x(k) = Qξ(k) +R[Cyx(k) +Dw(k)]− Ix(k)

= Qξ(k) + [RCy − I]x(k) +RDw(k)

= Qξ(k)−QTx(k) +RDw(k)

= −Q[Tx− ξ](k) +RDw(k)

Thus, when w(k) ≡ 0 and v(k) ≡ 0, as k →∞ x̂(k)− x(k)→ 0, because [Tx− ξ](k)→ 0.

3.2 The Case Bv = E

We assume Bv = E (and therefore u ∈ Rm with m = p, since v ∈ Rp) which means that
the known input u and the process noise v enter through the same channel.

The state space realization becomes

x(k + 1) = Ax(k) +Bv[v(k) + u(k)]
z(k) = Hx(k)
y(k) = Cyx(k) +Dw(k)

and in terms of λ–transform we have

z(λ) =
M(λ)

d(λ)
[v(λ) + u(λ)]

y(λ) =
N(λ)

d(λ)
[v(λ) + u(λ)] +Dw(λ)

As a preliminary step we put Γ(λ) = 0 and consider a filter of the form

ẑ(λ) =
B(λ)

a(λ)
y(λ),

which is exactly the same of (2.6), just to evidence the effect of the known input. The
scheme of the new situation is illustrated in Fig. 3.1.
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Figure 3.1: Block scheme when a known input is present and Bv = E.

The estimation error is

e(λ) = z(λ)− ẑ(λ)

=
M(λ)

d(λ)
[v(λ) + u(λ)]− B(λ)

a(λ)
y(λ)

=
M(λ)

d(λ)
[v(λ) + u(λ)]− B(λ)

a(λ)

{
N(λ)

d(λ)
[v(λ) + u(λ)] +Dw(λ)

}
=

[
M(λ)

d(λ)
− B(λ)

a(λ)

N(λ)

d(λ)

]
[v(λ) + u(λ)]− B(λ)

a(λ)
Dw(λ)

=
M(λ)a(λ)−B(λ)N(λ)

a(λ)d(λ)
[v(λ) + u(λ)]− B(λ)

a(λ)
Dw(λ).

Since B and a are computed as in the previous chapter, the constraint (2.13)

M(λ)a(λ)−B(λ)N(λ) = C(λ)d(λ),

still holds.
Therefore the estimation error

e(λ) =
C(λ)

a(λ)
[v(λ) + u(λ)]− B(λ)

a(λ)
Dw(λ)

=
C(λ)

a(λ)
v(λ)− B(λ)

a(λ)
Dw(λ) +

C(λ)

a(λ)
u(λ)

is affected by u (which can be arbitrarily large).
To improve the filter, it is crucial to remember that the control input u is known, so it is

possible to reduce the estimation error. Adopting the more general expression of the filter

ẑ(λ) =
B(λ)

a(λ)
y(λ) +

Γ(λ)

a(λ)
u(λ),

and assuming Γ(λ) = C(λ) we obtain

ẑ(λ) =
B(λ)

a(λ)
y(λ) +

C(λ)

a(λ)
u(λ) (3.10)

which corresponds to the scheme shown in Fig. 3.2.
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Figure 3.2: The filtering scheme in presence of a known input with Bv = E.

The estimation error with this new filter is

e(λ) = z(λ)− ẑ(λ)

=
M(λ)

d(λ)
[v(λ) + u(λ)]− B(λ)

a(λ)
y(λ)− C(λ)

a(λ)
u(λ)

=
M(λ)

d(λ)
[v(λ) + u(λ)]− B(λ)

a(λ)

{
N(λ)

d(λ)
[v(λ) + u(λ)] +Dw(λ)

}
− C(λ)

a(λ)
u(λ)

=

[
M(λ)

d(λ)
− B(λ)

a(λ)

N(λ)

d(λ)

]
[v(λ) + u(λ)]− B(λ)

a(λ)
Dw(λ)− C(λ)

a(λ)
u(λ)

=
M(λ)a(λ)−B(λ)N(λ)

a(λ)d(λ)
[v(λ) + u(λ)]− B(λ)

a(λ)
Dw(λ)− C(λ)

a(λ)
u(λ)

=
C(λ)

a(λ)
[v(λ) + u(λ)]− B(λ)

a(λ)
Dw(λ)− C(λ)

a(λ)
u(λ)

=
C(λ)

a(λ)
v(λ)− B(λ)

a(λ)
Dw(λ),

which is the same estimation equation obtained in the previous chapter in absence of u.

Comments
We have seen that, to estimate the output z of a system affected by bounded noise and

in presence of a known input, it is possible to use the filter

ẑ(λ) =
B(λ)

a(λ)
y(λ) +

C(λ)

a(λ)
u(λ),

where a, B and C are computed by solving the convex optimization feasibility problem
described in [1], as it was reported in the previous chapter.

Since the estimation error attained by this filter, also in presence of control (or more in
general of a known input), is the same that was achieved under the assumptions of [1], it is
likely to be a good filter. It will be tested upon several numerical examples in the following
part of this thesis, dedicated to simulations.

Yet it is important to remember that the simulations are performed via numerical al-
gorithms, with finite precision. So the exact cancellation that occurs in theory is indeed
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not perfect and the influence of u on the estimation error is not perfectly eliminated. It can
be seen that, when the amplitude of u increases, also the estimation error becomes larger.
Due to numerical effects, u still affects the estimation error, even though its influence is
much smaller than the influence of disturbances, when the degree of magnitude is the same,
because u is known.

A similar effect will be seen later, when an unstable system will be filtered and, due to
an imperfect pole–zero cancellation, the estimation error will diverge.

3.3 The Case Bv 6= E

If we consider (3.1) in the most general case, the λ–transform representation is

z(λ) =
M(λ)

d(λ)
v(λ) +

Ψ(λ)

d(λ)
u(λ)

y(λ) =
N(λ)

d(λ)
v(λ) +

Φ(λ)

d(λ)
u(λ) +Dw(λ)

and, if the form of the filter is

ẑ(λ) =
B(λ)

a(λ)
y(λ),

the estimation error can be calculated as

e(λ) = z(λ)− ẑ(λ)

=
M(λ)

d(λ)
v(λ) +

Ψ(λ)

d(λ)
u(λ)− B(λ)

a(λ)

[
N(λ)

d(λ)
v(λ) +

Φ(λ)

d(λ)
u(λ) +Dw(λ)

]
=

[
M(λ)

d(λ)
− B(λ)

a(λ)

N(λ)

d(λ)

]
v(λ)− B(λ)

a(λ)
Dw(λ) +

[
Ψ(λ)

d(λ)
− B(λ)

a(λ)

Φ(λ)

d(λ)

]
u(λ)

=
C(λ)

a(λ)
v(λ)− B(λ)

a(λ)
Dw(λ) +

Ψ(λ)a(λ)−B(λ)Φ(λ)

a(λ)d(λ)
u(λ)

since it is still valid the constraint (2.13). The situation is represented in Fig. 3.3.

Figure 3.3: The filtering scheme in presence of a known input with Bv 6= E.
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Then we can adopt the same trick we used in the previous section (when Bv = E) by
adding a term in u to the filter as follows

ẑ(λ) =
B(λ)

a(λ)
y(λ) +

Ψ(λ)a(λ)−B(λ)Φ(λ)

a(λ)d(λ)
u(λ)

Clearly we should ensure the stability of the additional component of the filter (the system
is not assumed to be stable). Essentially, we must impose that Ψ(λ)a(λ) − B(λ)Φ(λ) has
d(λ) as a factor:

Ψ(λ)a(λ)−B(λ)Φ(λ) = Λ(λ)d(λ)

for a certain polynomial matrix Λ(λ). This requires imposing another constraint on a, B
and C and solving the convex optimization feasibility problem with an additional constraint.

Thus the filter obtained through the procedure described in [1] by Blanchini and Sznaier
is no more suitable in this different context. Since the purpose of this thesis is to analyse
that particular filter, from now on we will take into consideration only examples of the case
Bv = E.



Chapter 4

Discrete–Time Kalman Filter

4.1 The Kalman Filtering Algorithm
Consider an LTI plant with state space realization

x(k + 1) = Ax(k) +Bv(k)
z(k) = Hx(k)
y(k) = Cx(k) + w(k)

where z ∈ Rs is the output to be estimated, y ∈ Rq are the measurements available to the
filter, v ∈ Rp is process noise and w ∈ Rq is measurement noise. We aim at obtaining a
recursive algorithm that yields an estimate x̂ of the process state.

Assume that w and v are stochastic processes and

1. E[v(k)] = 0

2. E[v(k)v(h)T ] = Q(k)δ(k − h), with Q(k) > 0

3. E[x(k0)] = x0

4. E[(x(k0)− x0)(x(k0)− x0)T ] = V ar[x(k0)] = P0

5. E[w(k)] = 0

6. E[w(k)w(h)T ] = R(k)δ(k − h), with R(k) > 0

7. E[w(k)v(h)T ] = 0 for every k, h

8. E[w(k)x(h)T ] = 0 for every k, h

9. E[v(k)x(h)T ] = 0 for k ≥ h

These hypotheses mean that: v, w are white noises; the statistics of x0 is known; v, w,
x are uncorrelated.

We consider filters belonging to the class of Luenberger observers, i.e. we look for an
estimate of the state generated by the plant

x̂(k + 1) = [A(k)− L(k)C(k)]x̂(k) + L(k)y(k)

where L(k) ∈ Rn×q is the matrix we want to determine.
The estimation error is

e(k + 1) = x(k + 1)− x̂(k + 1)

= A(k)x(k) +B(k)v(k)− [A(k)− L(k)C(k)]x̂(k)− L(k)[C(k)x(k) + w(k)]

= [A(k)− L(k)C(k)][x(k)− x̂(k)] +B(k)v(k)− L(k)w(k)

= [A(k)− L(k)C(k)]e(k) +B(k)v(k)− L(k)w(k)

29
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We want to find the sequence of matrices L(k) that minimizes the quantity

E[‖x(k)− x̂(k)‖2] = trE[(x(k)− x̂(k))(x(k)− x̂(k))T ] (1).

Remark 1. The equality holds because
∥∥ [κ1 κ2 κ3 . . . κn]T

∥∥2 = κ21 +κ22 +κ23 + · · ·+κ2n and
κ1
κ2
κ3
:
κn

 [ κ1 κ2 κ3 . . . κn
]

=


κ21 κ1κ2 κ1κ3 . . . κ1κn
κ1κ2 κ22 κ2κ3 . . . κ2κn
κ1κ3 κ2κ3 κ23 . . . κ3κn

: : : : :
κ1κn κ2κn κ3κn . . . κ2n


whose trace is exactly κ21 + κ22 + κ23 + · · ·+ κ2n.

We define P (k) = E[(x(k)− x̂(k))(x(k)− x̂(k))T ] and so we have P (k0) = P0. Initially,
the best estimate is x̂(k0) = x0. Recursively, given P (k), P (k + 1) is determined as

[A(k)− L(k)C(k)]P (k)[A(k)− L(k)C(k)]T +B(k)Q(k)BT (k) + L(k)R(k)LT (k)

We choose P (k + 1) so as we minimize tr[P (k)]:

min
L
tr[(A− LC)P (A− LC)T +BQBT + LRLT )] =

min
L
tr[APAT ]− 2tr[APCTLT ] + tr[LCPCTLT ] + tr[BQBT ] + tr[LRLT ]

Remark 2. (A − LC)P (A − LC)T = (A − LC)(PAT − PCTLT ) = APAT − LCPAT −
APCTLT +LCPCTLT . Since LCPAT = (APCTLT )T , because P is symmetric, their trace
is the same: the trace of a matrix is always equal to that of its transpose.

Differentiating with respect to L and equating to zero, we obtain

2L(CPCT +R)− 2APCT = 0

and thus
L = APCT (CPCT +R)−1

When we substitute the expression obtained for L into the expression of P (k + 1), we
have

(A− LC)P (A− LC)T +BQBT + LRLT

= APAT +APCT (CPCT +R)−1CPCT (CPCT +R)−1CPAT

−APCT (CPCT +R)−1CPAT −APCT (CPCT +R)−1CPAT

+BQBT +APCT (CPCT +R)−1R(CPCT +R)−1CPAT

= APAT −APCT (CPCT +R)−1CPAT +BQBT

Thus the optimal recursive estimate is given by the process

x̂(k + 1) = [A(k)− L(k)C(k)]x̂(k) + L(k)y(k),

where
L(k) = A(k)P (k)CT (k)[C(k)P (k)CT (k) +R(k)]−1

and P (k) is recursively given by

P (k + 1) = A(k)P (k)AT (k)−A(k)P (k)CT (k)[C(k)P (k)CT (k) +R(k)]−1C(k)P (k)AT (k)

+ B(k)Q(k)BT (k),

with the initial conditions P (k0) = P0 and x(k0) = x0.
1trS =

∑
i Sii is the trace of matrix S, i.e. the sum of its diagonal elements
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Remark 3. If v(k) and w(k) do not have zero average, but have a known average v(k) and
w(k), respectively, the filter is given by

x̂(k + 1) = [A(k)− L(k)C(k)]x̂(k) + L(k)y(k)− L(k)w(k) +B(k)v(k),

so that we can exploit the results previously obtained, since the estimation error x(k + 1)−
x̂(k + 1) is

[A(k)− L(k)C(k)][x(k)− x̂(k)] +B(k)[v(k)− v(k)]− L(k)[w(k)− w(k)]

If we have also a known input u, for instance a control signal, the plant is

x(k + 1) = Ax(k) +Bv(k) + Eu(k)
z(k) = Hx(k)
y(k) = Cx(k) + w(k)

where z ∈ Rs is the output to be estimated, y ∈ Rq are the measurements available to the
filter, u ∈ Rm is the known input, v ∈ Rp is process noise and w ∈ Rq is measurement noise.

All the reasoning of the previous section can be repeated similarly: it is sufficient to
consider

x̂(k + 1) = [A(k)− L(k)C(k)]x̂(k) + L(k)y(k) + E(k)u(k),

so that the estimation error x(k + 1)− x̂(k + 1) is

A(k)x(k) +B(k)v(k) + E(k)u(k)− [A(k)− L(k)C(k)]x̂(k)

−L(k)[C(k)x(k) + w(k)]− E(k)u(k)

= [A(k)− L(k)C(k)][x(k)− x̂(k)] +B(k)v(k)− L(k)w(k)

as in the previous case.

Remark 4. The estimate x̂(k + 1) provided by the Kalman filter can be obtained by means
of a simple equation that involves the previous estimate x̂(k) and the new measurement y(k),
but does not involve any of the past measurements y(0), y(1), . . . , y(k − 1).

4.2 Steady–State Kalman Filtering Algorithm

We have obtained in the previous section that

P (k + 1) = A(k)P (k)AT (k)− L(k)C(k)P (k)AT (k) +B(k)Q(k)BT (k),

with the initial condition P (k0) = P0.
When all the system matrices are constant, under suitable assumption, P (k + 1) tends

to a positive definite symmetric matrix P that solves the discrete–time algebraic Riccati
equation

P = A[P − PCT (CPCT +R)−1CP ]AT +BQBT

or
P = APAT −APCT (CPCT +R)−1CPAT +BQBT ,

assuming observability of the pair (A,C) and controllability of the pair (A,B). The asymp-
totic Kalman filter is given by

x̂(k + 1) = (A− LC)x̂(k) + Ly(k) = Ax̂(k) +APCT (CPCT +R)−1[y(k)− Cx̂(k)],

where
L = APCT (CPCT +R)−1.
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Stability Aspects

To study now the stability properties of the steady–state form of the Kalman filter,
consider the estimation error

e(k + 1) = x(k + 1)− x̂(k + 1) = (A− LC)e(k) +Bv(k)− Lw(k)

It is important that the error equation represents a stable system, i.e. the matrix A − LC
has eigenvalues strictly within the unit circle. This follows, under the observability and
controllability assumptions, by taking into account that P is the unique positive definite
symmetric solution of the discrete–time algebraic Riccati equation

P = A[P − PCT (CPCT +R)−1CP ]AT +BQBT .

As it was previously shown, this equation can be rewritten in the form

(A− LC)P (A− LC)T − P = −BQBT − LRLT ,

which is a discrete–time Lyapunov equation. Since BQBT +LRLT is symmetric and positive
definite and the solution P is positive definite, the matrix A − LC is asymptotically stable
and the sequence {ek}, generated by the system e(k+ 1) = (A−LC)e(k) +Bv(k)−Lw(k),
tends to zero whenever the vectors v(k) and w(k) are identically zero for all k.

4.3 Estimating z or x?

In the following chapters, the discrete–time Kalman filter will be compared with the
equalized filter obtained via convex optimization ([1]). For a fair comparison we will consider
R = D2 and Q = 1. In this section we deal with the following issue. Since our goal is to
estimate z, we need to focus our attention on the estimated output ẑ, which is assumed to
be a scalar (s = 1), rather than on the estimated state.

Since z(k) = Hx(k), an estimate of z, based upon the estimate of x, is achieved by

ẑ(k) = Hx̂(k).

If only noise is present
x(k + 1) = Ax(k) +Bv(k)

z(k) = Hx(k)
y(k) = Cx(k) +Dw(k)

the Kalman filter is
x̂(k + 1) = (A− LC)x̂(k) + Ly(k)

ẑ(k) = Hx̂(k)

where
L = APCT (CPCT +D2)−1

and P is the solution of the discrete–time algebraic Riccati equation

P = APAT +APCT (CPCT +D2)−1CPAT +BBT .

In presence of a known input the system is, instead,

x(k + 1) = Ax(k) +Bv(k) + Eu(k)
z(k) = Hx(k)
y(k) = Cx(k) +Dw(k)

and the Kalman filter has to be taken as

x̂(k + 1) = (A− LC)x̂(k) + Ly(k) + Eu(k)
ẑ(k) = Hx̂(k)
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where L and P are the same matrices of the previous case.
The Kalman filter optimizes the trace of E[(x− x̂)(x− x̂)T ] and does not privilege any

particular direction. So, if we look for an optimized estimate of x, will we find an optimized
estimate also of z, which is a particular linear combination of the components of x? Indeed,
since we are interested in z, the relevant estimation error is not x− x̂, but z− ẑ = H(x− x̂).

So, instead of considering E[(x − x̂)(x − x̂)T ], we may consider E[(H(x − x̂))((x −
x̂)THT )] = E[((x − x̂)THT )(H(x − x̂))] = E[(x − x̂)THTH(x − x̂)]. To avoid singularity
problems, we add a term ν2I, where ν2 is a positive and very small number. This allows
the matrix to become positive definite. We have

E[(x− x̂)T (HTH + ν2I)(x− x̂)] = E[(x− x̂)TΩ2(x− x̂)]

= E[(x− x̂)TΩ Ω(x− x̂)]

To analyse this situation, we perform a state transformation of the system in order to exploit
the previous theory. Consider the new variable χ = Ωx and note that E[(χ− χ̂)(χ− χ̂)T ] =
E[(Ω(x − x̂))((x − x̂)TΩT )] = E[(x − x̂)TΩTΩ(x − x̂)] and ΩT = Ω since Ω is symmetric.
We apply the transformation

χ(k) = Ωx(k)

x(k) = Ω−1χ(k)

to obtain

x(k + 1) = Ax(k) +Bv(k)
z(k) = Hx(k)
y(k) = Cx(k) +Dw(k)

⇒
Ω−1χ(k + 1) = AΩ−1χ(k) +Bv(k)
z(k) = HΩ−1χ(k)
y(k) = CΩ−1χ(k) +Dw(k)

⇒
χ(k + 1) = ΩAΩ−1χ(k) + ΩBv(k)
z(k) = HΩ−1χ(k)
y(k) = CΩ−1χ(k) +Dw(k)

The system has the new representation

χ(k + 1) = Arχ(k) +Brv(k)

z(k) = Hrχ(k)

y(k) = Crχ(k) +Drw(k)

where the matrices have the following expressions

Ar = ΩAΩ−1

Br = ΩB

Hr = HΩ−1

Cr = CΩ−1

Dr = D

Of course matrix D has not changed, since the relation between y(k) and w(k) has not
been transformed. Therefore we can obtain the standard discrete–time Kalman filter for the
transformed system (with R = D2 and Q = 1).

When disturbances only are present, we have

x̂(k + 1) = (Ar − LrCr)x̂(k) + Lry(k)
ẑ(k) = Hrx̂(k)

where
Lr = ArPrC

T
r (CrPrC

T
r +D2)−1

and Pr is the solution of the discrete–time algebraic Riccati equation

Pr = ArPrA
T
r +ArPrC

T
r (CrPrC

T
r +D2)−1CrPrA

T
r +BrB

T
r
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while, when also a known signal u is present, we have

x̂(k + 1) = (Ar − LrCr)x̂(k) + Lry(k) + Eru(k)
ẑ(k) = Hrx̂(k)

where Lr and Pr are the same matrices of the previous case and

Er = ΩE.

Question: Is the Kalman filter designed for the transformed previous system, thought
with the aim of estimating z, better than the standard filter?

The answer to this question is negative, because we can easily show that the transfer
function from the noises to ẑ achieved by means of the Kalman filter is invariant under state
transformations2.

The discrete–time Riccati equation for Pr

Pr = ArPrA
T
r +ArPrC

T
r (CrPrC

T
r +D2)−1CrPrA

T
r +BrB

T
r

is equivalent to

Pr = ΩAΩ−1PrΩ
−1ATΩ +

ΩAΩ−1PrΩ
−1CT (CΩ−1PrΩ

−1CT +D2)−1CΩ−1PrΩ
−1ATΩ + ΩBBTΩ,

since Ω is symmetric, and thus

Ω−1PrΩ
−1 = AΩ−1PrΩ

−1AT +

AΩ−1PrΩ
−1CT (CΩ−1PrΩ

−1CT +D2)−1CΩ−1PrΩ
−1AT +BBT .

So P = Ω−1PrΩ
−1 and Pr = ΩPΩ, which is an equivalence transformation for quadratic

forms. Besides

Lr = ArPrC
T
r (CrPrC

T
r +D2)−1

= ΩAΩ−1ΩPΩΩ−1CT (CΩ−1ΩPΩΩ−1CT +D2)−1

= ΩAPCT (CPCT +D2)−1 = ΩL,

then also L transforms as B does.
This justifies the fact that in our experiments we will always take into consideration the

standard Kalman filter for comparison with the equalized one, without considering weights
on the state variables.

2this result would follow by duality from the fact that the LQ regulator is optimal for any initial condition
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Chapter 5

General Procedure

This second part is dedicated to simulation and analysis of the equalized filter, applied
to some specific examples.

Given a system characterized by a process disturbance |v(t)| ≤ γ, a measurement noise
|w(t)| ≤ β, disturbance to estimated output (v to z) discrete–time transfer function (ex-
pressed by means of λ–transform)

m0 +m1λ+m2λ
2 + · · ·+mνλ

ν

d0 + d1λ+ d2λ2 + · · ·+ dνλν
with d0 = 1

and disturbance to measured output (v to y) discrete–time transfer function

n0 + n1λ+ n2λ
2 + · · ·+ nνλ

ν

d0 + d1λ+ d2λ2 + · · ·+ dνλν
with d0 = 1,

the aim is to synthesize a filter of order r ≥ ν

b0 + b1λ+ b2λ
2 + · · ·+ brλ

r

a0 + a1λ+ a2λ2 + · · ·+ arλr

and to test it with numerical simulations.
Simulation software has been implemented in MATLAB code to study the behaviour of

the filter in the considered examples. Each program is composed by three parts:

• a data file that sets the parameters;

• a routine that computes the filter by using an interactive function;

• a simulation program that generates the system response to random disturbances and
produces the Bode diagram of the filter and two graphs that show z versus ẑ and the
estimation error e = z − ẑ.

The following variables have to be initialized:

• the parameters of the system (state space realization or transfer function)

• the sampling time for discretization

• the values of β and γ

• the order of the filter

• a positive trial value for µ (the interactive program finds µopt after some iterations)

• the parameters for input signal generation

• the simulation interval

In the following sections the steps that lead to filter synthesis and simulation are reported
and discussed.

37
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5.1 Input Data Generation
In all our examples we consider continuous–time systems, which represent real situations

in the physical world. Then discretization is necessary. The program must

• generate the continuous–time system matrices from the inserted data;

• convert the continuous–time system to its discrete–time equivalent;

• compute the vectors m, n, d, that contain the coefficients of numerators and denomi-
nator of the discrete–time transfer functions.

5.2 Interactive Filter Determination
The program uses the function bos, written by Blanchini and Sznaier. It requires as

input

• the vectors m, n, d (they must be column vectors)

• the disturbance bounds β and γ

• the order of the filter

• a tentative value for µ > 0

The following quantities are the software outputs

• the vectors a, b, c, that contain the coefficients of the filter denominator, of the filter
numerator and of the polynomial that satisfies the constraint m(λ)a(λ)− b(λ)n(λ) =
c(λ)d(λ), respectively

• a margin value which should be positive and small (if it is not, another iteration is
needed).

The polynomial whose coefficients are contained in c forms the numerator of the second
part of the filter in presence of a known input, as explained in Chapter 3; the denominator
is always a.

5.2.1 Function usage
At first the function is run for a tentative value of µ > 0; if the margin is positive, µ

must be decreased, else if the margin is negative, µ must be increased. The procedure must
be repeated until µ is positive and as small as possible. The user should always verify that
the value check_eq_zero, shown when the function is executed, is about zero, which results
from a numerical check explained later. Besides, the code must be run until the margin
mrgn is positive and as small as possible, to have the correct solution.

5.2.2 How does it work?
The code of the function is reported in Appendix A. Here we just analyse the basic

principles.
The purpose is to express the optimization problem and to solve it by using CVX, a package

for specifying and solving convex programs (see [7]). For further deepening, see some hints
about convex optimization mentioned in Appendix B or consult the more exhaustive [8].

Let us remember the condition (2.18): µ‖[a1 a2 . . . ar]‖1+‖[c0 c1 . . . cr]‖1+‖b0 . . . br‖1 ≤
µ. The constant D has been assumed equal to 1, since its value can be reabsorbed in β.
We need to find the value µopt for which equality holds when the vectors a, b, c satisfy the
constraint ma− bn = cd.

First of all, the matrices M , N , D are created as convolution matrices from vectors
m,n, d divided respectively by µ, β, γ. If c is a column vector and x is a column vector of
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length l, then convmtx(c,l)*x is the same as conv(c,x), so it corresponds to multiplying
the polynomials represented by the two column vectors.

Then Φ is the partitioned matrix composed by M , −N , −D. The first column of Φ
is multiplied by µ to restore its proper value (it had been previously divided by µ, but it
should have not) and its sign is changed: it is renamed q. The remaining columns of Φ are
renamed P . It is now possible to state the convex optimization problem in CVX environment.
A variable x is defined as the concatenation of the coefficients ai µ (except for a0 = 1, which
is already contained in q), bi β and ci γ. The problem consists in minimizing the 1–norm of
x subject to the constraint Px = q. The software CVX solves it numerically.

After the optimization has been carried out, the vectors a, b, c are extracted from x.
The margin is calculated as a difference between the tentative value µ and the 1–norm

of x: the optimal value µopt should be approximately equal to the 1–norm of x, so we want
the margin to be as small as possible (but positive).

The value check_eq_zero is calculated as the norm of ma−bn−cd and it must be about
zero to verify the validity of the constraint.

When the iteration procedure is over — the margin is positive and small enough — the
latest µ value is taken as µopt and the latest vectors furnished by the program contain

• a the coefficients of the filter denominator

• b the coefficients of the filter numerator

• c the polynomial that satisfies the constraint ma − bn = cd. It is used as numerator
of the second component of the filter when also a known input is present.

Hence the filter has been synthesized and it can be tested by simulation.

5.3 Simulation
Before the simulation, Bode diagrams of b(λ)/a(λ) and, if in presence of a known input,

c(λ)/a(λ) are generated. The behaviour of the process and of the filter is reproduced to
show the graph of z and ẑ: if the filter is good, they must be close to each other. Then
the graph of the estimation error is displayed. After a transient period, the estimation error
must be comprised between µopt and −µopt (its absolute value mustn’t be greater than µopt);
otherwise, the filter is not working properly. This fact is true up to numerical problems, as
explained in Chapter 3.

5.3.1 Systems State Space Realization
From the polynomials forming the transfer functions of the process and of the filter, the

program derives the state space realization of the two systems (the process and the filter).
The state of the two systems and the output are initialized to zero.
The state space realization is used during the simulation to update at every step the

values of the variables.

5.3.2 Disturbance Generation
The disturbances v and w are randomly generated and they must respect the constraints

|v(t)| ≤ γ, |w(t)| ≤ β.

In one of the reported examples, we have tested the filter with two different kinds of
noise: linear and sinusoidal. The former has a straight proceeding, but the angular factor
can vary at each step of the simulation (the probability of variation is set by the user, as
well as the minimum and maximum value that the angular factor can assume). The latter
is a cosine of amplitude β or γ 1, whose pulsation can randomly change with a probability
set by the user, within a prescribed range. In the other examples, only sinusoidal noise has
been considered.

1so that the constraint is always respected
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Piecewise Affine Functions

The angular coefficient α is set at a value comprised in the interval (αmin, αmax) by
producing a random value with the MATLAB function rand(N), that generates an N-by-N
matrix with random entries, chosen from a uniform distribution on the interval (0.0,1.0).
Then

α = αminr + αmax(1− r), where r=rand(1)

and the value of the noise at the time–instant k is

v(k) = v(k − 1) + αTs, where Ts is the sampling time.

A saturation to ±β or ±γ is imposed to avoid the noise exceeding its limit. An example is
shown in Fig. 5.1.

Figure 5.1: Piecewise affine input function

Sinusoidal Functions

The noise is generated as

v = γ cos(omega_vkTs), w = β cos(omega_wkTs),

where omega_v=rand*omega_max, omega_w=rand*omega_max and omega_max is the maxi-
mum pulsation value set by the user. An example is shown in Fig. 5.2.

Figure 5.2: Sinusoidal input function

5.3.3 Comparison
A comparison between the filter obtained with the procedure described in [1] and the

discrete–time Kalman filter has been performed, with sinusoidal disturbance functions.
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The Bode diagrams of the two different filters are compared in a graph; another two
graphs show z versus ẑeq versus ẑkalman and the estimation error eeq = z − ẑeq versus
ekalman = z − ẑkalman.

5.4 Some Illustrative Examples

Some examples are described next. Several examples will be considered in the following
chapters without details.

5.4.1 Velocity Estimator

Consider the system

[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 0

] [
x1(t)
x2(t)

]
+

[
0
1

]
v(t)

y(t) =
[

1 0
] [ x1(t)

x2(t)

]
+ w(t)

z(t) =
[

0 1
] [ x1(t)

x2(t)

]
which is the space state realization of the mechanical system mq̈ = F , with x1 = q, x2 = q̇,
v = F/m.

We have y = q +w (the measured output is position, with its measure uncertainty) and
z = q̇ (the output to be estimated is the velocity).

Then

F =

[
0 1
0 0

]
, G =

[
0
1

]
,

Hy =
[

1 0
]
, Hz =

[
0 1

]
.

The discrete–time state space realization with sampling time T has matrices

A = eFT =

[
1 T
0 1

]
B =

ˆ T

0

eFξdξ G =

[
T 2/2
T

]
Cy = Hy =

[
1 0

]
Cz = Hz =

[
0 1

]
If we put T = 1, we have

A =

[
1 1
0 1

]
B =

[
0.5
1

]
The transfer functions from v to z and from v to y are

Tv,z = Cz(ζI −A)−1B =
ζ − 1

(ζ − 1)2

Tv,y = Cy(ζI −A)−1B =
0.5ζ + 0.5

(ζ − 1)2
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where ζ is the variable of the zeta–transform, while the λ–transform, achieved by assuming
ζ = 1/λ, is

Tv,z =
M(λ)

d(λ)
=

λ− λ2

1− 2λ+ λ2

Tv,y =
N(λ)

d(λ)
=

0.5λ+ 0.5λ2

1− 2λ+ λ2

so that

m(λ) = λ− λ2

n(λ) = 0.5λ+ 0.5λ2

d(λ) = 1− 2λ+ λ2,

and the input vectors for the function bos are

m=[0 1 -1]’;
n=[1 0.5 0.5]’;
d=[1 -2 1]’;

We look for a filter of order r = 3, i.e. ord_com = 3, and we put β = 1, γ = 1. We start
by assuming µ = 5 and after some iterations we find the value µopt ≈ 1.3.

The resulting filter is
b(λ)

a(λ)
=

0.2500− 0.2500λ2

1

with
c(λ) = −0.2500 + 0.3750λ+ 0.1250λ2.

5.4.2 Equalized Performance Function µ(γ)

The following example is derived from [1]. In the second order plant

M(λ)

d(λ)
=
λ2

1
,
N(λ)

d(λ)
=

(1− 0.5λ)(1− 2λ)

1

the process and measurement noise satisfy |vk| ≤ γ and |wk| ≤ β, respectively.
Since

m(λ) = λ2

n(λ) = (1− 0.5λ)(1− 2λ)

d(λ) = 1,

we have the following input vectors for the function bos:

m=[0 0 1]’;
n=conv([1 -0.5],[1 -2])’;
d=[1 0 0]’;

We look for a filter of order r = 3, so that ord_com = 3 and we put β = 1. Then we
analyse the filter as a function of γ. We start by assuming µ = 3, then after some iterations
the right value of µopt will be reached.

For 0 < γ < 2 the optimal equalized estimation is ẑ = 0 (zero filter: b ≈ 0), with µopt ≈ γ
(2).

For instance:
2µopt is always slightly greater than γ
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• γ = 0.8: µopt ≈ 0.8,
a = 1,

b = 1.0e− 10(0.0074− 0.1429λ+ 0.0100λ2 + 0.0047λ3);

• γ = 1: µopt ≈ 1,
a = 1,

b = 1.0e− 12(−0.1265− 0.7065λ− 0.0968λ2 − 0.0146λ3);

• γ = 1.5: µopt ≈ 1.5,
a = 1,

b = 1.0e− 9(0.0015− 0.6652λ− 0.0081λ2 − 0.0019λ3);

• γ = 1.95: µopt ≈ 1.95,
a = 1,

b = 1.0e− 9(−0.0094− 0.1536λ− 0.0427λ2 − 0.0107λ3);

So for low values of γ (0 < γ < 2) the filter is zero.
If γ = 2, µopt ≈ 2. The problem admits multiple solutions, amongst them b(λ)

a(λ) = 0 and

b(λ)

a(λ)
=
−0.1505− 0.4847λ− 0.1594λ2 − 0.0460λ3

1− 0.0661λ− 0.0445λ2 − 0.0460λ3
,

with
c = 0.1505 + 0.1084λ+ 0.0982λ2 + 0.0661λ3.

If γ > 2, the filter is

b(λ)

a(λ)
=
−0.2463− 0.6158λ− 0.2933λ2 − 0.1173λ3

1− 0.1173λ3

with poles at 0.4895 and −0.2448 ± 0.4239j. All the poles have equal modulus and, as
expected, are stable.

c(λ) = 0.2463

The equalized performance level seems to be an affine linear function of γ:

• γ = 2.1: µopt ≈ 2.03

• γ = 3: µopt ≈ 2.3

• γ = 4: µopt ≈ 2.6

• γ = 5: µopt ≈ 2.9

• γ = 8: µopt ≈ 3.7

• γ = 12: µopt ≈ 4.8

• γ = 22: µopt ≈ 7.6

• γ = 32: µopt ≈ 10.4

• γ = 102: µopt ≈ 30,
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Figure 5.3: The equalized filter (plain) versus the H2 filter (dashed) frequency response
(from [1])

while the filter is always the same.
The overall equalized performance level is given by the piecewise affine function of γ:

µopt(γ) =

{
γ for 0 < γ < 2
2 + κ(γ − 2) for 2 < γ

with κ ≈ 0.28.
In [1] the equalized filter is compared with the H2–optimal filter whose state space

realization is
Ah2 =

[
0.3700 0.0750
−0.2430 0.6076

]
Bh2 =

[
−0.3700
0.2430

]
Ch2 =

[
1.1777 −0.4443

]
Dh2 = [−0.1777] .

In Fig. 5.3 the frequency response of the equalized and the H2–optimal filters is reported
and in Fig. 5.4 the simulations in the presence of random piecewise–constant noise are shown.
The equalized filter has a slightly sharper cut–off effect.

The noise has been randomly generated by taking v = ±γ and w = ±β and randomly
changing sign with probability π = 1/10 at each instant. In the reported simulation γ = 10
and β = 1. Several experiments with randomly generated sequences have shown that the
worst case error produced by the equalized filter is always smaller than that produced by
the H2 filter.

5.4.3 A Single Pole on the Stability Boundary
Now we consider a plant with one pole on the stability boundary.

M(λ)

d(λ)
=

λ2

1− λ
,
N(λ)

d(λ)
=

(1− 0.5λ)(1− 2λ)

1− λ

We have

m(λ) = λ2

n(λ) = (1− 0.5λ)(1− 2λ)

d(λ) = 1− λ,

so that the input vectors for the function bos are
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Figure 5.4: The equalized filter versus the H2 filter. Top figure: the reference (dotted), the
H2 filter output (dashed), the equalized output (plain); bottom figure: the H2 filter error
(dashed), the equalized filter error (plain) (from [1])

m=[0 0 1]’;
n=conv([1 -0.5],[1 -2])’;
d=[1 -1 0]’;

For r = 3, β = 1, we study the behaviour of the filter when γ varies from γ = 0.01 to
γ = 100: µ varies from µ = 2.04 to µ = 59.5, but the filter is always

b(λ)

a(λ)
=
−0.4912− 0.7368λ− 0.3509λ2 − 0.1404λ3

1− 0.1404λ3
,

with c = 0.4912.
Its poles are −0.2599± 0.4501j and 0.5197, all with the same absolute value.

5.4.4 Two Poles on the Stability Boundary
The following example is derived from [1]. We consider the case of a plant with poles on

the stability boundary.

M(λ)

d(λ)
=

λ2

1− λ2
,
N(λ)

d(λ)
=

(1− 0.5λ)(1− 2λ)

1− λ2

m(λ) = λ2

n(λ) = (1− 2λ)(1− λ/2)

d(λ) = 1− λ2,

so the input vectors for the function bos are

m=[0 0 1]’;
n=conv([1 -0.5],[1 -2])’;
d=[1 0 -1]’;

The equalized filter corresponding to β = 1, γ = 8 and r = 3 is given by

b(λ)

a(λ)
=
−0.3268− 0.8171λ− 0.3891λ2 − 0.1556λ3

1− 0.1556λ3
,
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with
c = 0.3268,

and achieves an equalized performance level µopt ≈ 5.1
The poles are −0.2689± 0.4658j and 0.5379, all with the same absolute value.
With β = 1, the filter is the same even when γ = 0.01, γ = 0.1, γ = 1, γ = 10 and

γ = 100. So the filter seems to be independent from the value of γ; of course the equalized
performance level increases with γ.

5.4.5 A Stable Plant
Consider now a stable plant.

M(λ)

d(λ)
=

λ2

1− 0.8λ
,
N(λ)

d(λ)
=

(1− 0.5λ)(1− 2λ)

1− 0.8λ

m(λ) = λ2

n(λ) = (1− 2λ)(1− λ/2)

d(λ) = 1− 0.8λ,

so that

m=[0 0 1]’;
n=conv([1 -0.5],[1 -2])’;
d=[1 -0.8 0]’;

We put r = 3 and β = 1. For γ < 0.4, we obtain the zero filter (the process is stable)
and the equalized performance is

µopt ≈ 5γ

For γ = 0.4, µopt ≈ 2 and

b(λ)

a(λ)
=
−0.1428− 0.3973λ− 0.1739λ2 − 0.1449λ3

1− 0.0976λ− 0.1056λ2 − 0.1449λ3

whose poles are −0.2663± 0.3988j and 0.6301.
For γ > 0.4 the evaluated filter is

b(λ)

a(λ)
=
−0.4098− 0.6966λ− 0.3317λ2 − 0.1327λ3

1− 0.1327λ3

whose poles are −0.2550± 0.4417j and 0.5101, all with the same absolute value. For γ = 2,
µopt ≈ 2.76.

Here again µopt(γ) seems to be piecewise affine:

µopt(γ) =

{
5γ for 0 < γ < 0.4
2 + κ(γ − 0.4) for 0.4 < γ

with κ ≈ 0.48.

5.4.6 Higher Order Compensator
For the previous plant, we tried to synthesize a compensator of order r = 4. For β = 1,

γ = 2 we have µopt ≈ 2.72, as expected lower than the equalized performance level assured
by the compensator of order r = 3. The filter is

b(λ)

a(λ)
=
−0.4149− 0.7054λ− 0.3485λ2 − 0.1660λ3 − 0.0664λ4

1− 0.0664λ4

Its poles are ±0.5076 and 0.0000± 0.5076j.



Chapter 6

Linear Systems with Disturbances

In this chapter we show some possible applications of the equalized filter proposed in [1]
to systems affected by bounded disturbances, in absence of known inputs.

6.1 Three Floors Building

6.1.1 Model Construction
We consider the simplified model of a three-floor-building under seismic action, as shown

in Fig. 6.1.

Figure 6.1: Three floors building under seismic action

Denoting by q1, q2, q3 the displacements of each floor from the vertical, the masses
m1, m2, m3 are supposed to be concentrated in the floors. The system is governed by the
equations

m1q̈1(t) = −k1q1(t)− k12[q1(t)− q2(t)]−m1v(t)

m2q̈2(t) = −k12[q2(t)− q1(t)]− k23[q2(t)− q3(t)]−m2v(t)

m3q̈3(t) = −k23[q3(t)− q2(t)]−m3v(t)

where k1, k2, k3 are the elastic constants. The terms miv(t) represent the apparent
forces originated by the ground acceleration, assumed as disturbance.

47
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 m1 0 0
0 m2 0
0 0 m3

 q̈(t) =

 −(k1 + k12) k12 0
k12 −(k12 + k23) k23
0 k23 −k23

 q(t) +

 −m1

−m2

−m3

 v(t)

The matricial equation written above is typical of a vibrant system, which in general is
described as

Mϑ̈(t) = −Kϑ(t) +Ru(t)

where matrix M is always positive definite (in fact kinetic energy is Ec = 1
2 ϑ̇

T (t)Mϑ̇(t) > 0
if the system is moving) and matrix K is positive semidefinite (since potential energy EP =
1
2ϑ

T (t)Kϑ(t) ≥ 0). In the considered case, also matrix K is positive definite.
To obtain a state space representation, the equation must be pre–multiplied by M−1.

q̈(t) = −M−1Kq(t) +M−1Ru(t)

Assuming displacements and velocities as state variables, x(t) = [q(t) q̇(t)]T , we have

d

dt

[
q(t)
q̇(t)

]
=

[
0 I

−M−1K 0

] [
q(t)
q̇(t)

]
+

[
0

M−1R

]
u(t)

Take S = M−1K, then matrix A can be written as

A =

[
0 I
−S 0

]
Now we assume m1 = m2 = m3 = 1; if we choose as output to be estimated the shift of

the first floor, z = q1, and as measured output the shift of the second one, y = q2 + w, we
obtain

ẋ = Ax+Bv

z = Czx

y = Cyx+ w,

where

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−(k1 + k12) k12 0 0 0 0
k12 −(k12 + k23) k23 0 0 0
0 k23 −k23 0 0 0

 , B =


0
0
0
−1
−1
−1

 ,
Cz =

[
1 0 0 0 0 0

]
, Cy =

[
0 1 0 0 0 0

]
If we consider also friction among the floors, matrix A becomes

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−(k1 + k12) k12 0 −ϕ 0 0
k12 −(k12 + k23) k23 0 −ϕ 0
0 k23 −k23 0 0 −ϕ


where ϕ is a small positive number that expresses the friction coefficient.
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6.1.2 Synthesis and Simulation
If we put k1 = 2, k12 = k23 = 1, ϕ = 0.01, matrix A is

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−3 1 0 −0.01 0 0
1 −2 1 0 −0.01 0
0 1 −1 0 0 −0.01


The eigenvalues of matrix A are

−0.0050 + 1.9318j

−0.0050− 1.9318j

−0.0050 + 1.4142j

−0.0050− 1.4142j

−0.0050 + 0.5176j

−0.0050− 0.5176j

The matrix obtained by discretization is
−0.1254 0.3179 0.0338 0.5739 0.1283 0.0072
0.3179 0.2263 0.3856 0.1283 0.7093 0.1427
0.0338 0.3856 0.5781 0.0072 0.1427 0.8448
−1.5933 0.3244 0.1211 −0.1312 0.3166 0.0338
0.3244 −1.1477 0.5667 0.3166 0.2192 0.3842
0.1211 0.5667 −0.7022 0.0338 0.3842 0.5696


Its eigenvalues are

0.8647 + 0.4923j

0.8647− 0.4923j

−0.3515 + 0.9309j

−0.3515− 0.9309j

0.1552 + 0.9828j

0.1552− 0.9828j

Since all the eigenvalues of matrix A have negative real part and all the eigenvalues of
the matrix obtained by discretization have absolute value smaller than 1 (0.995), the system
is stable.

With sampling time Ts = 1, β = 1, γ = 10, r = 7, we obtain µopt ≈ 14.45 and the filter
is a Finite Impulse Response (FIR)

b(λ)

a(λ)
≈ 0.6744− 0.5856λ+ 0.7321λ2 − 0.6186λ3 + 0.8429λ5 − 0.8173λ6 + 0.2942λ7

1
(1),

with

c ≈ 0− 0.0888λ− 0.0294λ2 + 0.3143λ3 + 0.1931λ4 − 0.2093λ5 + 0.1467λ7.

The Bode diagram of the filter is shown in Fig. 6.2, while Fig. 6.3 shows the result of
some simulations obtained with sinusoidal input functions and parameters

omega_max = 5;
p_change_v = 0.8;
p_change_w = 0.8;
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Figure 6.2: Bode diagram of the filter for the building

The behaviour of the filter is good: ẑ follows accurately z.
As expected from an equalized filter obtained with the procedure explained in [1], the

estimation error is never greater in norm than the optimal equalized filtering level µopt.

6.1.3 Comparison with Kalman Filter

The discrete–time Kalman filter transfer function is

bkalman(λ)

akalman(λ)
≈ 0.3059λ− 0.1255λ2 + 0.4119λ3 − 0.2165λ4 + 0.2416λ5 − 0.2806λ6

1− 0.4318λ+ 1.5683λ2 − 0.7715λ3 + 1.0658λ4 − 0.5019λ5 + 0.2500λ6

and its poles are −0.3524± 0.8875j, 0.1904± 0.8995j, 0.3779± 0.4261j.
We compare this Kalman filter with the r–equalized filter with r = 6, which attains

µopt ≈ 15.09 and is

b(λ)

a(λ)
≈ 0.7577− 0.9996λ+ 1.3084λ2 − 1.4336λ3 + 0.8578λ4 + 0.1127λ5 − 0.3403λ6

1
(2)

with

c ≈ 0− 0.0475λ− 0.1212λ2 + 0.1728λ3 + 0.0000007λ4 − 0.4130λ5 − 0.1697λ6.

Its poles are ±0.0667, 0.0334 ± 0.0578j, −0.0334 ± 0.0578j. They are approximately zero,
namely the filter is an FIR.

The Bode diagram of the Kalman filter is compared with that of the r–equalized filter
in Fig. 6.4.

The result of some comparative simulations obtained with sinusoidal input functions and
parameters

omega_max = 5;
p_change_v = 0.2;
p_change_w = 0.2;

is shown in Fig. 6.5.

1The values ai with i > 0 are not exactly zero, but they are very close to zero
2The values ai with i > 0 are not exactly zero, but they are very close to zero
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(a)

(b)

(c)

Figure 6.3: Simulations of the filter behaviour for the building under seismic action with
sinusoidal input function. Above z, in blue, is compared with ẑ, in red; below, the estimation
error is shown and its limits ±µopt are marked
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Figure 6.4: Bode diagram of the Kalman filter (in red) and of the equalized filter (in blue)
for the building

The frequency response of the equalized filter is smoother. Both the filters work well,
but several experiments with randomly generated noise reveal that the worst case estimation
error of the equalized filter is always smaller, with an often noticeable improvement.

6.2 System Stability and Filter Behaviour
In this section we aim to analyse the link between the stability of the system considered

and the effectiveness of the filter synthesized.
The system we previously considered is stable and the equalized filter works very well.

Consider now the system

ẋ = Fx+Gv

z = Hzx

y = Hyx+ w,

with

F =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−k1 1 0 0 0 0

1 −k2 1 0 0 0
0 1 −k3 0 0 0

 , G =


0
0
0
−1
−1
−1

 ,
Hz =

[
1 0 0 0 0 0

]
, Hy =

[
0 1 0 0 0 0

]
.

If we vary the values of k1, k2, k3, we can obtain either a marginally stable system or an
unstable system. We are interested in the behaviour of the filter in these different cases.
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(a)

(b)

(c)

Figure 6.5: Simulations for the building under seismic action with sinusoidal input function.
Above z, in black, is compared with ẑeq, in blue, and ẑkalman, in red; below, the estimation
error eeq, in blue, is compared with ekalman, in red
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6.2.1 Marginally Stable Oscillator
If k1 = 1, k2 = 2, k3 = 1, F , matrix of the continuous–time system, is

F =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 1 0 0 0 0
1 −2 1 0 0 0
0 1 −1 0 0 0


and all its eigenvalues have real part equal to 0:

0.0000 + 1.7321j

0.0000− 1.7321j

0.0000 + 1.0000j

0.0000− 1.0000j

0.0000

−0.0000

The matrix A obtained by discretization of the previous system is

A =


0.5767 0.3869 0.0364 0.8490 0.1434 0.0076
0.3869 0.2263 0.3869 0.1434 0.7132 0.1434
0.0364 0.3869 0.5767 0.0076 0.1434 0.8490
−0.7057 0.5699 0.1358 0.5767 0.3869 0.0364
0.5699 −1.1397 0.5699 0.3869 0.2263 0.3869
0.1358 0.5699 −0.7057 0.0364 0.3869 0.5767


Its eigenvalues are

−0.1606 + 0.9870j

−0.1606− 0.9870j

0.5403 + 0.8415j

0.5403− 0.8415j

1.0000 + 0.0000j

1.0000− 0.0000j

and all have absolute value equal to 1, as expected. So the system is marginally stable.
The filter obtained with parameters Ts = 1, β = 1, γ = 10, r = 7 has equalized

performance µopt ≈ 1.1 and is a simple constant

b(λ)

a(λ)
≈ 0.9996

1
(3),

with
c ≈ 0.

We show in Fig. 6.6 the behaviour of the filter with simulation parameters

omega_max = 5;
p_change_v = 0.8;
p_change_w = 0.8;

3The values ai and bi with i > 0 are not exactly zero, but they are very close to zero
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(a)

(b)

(c)

Figure 6.6: Simulations of the filter behaviour for the first marginally stable system with
sinusoidal input function. Above z, in blue, is compared with ẑ, in red; below, the estimation
error is shown and its limits ±µopt are marked
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Consider another example.
If k1 = 2, k2 = 2, k3 = 2, F , matrix of the continuous–time system, is

F =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−2 1 0 0 0 0
1 −2 1 0 0 0
0 1 −2 0 0 0


and all its eigenvalues have real part equal to 0:

−0.0000 + 1.8478j

−0.0000− 1.8478j

0.0000 + 1.4142j

0.0000− 1.4142j

0.0000 + 0.7654j

0.0000− 0.7654j

The matrix A obtained by discretization of the previous system is

A =


0.1899 0.3516 0.0340 0.7057 0.1360 0.0072
0.3516 0.2238 0.3516 0.1360 0.7129 0.1360
0.0340 0.3516 0.1899 0.0072 0.1360 0.7057
−1.2754 0.4409 0.1216 0.1899 0.3516 0.0340
0.4409 −1.1538 0.4409 0.3516 0.2238 0.3516
0.1216 0.4409 −1.2754 0.0340 0.3516 0.1899


Its eigenvalues are

0.7211 + 0.6928j

0.7211− 0.6928j

−0.2734 + 0.9619j

−0.2734− 0.9619j

0.1559 + 0.9878j

0.1559− 0.9878j

and all have absolute value equal to 1.
So the system is marginally stable.
The filter obtained with parameters Ts = 1, β = 1, γ = 10, r = 7 has equalized

performance µopt ≈ 9.1 and is an FIR

b(λ)

a(λ)
≈ 0.9296− 0.7267λ+ 1.0272λ2 − 0.7569λ3 + 0.5553λ5 − 0.5592λ6 + 0.2012λ7

1
(4),

with
c ≈ 0 + 0.0014λ− 0.1071λ2 + 0.0361λ4 − 0.1709λ5 + 0.1005λ7.

The Bode diagram of the filter is shown in Fig. 6.7.
The behaviour of the filter with simulation parameters

omega_max = 5;
p_change_v = 0.8;
p_change_w = 0.8;

is shown in Fig. 6.8.
4The values ai with i > 0 are not exactly zero, but they are very close to zero
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Figure 6.7: Bode diagram of the filter for the second marginally stable system

6.2.2 Unstable System

An unstable system can be obtained by adding a positive term +k22 to the element 5, 2 of
matrix A of the previous example (three floors building under seismic action). Such kind of
models are achieved in the presence of unstable parts in mechanical plants, e.g. an inverted
pendulum connected to elastic components.

If k1 = 2, k2 = 1, k3 = 1, F , matrix of the continuous–time system, is

F =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−2 1 0 0 0 0
1 −1 1 0 0 0
0 1 −1 0 0 0


and its eigenvalues are:

0.0000 + 1.6739j

0.0000− 1.6739j

0.0000 + 1.2021j

0.0000− 1.2021j

0.4970

−0.4970

One of them has a positive real part.
We call A the matrix obtained by discretization of the previous system.

A =


0.1911 0.3869 0.0364 0.7058 0.1434 0.0076
0.3869 0.6144 0.4233 0.1434 0.8568 0.1510
0.0364 0.4233 0.5780 0.0076 0.1510 0.8492
−1.2683 0.5700 0.1358 0.1911 0.3869 0.0364
0.5700 −0.5625 0.7058 0.3869 0.6144 0.4233
0.1358 0.7058 −0.6983 0.0364 0.4233 0.5780
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(a)

(b)

(c)

Figure 6.8: Simulations of the filter behaviour for the second marginally stable system with
sinusoidal input function. Above z, in blue, is compared with ẑ, in red; below, the estimation
error is shown and its limits ±µopt are marked
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Its eigenvalues are

1.6437

−0.1029 + 0.9947j

−0.1029− 0.9947j

0.3604 + 0.9328j

0.3604− 0.9328j

0.6084

and the first one has absolute value greater than 1. So the system is unstable. The filter
obtained with parameters Ts = 1, β = 1, γ = 10, r = 7 has equalized performance µopt ≈
25.04 and is an FIR

b(λ)

a(λ)
≈ 0.6922− 0.5261λ+ 0.1775λ2 − 0.5744λ4 + 0.8428λ5 + 0.6256λ6 − 0.5573λ7

1
(5),

with

c ≈ 0− 0.0892λ+ 0.2727λ3 + 0.0730λ4 − 0.5818λ5 − 0.7716λ6 − 0.3008λ7.

The Bode diagram of the filter is shown in Fig. 6.9.









































Figure 6.9: Bode diagram of the filter for unstable system

The behaviour of the filter with simulation parameters

omega_max = 5;
p_change_v = 0.8;
p_change_w = 0.8;

is shown in Fig. 6.10.

5The values ai with i > 0 are not exactly zero, but they are very close to zero
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Figure 6.10: Simulation of the filter for unstable system with sinusoidal input function.
Above z, in blue, is compared with ẑ, in red; below, the estimation error is shown and its
limits ±µopt are marked

6.2.3 Remarks
As the previous examples show, the filter works well when the system is stable, but this

is not always the case when it is marginally stable or unstable.
When the system is unstable, the estimation error during simulations may exponentially

diverge. When the system is only marginally stable, it can violate its bounds given by the
optimal equalized filtering level µopt.

The reason of such a behaviour is due to numerical effects. In fact, as it is demonstrated in
the proof of Lemma 3, in the transfer function that produces the estimation error, the modes
of the system are cancelled and replaced by the modes of the filter (which are guaranteed
to be stable). This is indeed a pole–zero cancellation, which can cause problems if the
modes are not asymptotically stable. Since the cancellation is not perfect, the unstable or
marginally stable modes can affect the behaviour of the estimation error anyway.

Indeed when an unstable mode is still present in the transfer function, due to a non–
exact pole–zero cancellation, of course it leads the error to diverge exponentially. When a
marginally stable mode is still present, if the error happens to stray from zero, then it is not
necessarily brought back to zero, but it might go adrift.

The examples of this section show that it is dangerous to apply the filter to systems which
are not stable, because an imperfect pole–zero cancellation (caused by numerical effects and
rounding) can lead to instability. It is therefore recommended first of all to stabilise the
system, maybe with a feedback control, and then to use the filter in order to estimate some
quantities of the system.
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6.3 A Car Suspension Model

6.3.1 Model Construction
We want to study a car suspension system, by means of the one–wheel–model loaded

by a constant mass M . We denote by m the wheel mass, by K the elastic constant of the
suspension, by k the elastic constant of the tyre and by H the damping coefficient of the
shock absorber. q2 and q1 are the displacements of the two masses from the equilibrium
position they assume when the car is motionless. The disturbance v is the vertical shift of
the tread caused by the irregularities of the road. The model is drawn in Fig. 6.11.

Figure 6.11: Car suspension

The equilibrium equations of the forces that act on masses M and m are

mq̈1(t) = −k[q1(t)− v(t)]−K[q1(t)− q2(t)]−H[q̇1(t)− q̇2(t)]

Mq̈2(t) = −K[q2(t)− q1(t)]−H[q̇2(t)− q̇1(t)]

For convenience we take (although not very realistically) m = M and k/m = k1, K/m =
K/M = k2, H/m = H/M = h.

q̈1(t) = −k1[q1(t)− v(t)]− k2[q1(t)− q2(t)]− h[q̇1(t)− q̇2(t)]

q̈2(t) = −k2[q2(t)− q1(t)]− h[q̇2(t)− q̇1(t)]

We assume that z is the shift of the wheel mass, which has to be estimated from y, the
distance between the two masses.

z(t) = q1(t)

y(t) = [q1(t)− q2(t)] +Dw(t)

and we put D=1. If we assume as state variables position and velocity of the two masses,
i.e. x1 = q1, x2 = q2, x3 = q̇1, x4 = q̇2, we obtain the equations

ẋ = Ax+Bv

z = Czx

y = Cyx+ w,

where

A =


0 0 1 0
0 0 0 1

−(k1 + k2) k2 −h h
k2 −k2 h −h

 , B =


0
0
k1
0

 ,
Cz =

[
1 0 0 0

]
, Cy =

[
1 −1 0 0

]
.
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6.3.2 Filter Synthesis
We choose the values k1 = 2, k2 = 3, h = 0.1 and the sampling time Ts = 1. If we put

β = 1, γ = 10, r = 6, we obtain µopt ≈ 18.7 and the filter is an FIR

b(λ)

a(λ)
≈ −0.3106− 0.3808λ+ 0.8183λ2 + 1.1649λ3 + 0.7725λ4 + 0.4664λ5 − 0.0000λ6

1
(6),

with

c ≈ 0 + 0.7938λ+ 0.4408λ2 − 0.0000λ3 − 0.0000λ4 − 0.2357λ5 − 0.0000λ6.

The Bode diagram of the filter is shown in Fig. 6.12.









































Figure 6.12: Bode diagram of the filter for car suspension, in the case k1 = 2, k2 = 3

If, instead, we choose k1 = 1, k2 = 1, with the other parameters unchanged, we obtain
µopt ≈ 17.3 and the filter turns out to be not an FIR

b(λ)

a(λ)
≈ −0.3950 + 0.0080λ− 0.1708λ2 + 0.9199λ4 − 0.0644λ5 + 0.3857λ6

1 + 0.1115λ6
,

with
c ≈ 0 + 0.5547λ+ 0.6649λ2 − 0.1097λ6.

Its poles are −0.6008± 0.3469j, 0.6008± 0.3469j, −0.0000± 0.6938j.
The new Bode diagram of the filter is shown in Fig. 6.13.

6.3.3 Simulation
Sinusoidal Input Function

The result of some simulations obtained with parameters

omega_max = 5;
p_change_v = 0.2;
p_change_w = 0.5;

is shown in Fig. 6.14, in the case k1 = 2, k2 = 3, and in Fig. 6.15, in the case k1 = 1,
k2 = 1.

6The values ai with i > 0 are not exactly zero, but they are very close to zero
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Figure 6.13: Bode diagram of the filter for car suspension, in the case k1 = 1, k2 = 1

Piecewise Affine Input Function

The result of some simulations obtained with parameters

alfa_min = -2;
alfa_max = 2;
ang_min = -1;
ang_max = 1;
p_change_v = 0.2;
p_change_w = 0.5;

is shown in Fig. 6.16, in the case k1 = 2, k2 = 3, and in Fig. 6.17, in the case k1 = 1,
k2 = 1.

Remarks

In both cases the filter works well, with sinusoidal and piecewise affine input function.
The estimation error is always contained inside its bound: its absolute value is never greater
than the optimal equalized filtering level µopt. We can observe that typically the behaviour
of the filter is better when the input function is sinusoidal, probably because it is smoother
than the piecewise affine one, and because the filter has often high gains at high frequencies.
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(a)

(b)

(c)

Figure 6.14: Simulations of the filter behaviour for car suspension with sinusoidal input
function, in the case k1 = 2, k2 = 3. Above z, in blue, is compared with ẑ, in red; below,
the estimation error is shown and its limits ±µopt are marked
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(a)

(b)

(c)

Figure 6.15: Simulations of the filter behaviour for car suspension with sinusoidal input
function, in the case k1 = 1, k2 = 1. Above z, in blue, is compared with ẑ, in red; below,
the estimation error is shown and its limits ±µopt are marked
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(a)

(b)

(c)

Figure 6.16: Simulations of the filter behaviour for car suspension with piecewise affine input
function, in the case k1 = 2, k2 = 3. Above z, in blue, is compared with ẑ, in red; below,
the estimation error is shown and its limits ±µopt are marked
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(a)

(b)

(c)

Figure 6.17: Simulations of the filter behaviour for car suspension with piecewise affine input
function, in the case k1 = 1, k2 = 1. Above z, in blue, is compared with ẑ, in red; below,
the estimation error is shown and its limits ±µopt are marked
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6.3.4 Comparison with Kalman Filter
Consider now the case k1 = 2, k2 = 3; h = 0.1, Ts = 1, β = 1 and γ = 10.
The discrete–time Kalman filter transfer function is

bkalman(λ)

akalman(λ)
≈ −0.2747λ+ 0.2291λ2 + 0.6927λ3 + 0.2371λ4

1 + 0.2504λ− 0.2241λ2 + 0.4631λ3 + 0.4112λ4

and its poles are 0.5589± 0.6788j, −0.6840± 0.2530j.
We compare this Kalman filter with the r–equalized filter with r = 4, which attains

µopt ≈ 23.1 and is

b(λ)

a(λ)
≈ −0.8314− 1.1603λ+ 0.6679λ2 + 0.9368λ3 + 0.0000λ4

1
(7)

with
c ≈ 0 + 1.0275λ+ 0.4452λ2 − 0.4722λ3 − 0.0000λ4.

Its poles are 0.0195± 0.0195j, −0.0195± 0.0195j. They are approximately zero, namely the
filter is an FIR.

The Bode diagram of the Kalman filter is compared with that of the r–equalized filter
in Fig. 6.18.


















































Figure 6.18: Bode diagram of the Kalman filter (in red) and of the equalized filter (in blue)
for car suspension

The result of some comparative simulations obtained with sinusoidal input functions and
parameters

omega_max = 5;
p_change_v = 0.2;
p_change_w = 0.2;

is shown in Fig. 6.19.

From the observation of the frequency response of the two filters, we see that the equalized
filter has a slightly sharper cut–off effect. Both filters have a good behaviour, but the worst
case estimation error of the equalized filter is slightly smaller in all the experiments we have
performed with randomly generated noise.

7The values ai with i > 0 are not exactly zero, but they are very close to zero
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(a)

(b)

(c)

Figure 6.19: Simulations for car suspension with sinusoidal input function. Above z, in
black, is compared with ẑeq, in blue, and ẑkalman, in red; below, the estimation error eeq, in
blue, is compared with ekalman, in red
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6.4 Masses and Springs System

6.4.1 Model Construction

We consider three masses connected by two springs, as shown in Fig. 6.20, in absence of
friction and in presence of a disturbance force v.

Figure 6.20: Masses and springs system

If we denote by qi the shift of the mass mi from its equilibrium position, the equilibrium
equations of the forces are

m1q̈1(t) = −k1[q1(t)− q2(t)] + v(t)

m2q̈2(t) = −k1[q2(t)− q1(t)]− k2[q2(t)− q3(t)]

m3q̈3(t) = −k2[q3(t)− q2(t)]

Our choice for z and y is

z(t) = q1(t)

y(t) = q3(t) + w(t)

Under the assumption m1 = m2 = m3 = 1, if x1 = q1, x2 = q2, x3 = q3, x4 = q̇1,
x5 = q̇2, x6 = q̇3, we obtain the state space realization

ẋ = Ax+Bv

z = Czx

y = Cyx+ w,

where

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−k1 k1 0 0 0 0
k1 −(k1 + k2) k2 0 0 0
0 k2 −k2 0 0 0

 , B =


0
0
0
1
0
0

 ,
Cz =

[
1 0 0 0 0 0

]
, Cy =

[
0 0 1 0 0 0

]
.

If we choose k1 = k2 = 1,

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−1 1 0 0 0 0
1 −2 1 0 0 0
0 1 −1 0 0 0
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6.4.2 Filter Synthesis and Simulation
If Ts = 1, β = 1, γ = 1, r = 8, we obtain µopt ≈ 5 and the filter is an FIR

b(λ)

a(λ)
≈ 0.4579 + 0.1225λ2 + 0.6719λ3 + 0.3146λ4 − 0.4228λ6 − 0.1684λ7 + 0.0247λ8

1
(8),

with
c ≈ 0.4604λ+ 0.9927λ2 + 0.8281λ3 + 0.3683λ4 + 0.0741λ5 − 0.0014λ7.

The Bode diagram of the filter is shown in Fig. 6.21, while Fig. 6.22 shows the result of







































Figure 6.21: Bode diagram of the filter for masses and springs system

some simulations obtained with sinusoidal input functions and parameters

omega_max = 5;
p_change_v = 0.2;
p_change_w = 0.2;

The behaviour of the filter is satisfactory: ẑ estimates accurately z and, as it is guar-
anteed, the estimation error is never greater in norm than the equalized performance level
µopt.

8The values ai with i > 0 are not exactly zero, but they are very close to zero
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(a)

(b)

(c)

Figure 6.22: Simulations of the filter behaviour for masses and springs system with sinusoidal
input function. Above z, in blue, is compared with ẑ, in red; below, the estimation error is
shown and its limits ±µopt are marked
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6.4.3 Comparison with Kalman Filter
The discrete–time Kalman filter transfer function is

bkalman(λ)

akalman(λ)
≈ 0.5490λ− 0.7669λ2 + 1.4009λ3 − 1.2118λ4 + 0.9062λ5 − 0.5144λ6

1− 1.7234λ+ 2.3620λ2 − 2.3845λ3 + 1.8364λ4 − 0.9879λ5 + 0.2603λ6

and its poles are −0.1594± 0.9464j, 0.4055± 0.7143j, 0.6156± 0.1996j.
We compare this Kalman filter with the r–equalized filter with r = 6, which attains

µopt ≈ 5.2 and is

b(λ)

a(λ)
≈ 0.3854 + 0.0000λ+ 0.0231λ2 + 0.7522λ3 + 0.0746λ4 + 0.0000λ5 − 0.4737λ6

1− 0.2430λ
(9)

with

c ≈ 0 + 0.4605λ+ 0.8888λ2 + 0.6180λ3 + 0.2212λ4 + 0.0311λ5 + 0.0006λ6.

Its poles are 0.2430, 0.0345± 0.0264j, −0.0141± 0.0391j, −0.0408.
The Bode diagram of the Kalman filter is compared with that of the r–equalized filter

in Fig. 6.23.















































Figure 6.23: Bode diagram of the Kalman filter (in red) and of the equalized filter (in blue)
for masses and springs system

The result of some comparative simulations obtained with sinusoidal input functions and
parameters

omega_max = 5;
p_change_v = 0.2;
p_change_w = 0.2;

is shown in Fig. 6.24.

The frequency response of the equalized filter is smoother. Both the filters behave well,
but, after several experiments with randomly generated noise, we noticed that the equalized
filter generally has a smaller worst case error.

90.0000 values and ai with i > 1 are not exactly zero, but they are very close to zero
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(a)

(b)

(c)

Figure 6.24: Simulations for masses and springs system with sinusoidal input function.
Above z, in black, is compared with ẑeq, in blue, and ẑkalman, in red; below, the estimation
error eeq, in blue, is compared with ekalman, in red



Chapter 7

Linear Systems with Known
Inputs

In this chapter we show some possible applications of the equalized filter to systems with
disturbances in presence of a known input coming from the same channel of the process
noise.

We immediately point out a phenomenon that will occur in the following simulations.
The norm of the estimation error will not always be contained in a hyperrectangle of size
µopt, not even asymptotically; on the contrary, the worst–case estimation error is likely to
be larger than µopt. As it has been explained in Chapter 3, this effect is due to numerical
rounding only: in theory the influence of u should be perfectly cancelled in the estimation
error transfer function, but it is not in practice, because the simulation routine works with
finite precision. Nevertheless, the filter works well and provides a good estimation ẑ of z.

7.1 Simplified Oven

7.1.1 Model Construction
We consider a simplified thermodynamic linear model for an oven. To this aim, we

exploit the equivalence between electric circuits and thermal systems.

Figure 7.1: Ohm’s law

Heat flow: Q̇ = σTS
∂T
∂x Charge flow: q̇ = −σeS ∂V∂x ,

since I = JS = 1
ρe
SEx and Ex = −∂V∂x

Heat in an adiabatic container: Charge in a capacitor:
dQ = CdT dq = CdV
Potential (temperature): T (x) Potential (electrical): V (x)

So, if we put

W : heat flow [W]
C3: heating agent thermal capacitance [J/K]
C4: oven thermal capacitance [J/K]
R1: thermal resistance between heating agent and oven [W/K]
R2: thermal resistance between oven and environment [W/K]
Tr: heating agent temperature [K]
Tf : oven temperature [K]
Ta: environment temperature [K],

75
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(a) T1 − T2 = IR,
where I = Q̇ and R is
thermal resistance

(b) T1−T2 = Q
C

, where
C is thermal capaci-
tance

Figure 7.2: Equivalence between electric circuits and thermal systems

we obtain the equivalent circuit drawn in Fig. 7.3.

Figure 7.3: Circuit equivalent to the oven thermal system

Time Domain

The equations obtained by applying Kirchhoff’s laws are

Tr − Tf = I1R1

Tf − Ta = I2R2

W = I1 + I3

I1 = I2 + I4

R1I1 +
Q4

C4
− Q3

C3
= 0

Q4

C4
= R2I2

where In = Q̇n and the unknown functions are Tf (t), Tr(t), Q3(t), Q4(t), I1(t), I2(t). We as-
sume that, after a transient period, equilibrium is reached and that boundary conditions and
initial conditions are known: Tf (0), Tr(0), Q3(0), Q4(0), Q3(∞), Q4(∞). With appropriate
substitutions in the system we obtain

Tf = Ta + I2R2

Tr = Ta + I2R2 + I1R1

I1 = W − I3
I2 = W − I3 − I4

R1(W − I3) +
Q4

C4
− Q3

C3
= 0

Q4

C4
= R2(W − I3 − I4) (∗)

and further
Q4 = Q3

C4

C3
+R1C4(I3 −W ) (�)
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After differentiation we get

I4 = I3
C4

C3
+R1C4

dI3
dt

The previous two equations, substituted in (*), give

R2R1C4C3
dI3
dt

+ [(R1 +R2)C3 +R2C4]I3 +Q3 = (R1 +R2)C3W

If we define the time constants τ1 = R1C3, τ2 = R2C4, τ3 = R2C3, the equation for Q3

becomes
τ1τ2Q̈3 + (τ1 + τ2 + τ3)Q̇3 +Q3 = (τ1 + τ3)W

The characteristic equation associated to the homogeneous differential equation is

τ1τ2ζ
2 + (τ1 + τ2 + τ3)ζ + 1 = 0

whose solutions are

ζ1,2 =
−(τ1 + τ2 + τ3)±

√
(τ1 + τ2 + τ3)2 − τ1τ2

τ1τ2

and a particular solution of the non homogeneous differential equation is

Q30 = (τ1 + τ3)W,

so that the general solution is

Q3(t) = Q31e
ζ1t +Q32e

ζ2t + (τ1 + τ3)W

I3(t) = Q31ζ1e
ζ1t +Q32ζ2e

ζ2t

If we substitute these equations into (�) and we define a fourth time constant τ4 = R1C4,
we obtain

Q4(t) = Q31(τ4ζ1 +
C4

C3
)eζ1t +Q32(τ4ζ2 +

C4

C3
)eζ2t + τ2W

I4(t) = Q31ζ1(τ4ζ1 +
C4

C3
)eζ1t +Q32ζ2(τ4ζ2 +

C4

C3
)eζ2t

Finally we substitute the currents in the equation for Tf and we obtain

Tf (t) = Ta +WR2 −R2[Q31ζ1(1 + τ4ζ1 +
C4

C3
)eζ1t +Q32ζ2(1 + τ4ζ2 +

C4

C3
)eζ2t]

If the oven is good, it has the following characteristics

• C4 > C3: a large thermal inertia on the heating agent guarantees stability, because
the system to control (the oven itself) follows the controlled object (the heater);

• R2 >> R1: few losses towards the environment.

In these conditions the oven controlled with

W =
T ∗f − Ta
R2

reaches the required temperature T ∗f , even though the transient can be quite slow.
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Laplace Transform

The study of the system in the time domain explains its behaviour. In order to synthesize
the filter we need to work with Laplace transform.

We choose as z, output to estimate, the temperature of the oven and as y, measured
output, the temperature of the heating agent. This is motivated by the fact that it could be
easier to put a temperature sensor on the heating agent or to obtain its temperature from
a resistance measure (since resistivity varies with temperature).

From the analysis of the circuit, we express by means of the Laplace transform the
transfer functions from W to Tr − Ta (which is N

d ) and from W to Tf − Ta (which is M
d ).

(R1 + C4 ‖ R2) ‖ C3 = (R1 +
R2

1 + sC4R2
) ‖ C3

= (
1 + sC4R2

R1 +R2 + sC4R2R1
+ sC3)( − 1)

=
R1 +R2 + sC4R2R1

1 + sC4R2 + sC3(R1 +R2) + s2C4C3R2R1

So the transfer function from W to Tr − Ta is

Tr − Ta =
R1 +R2 + sC4R2R1

1 + sC4R2 + sC3(R1 +R2) + s2C4C3R2R1
W

and

Tf − Ta = (Tr − Ta)
R2

1+sC4R2

R1 + R2

1+sC4R2

= (Tr − Ta)
R2

R1 +R2 + sC4R2R1

=
R2

1 + sC4R2 + sC3(R1 +R2) + s2C4C3R2R1
W

is the transfer function from W to Tf − Ta.

7.1.2 Filter Synthesis and Simulation
We choose the parameters of the system

R1 = 1W/K
R2 = 1000W/K
C3 = 0.001 J/K
C4 = 0.01 J/K
T ∗f = 524K
Ta = 294K

If Ts = 1, β = 1, γ = W/20, r = 3, we obtain µopt ≈ 1; the two components of the filter
are

b(λ)

a(λ)
≈ 0.9897 + 0.0056λ+ 0.0001λ2 + 0.0000λ3

1− 0.0038λ− 0.0001λ2 − 0.0000λ3

and
c(λ)

a(λ)
≈ 0− 0.0132λ− 0.0097λ2 + 0.0024λ3

1− 0.0038λ− 0.0001λ2 − 0.0000λ3
.

The poles are 0.0304, −0.0133± 0.0240j.
The Bode diagram of the two components of the filter is shown in Fig. 7.4 and Fig. 7.5

shows the result of some simulations obtained with sinusoidal input functions and parameters

omega_max = 4;
p_change_v = 0.8;
p_change_w = 0.5;
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(b) c(λ)
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Figure 7.4: Bode diagrams of the filter for the oven system



80 CHAPTER 7. LINEAR SYSTEMS WITH KNOWN INPUTS

(a)

(b)

Figure 7.5: Simulations of the filter behaviour for the oven system with sinusoidal input
function. Above z, in blue, is compared with ẑ, in red; below, the estimation error is shown
and ±µopt are marked
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We can observe that the oven reaches rather quickly the desired temperature of 524K
and then maintains it.

7.1.3 Remarks
The filter works very well: the estimation error is small, it is even included in the close

interval ±µopt. This happens because thermal systems are usually very manageable. The
system we considered is a minimal phase system, i.e. in its transfer functions not only the
denominator roots, but also the numerator roots are stable. This property makes filtering
easier. Consider the block scheme in Fig. 7.6.

Figure 7.6: Block scheme - minimal phase system

Since it is possible to invert the relation

y = w +
N

d
v ⇐⇒ v = (y − w)

d

N
,

we can write

z =
M

d
v =

M

d

d

N
(y − w) =

M

N
y − M

N
w,

so that
ẑ =

M

N
y

is a good estimation for z if the disturbance w is not too large. Such a filter is stable: the
roots of the polynomial N are stable, because the system has minimal phase.

7.1.4 Comparison with Kalman Filter
The discrete–time Kalman filter transfer function is

bkalman(λ)

akalman(λ)
≈ +0.9043λ+ 0.0000λ2

1− 0.0087λ+ 0.0000λ2

and its poles are 0.0087 and 0.0000.
We compare this Kalman filter with the r–equalized, r = 2, which attains µopt ≈ 1.05:

b(λ)

a(λ)
≈ 0.9896 + 0.0093λ+ 0.0000λ2

1− 0.0000λ− 0.0001λ2

and
c(λ)

a(λ)
≈ 0− 0.0023λ− 0.0000λ2

1− 0.0000λ− 0.0001λ2
(1).

The poles are ±0.0086.
The result of a comparative simulation obtained with sinusoidal input functions and

parameters
1All 0.0000 values in a, b and c are not exactly zero, but they are very close to zero
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omega_max = 5;
p_change_v = 0.2;
p_change_w = 0.2;

is shown in Fig. 7.7 and the Bode diagrams are shown in Fig. 7.8.

(a) First simulation

(b) Second simulation

Figure 7.7: Simulations for the oven system with sinusoidal input function. Above z, in
black, is compared with ẑeq, in blue, and ẑkalman, in red; below, the estimation error eeq, in
blue, is compared with ekalman, in red

The first sample of the Kalman filter estimation error is much greater than all the others,
which are similar to (but a little greater than) the estimation error of the equalized filter.
This may happen because the Kalman filter needs some steps before stabilising and reaching
steady–state. At the first step, the presence of control in the Kalman filter system leads
to overestimate the output. However, if we add control only in the following steps, then
the Kalman filter estimate improves: all the samples have the same order of magnitude and
both the filters behave very well. Anyway the worst case estimation error of the equalized
filter is always better.
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(c) bkal(λ)
akal(λ)

Figure 7.8: Bode diagram of the Kalman filter (in red) and of the equalized filter (in blue)
for the oven system
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7.2 Second Order Quantized System

7.2.1 Model Construction
In a system with quantized input u and quantized output y, the data that can be fur-

nished in input and the data provided as output can belong only to a numerable set of values
(as shown in Fig. 7.9) which are multiples of a constant value, called quantization step: if a

(a) Input (b) Output

Figure 7.9: Quantization

sequence of random values u(kT ) is supplied as input, each value must be replaced by the
nearest multiple of the quantization step m u, with m ∈ Z. Fig. 7.10 shows how quantiza-
tion transforms a given continuous function into a piecewise constant function whose values
belong to the set {m q|m ∈ Z}, where q is the quantization step.

Figure 7.10: A continuous quantity (in black) converted into a quantized one (in red)

Of course this process causes a distortion of the signal: the values supplied as input are
not processed by the system, which receives the quantized signal. The difference between
the original signal and the quantized one is called quantization noise: as it is easy to see
from Fig. 7.10, its maximum width is q/2, where q is the quantization step.

Quantization noise can be modelled as a disturbance v added to the signal. Such a
disturbance, due to the previous consideration, is limited in norm as follows:

‖v(t)‖ ≤ q/2

Consider the system with both quantized input and quantized output in Fig. 7.11: u is
the supplied input, v represents the quantization noise; the output generated by the system
can potentially assume any value and w represents the quantization noise in output, so that
the output furnished outside, y, is quantized.

We aim to analyse now a system with continuous–time transfer function from input u to
the output to estimate, z,

s

s2 + ω2

and continuous–time transfer function from input u to measured output y

1

s2 + ω2
,

as it is shown in Fig. 7.12.
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Figure 7.11: System with quantized input and quantized output

Figure 7.12: Block scheme of the second order quantized system

We assume that both input and output are quantized. Input quantization noise and
output quantization noise are modelled, respectively, as a disturbance v added to u and a
disturbance w contained in y. Input quantization step is 2γ and output quantization step
is 2β, so that the maximum quantization error (i.e. the maximum norm of disturbances v
and w) is respectively γ (input) and β (output).

7.2.2 Filter Synthesis and Simulation

If ω = 2, Ts = 0.2, β = 1, γ = 1, r = 3, we obtain µopt ≈ 3.1; the two components of the
filter are

b(λ)

a(λ)
≈ 0.0000− 0.0000λ− 0.0000λ2 − 1.1189λ3

1− 0.5200λ+ 0.0000λ2 − 0.0000λ3

and
c(λ)

a(λ)
≈ 0 + 0.1947λ+ 0.0627λ2 + 0.0221λ3

1− 0.5200λ+ 0.0000λ2 − 0.0000λ3
(2).

The poles are 0.5200, ±0.0001. The Bode diagram of the two components of the filter
is shown in Fig. 7.13 and Fig. 7.14 shows the result of some simulations obtained with
sinusoidal input functions and parameters

2All 0.0000 values in a and b are not exactly zero, but they are very close to zero
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(b) c(λ)
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Figure 7.13: Bode diagrams of the filter for the second order quantized system
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omega_max = 5;
ampiezza_max = 10; % maximum amplitude value of u
p_change_u = 0.2;

It is evident that the estimation error is not always included in the interval ±µopt: as
already discussed, this is due the non–exact cancellation of the known input effect in the
estimation error transfer function. Anyway, the behaviour of the filter is good and ẑ follows
well z; the estimation error can be considered small in proportion to the amplitude of the
signal.

7.2.3 Comparison with Kalman Filter
The discrete–time Kalman filter transfer function is given by

bkalman(λ)

akalman(λ)
≈ −0.0521λ− 0.0228λ2

1− 1.7512λ+ 0.9061λ2

and its poles are 0.8756± 0.3734j.
We compare this Kalman filter with the r–equalized, r = 2, which attains µopt ≈ 4.4:

b(λ)

a(λ)
≈ 0.0000− 0.0000λ− 0.8462λ2

1− 0.7562λ− 0.0000λ2

and
c(λ)

a(λ)
≈ 0 + 0.1947λ+ 0.0167λ2

1− 0.7562λ− 0.0000λ2
(3).

The poles are 0.7562, −0.0000.
The Bode diagrams are shown in Fig. 7.15 and the result of some comparative simulations

obtained with sinusoidal input functions and parameters

omega_max = 4;
ampiezza_max = 10; % maximum amplitude value of u
p_change_u = 0.2;

is shown in Fig. 7.16.

Both the filters behave well, but several experiments with randomly generated noise show
that the equalized filter usually has a noticeably smaller worst case error.

3All 0.0000 values in a and b are not exactly zero, but they are very close to zero
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(a)

(b)

(c)

Figure 7.14: Simulations of the filter behaviour for second order quantized system with
sinusoidal input function. Above z, in blue, is compared with ẑ, in red; below, the estimation
error is shown and ±µopt are marked
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(c) bkal(λ)
akal(λ)

Figure 7.15: Bode diagram of the Kalman filter (in red) and of the equalized filter (in blue)
for the second order quantized system
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(a)

(b)

(c)

Figure 7.16: Simulations for second order quantized system with sinusoidal input function.
Above z, in black, is compared with ẑeq, in blue, and ẑkalman, in red; below, the estimation
error eeq, in blue, is compared with ekalman, in red
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7.3 Fourth Order Quantized System

7.3.1 Model Construction
With the same hypotheses of the previous section, we aim now to analyse a system of the

fourth order. Its continuous–time transfer function from input u to the output to estimate,
z, is

s

(s2 + ω2
1)(s2 + ω2

2)

and its continuous–time transfer function from input u to measured output y is

1

(s2 + ω2
1)(s2 + ω2

2)
,

as it is shown in Fig. 7.17.

Figure 7.17: Block scheme of the fourth order quantized system
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7.3.2 Filter Synthesis and Simulation

If we take ω1 = 2, ω2 = 4, Ts = 0.2, β = 1, γ = 1, r = 6, we obtain µopt ≈ 12.42; the
two components of the filter are

b(λ)

a(λ)
≈ 2.6939− 0.0023λ− 5.2751λ2 + 0.0001λ3 + 2.7010λ4 + 0.0024λ5 − 1.4183λ6

1− 0.0034λ6

and

c(λ)

a(λ)
≈ 0 + 0.0011λ+ 0.0054λ2 + 0.0074λ3 + 0.0045λ4 + 0.0013λ5 + 0.0001λ6

1− 0.0034λ6
(4).

The poles are 0.3882, −0.3879, 0.1940± 0.3362j, −0.1941± 0.3359j.
The Bode diagram of the two components of the filter is shown in Fig. 7.18 and the

result of some simulations obtained with sinusoidal input functions and parameters

omega_max = 10;
ampiezza_max = 1000; % maximum amplitude value of u
p_change_u = 0.5;

is shown in Fig. 7.19.

7.3.3 Another Filter Synthesis and Simulation

If instead ω1 = 4, ω2 = 4, with Ts = 0.2, β = 1, γ = 1, r = 6, we obtain µopt ≈ 11; the
two components of the filter are

b(λ)

a(λ)
≈ 1.0687− 0.0414λ− 6.2011λ2 + 0.0065λ3 + 0.8584λ4 + 0.0717λ5 − 2.1294λ6

1− 0.0011λ+ 0.0004λ2 + 0.0021λ3 + 0.0004λ4 − 0.0015λ5 − 0.0279λ6

and

c(λ)

a(λ)
≈ 0 + 0.0012λ+ 0.0060λ2 + 0.0085λ3 + 0.0057λ4 + 0.0019λ5 + 0.0002λ6

1− 0.0011λ+ 0.0004λ2 + 0.0021λ3 + 0.0004λ4 − 0.0015λ5 − 0.0279λ6
.

The poles are 0.5520, 0.2750± 0.4804j, −0.2763± 0.4736j, −0.5483.
The Bode diagram of the two components of the filter is shown in Fig. 7.20 and the

result of some simulations obtained with sinusoidal input functions and parameters

omega_max = 16;
ampiezza_max = 100; % maximum amplitude value of u
p_change_u = 0.5;

is shown in Fig. 7.21.

Remark

Again, in both cases, even though the estimation error is not always included in the
interval ±µopt, the filter furnishes a good estimation, since ẑ tracks properly z and the
estimation error is small in proportion to the amplitude of the signal. The second example
underlines that, in presence of a known input, the estimation error may grow as z (and
therefore ẑ) grows.

4The other values of ai are not exactly zero, but they are very close to zero
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Figure 7.18: Bode diagram of the filters for the fourth order quantized system – first example
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(a)

(b)

(c)

Figure 7.19: First set of simulations of the filter behaviour for fourth order quantized system
with sinusoidal input function. Above z, in blue, is compared with ẑ, in red; below, the
estimation error is shown and ±µopt are marked
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Figure 7.20: Bode diagram of the filters for the fourth order quantized system – second
example
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(a)

(b)

(c)

Figure 7.21: Second set of simulations of the filter behaviour for fourth order quantized
system with sinusoidal input function. Above z, in blue, is compared with ẑ, in red; below,
the estimation error is shown and ±µopt are marked
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7.3.4 Comparison with Kalman Filter
We consider ω1 = 4, ω2 = 4, with Ts = 0.2, β = 1, γ = 1.
The discrete–time Kalman filter transfer function is

bkalman(λ)

akalman(λ)
≈ −0.1893λ+ 0.2484λ2 − 0.1679λ3 − 0.0105λ4

1− 2.7382λ+ 3.8052λ2 − 2.6443λ3 + 0.9326λ4

and its poles are 0.6725± 0.7171j, 0.6966± 0.6926j.
We compare this Kalman filter with the r–equalized, r = 4, which attains µopt ≈ 19.2:

b(λ)

a(λ)
≈ 6.0711− 8.2638λ+ 0.0070λ2 + 2.2338λ3 − 1.3430λ4

1 + 0.0000λ+ 0.0007λ2 − 0.0001λ3 − 0.0633λ4

and
c(λ)

a(λ)
≈ 0 + 0.0009λ+ 0.0024λ2 + 0.0014λ3 + 0.0002λ4

1 + 0.0000λ+ 0.0007λ2 − 0.0001λ3 − 0.0633λ4
.

The poles are 0.5014, −0.5011, −0.0002± 0.5019j.
The Bode diagrams are shown in Fig. 7.22 and the result of some comparative simulations

obtained with sinusoidal input functions and parameters

omega_max = 5;
ampiezza_max = 45; % maximum amplitude value of u
p_change_u = 0.2;

is shown in Fig. 7.23.

Both the filters behave well, but several experiments with randomly generated noise show
that, in general, the equalized filter has a smaller worst case error.
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Figure 7.22: Bode diagram of the Kalman filter (in red) and of the equalized filter (in blue)
for the fourth order quantized system
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(a)

(b)

(c)

Figure 7.23: Simulations for fourth order quantized system with sinusoidal input function.
Above z, in black, is compared with ẑeq, in blue, and ẑkalman, in red; below, the estimation
error eeq, in blue, is compared with ekalman, in red
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7.4 System with Selective Prefilters

7.4.1 Model Construction
Suppose that the second order system with continuous–time transfer function from input

u to the output to estimate, z,
s

s2 + ω2

and continuous–time transfer function from input u to measured output y

1

s2 + ω2
,

is affected by disturbances having a dominant frequency. This can be obtained if the random
noise v is modulated by a selective prefilter with transfer function

1

s2 + ω2
v

and then added to the input u. Likewise, measured output y contains a noise w which is
modulated by a prefilter with transfer function

1

s2 + ω2
w

.

The Bode diagram of such a selective prefilter is shown in Fig. 7.24: it is evident that it
attenuates all frequencies except a particular range which is strongly amplified.


































Figure 7.24: Selective prefilter frequency response: 1
s2+ω2

with ω = 2

Fig. 7.25 shows the complete block scheme of the system with filters applied. Note
that, after the disturbances have been selectively prefiltered, a saturation to ±γ and ±β is
imposed respectively to v and to w, in order to avoid the noise exceeding its limit.

7.4.2 Filter Synthesis and Simulation
If ω = 4, ωv = 4, ωw = 2, Ts = 0.2, β = 1, γ = 1, r = 3, we obtain µopt ≈ 4.4; the two

components of the filter are

b(λ)

a(λ)
≈ −0.0000− 0.1628λ− 3.9105λ2 + 0.0000λ3

1− 0.0000λ+ 0.0000λ2 + 0.0002λ3
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Figure 7.25: Filtering scheme of the system with prefilters

and
c(λ)

a(λ)
≈ 0 + 0.1793λ+ 0.0716λ2 − 0.0000λ3

1− 0.0000λ+ 0.0000λ2 + 0.0002λ3
(5).

The poles are 0.0269± 0.0466j, −0.0538.
The Bode diagram of the two components of the filter is shown in Fig. 7.26 and the

result of some simulations obtained with sinusoidal input functions and parameters

omega_max = 3;
omega_max_u = 4; % maximum amplitude value of u
ampiezza_max = 20;
p_change = 0.5;
p_change_u = 0.2;

is shown in Fig. 7.27.
The filter works well, because ẑ reproduces z with an estimation error which is much

smaller than the amplitude of the signal, even though it is not always contained in the
interval ±µopt.

5All 0.0000 values in a, b and c are not exactly zero, but they are very close to zero
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Figure 7.26: Bode diagram of the filters for the system with prefilters
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(a)

(b)

(c)

Figure 7.27: Simulations of the filter behaviour for the system with prefilters (sinusoidal
input function). Above z, in blue, is compared with ẑ, in red; below, the estimation error is
shown and ±µopt are marked
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7.4.3 Comparison with Kalman Filter
The discrete–time Kalman filter transfer function is

bkalman(λ)

akalman(λ)
≈ −0.1325λ− 0.0055λ2

1− 1.3593λ+ 0.9525λ2

and its poles are 0.6797± 0.7004j.
We compare this Kalman filter with the r–equalized, r = 2, which attains µopt ≈ 4.4:

b(λ)

a(λ)
≈ −0.0000− 0.1629λ− 3.8854λ2

1

and
c(λ)

a(λ)
≈ 0 + 0.1793λ+ 0.0737λ2

1
.

The two components of the filter are FIR.
The Bode diagrams are shown in Fig. 7.28 and the result of some comparative simulations

obtained with sinusoidal input functions and parameters

omega_max = 3;
omega_max_u = 4; % maximum amplitude value of u
ampiezza_max = 20;
p_change = 0.5;
p_change_u = 0.2;

is shown in Fig. 7.29.

Both the filters behave well, but several experiments with randomly generated distur-
bances show that the equalized filter usually has a smaller worst case error.
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Figure 7.28: Bode diagram of the Kalman filter (in red) and of the equalized filter (in blue)
for the system with selective prefilters
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(a)

(b)

(c)

Figure 7.29: Simulations for the system with selective prefilters, with sinusoidal input func-
tion. Above z, in black, is compared with ẑeq, in blue, and ẑkalman, in red; below, the
estimation error eeq, in blue, is compared with ekalman, in red



Chapter 8

Conclusions

Filtering in presence of unknown, but bounded, disturbances aims at confining the es-
timation error within a bounded set. The new approach here considered (and presented in
[1]) is based on the concept of equalized performance: it works with r–length estimation
error sequences and allows to confine them to the tightest possible hyperrectangle. Its main
advantages are that:

• the objective is accomplished with an rth order LTI filter, whose coefficients can be
easily found via a convex optimization algorithm;

• the multiple output case can be easily faced by considering a set of scalar filters;

• the MATLAB simulations implemented show a good behaviour of the filters obtained,
which are comparable to the Kalman filter, and often rather better.

The application of filters synthesized with this new approach has been extended to sys-
tems not only affected by noise, but also with the additional presence of an external, known
(control) input coming from the same channel of the process noise. Several MATLAB sim-
ulations have shown that these filters behave well and are comparable to the Kalman filter,
and often better.

Until now, only LTI systems have been considered for synthesizing filters with this new
procedure. Current research is seeking to extend this approach to filter synthesis also to
switched and piecewise linear systems.
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Appendix A

Source Code of MATLAB
Programs

A.1 MATLAB Code Usage

To obtain the simulations for every example, several MATLAB files have been written:

• a Data_File: it contains all the parameters for filter synthesis and simulation that
can be modified by the user

• a Filter_Synthesis file: it generates the equalized filter as described in [1] and uses
the routine bos

• a Simulation file: it generates the simulation diagrams and graphs

To perform simulations that show the equalized filter behaviour:

0. Set the desired values in Data_File

1. Run Data_File

2. Run Filter_Synthesis

3. If the value of mrgn is positive and as small as possible, go to step 4. If it is not, go
back to step 0. and modify the value of mu: increase it if mrgn is negative; decrease it
if mrgn is positive

4. Run Simulation

The Bode diagram of the filter is shown; then, in the same figure, the graph that compares
z with its estimate ẑ and the graph of the estimation error are shown.

In order to compare the equalized with the Kalman filter, a Kalman file has been written to
synthesize the Kalman filter and a Comparative_Simulation file to confront the behaviour
of the two filters. To perform simulations:

0. Set the desired values in Data_File_Comparison

1. Run Data_File_Comparison

2. Run Filter_Synthesis

3. If the value of mrgn is positive and as small as possible, go to step 4. If it is not, go
back to step 0. and modify the value of mu: increase it if mrgn is negative; decrease it
if mrgn is positive

4. Run Kalman
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5. Run Comparative_Simulation

The Bode diagrams of the two filters are shown; then, in the same figure, the graph that
compares z with its two different estimates and the graph of the two estimation errors are
shown.

All the MATLAB code used for the simulations is enclosed with the thesis in a CD; here
just two examples of usage are reported.

A.2 bos function by Blanchini and Sznaier
function [a,b,c,mrgn] = bos(d,m,n,beta,gamma,ord_com,mu)
[ord_sys,dummy]=size(d);

% the first column is divided by mu but it should not
M=convmtx(m,ord_com+1)/mu;
N=convmtx(n,ord_com+1)/beta;
D=convmtx(d,ord_com+1)/gamma;
Phi =[M -N -D]
[n_rig,n_col]=size(Phi);
P=Phi(:,2:n_col);
n_col=n_col-1;
% this is to restore the first column correct value
q=-Phi(:,1)*mu;

P
q

cvx_begin
variable x(n_col)
minimize norm(x,1)
subject to
P*x==q
cvx_end

mrgn=mu-norm(x,1);
a=[1 ; x(1:ord_com)/mu];
b=x(ord_com+1:2*ord_com+1)/beta;
c=x(2*ord_com+2:3*ord_com+2)/gamma;
check_eq_zero=norm(conv(m,a)-conv(b,n)-conv(c,d))

dir_gain=sum(m)/sum(d)
ext_gain=(sum(n)/sum(d))*(sum(b)/sum(a))

A.3 Example: a Car Suspension Model
Here we report the code for the simulation of the equalized filter behaviour, for a system

in presence of disturbances only.

Data File Examples
Sinusoidal Input Function

% SYSTEM PARAMETERS
k1 = 2;
k2 = 3;
h = 0.1;
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Ts = 1; % Sampling rate for discretization

% TO OBTAIN OPTIMAL FILTER
beta = 1;
gamma = 10;
ord_com = 6;
mu = 18.7;

% TO RUN SIMULATION
% Maximum frequency value of sinusoidal disturbances v and w
omega_max = 50;
% Probability to change the frequency value of disturbances v and w
p_change_v = 0.2;
p_change_w = 0.5;
% Simulation length
N_step = 50;

Linear Input Function

% SYSTEM PARAMETERS
k1 = 1;
k2 = 1;
h = 0.1;

Ts = 1; % Sampling rate for discretization

% TO OBTAIN OPTIMAL FILTER
beta = 1;
gamma = 10;
ord_com = 6;
mu = 17.3;

% TO RUN SIMULATION
% Minimum and maximum angular coefficient for disturbance v
alfa_min = -2;
alfa_max = 2;
% Minimum and maximum angular coefficient for disturbance w
ang_min = -1;
ang_max = 1;
% Probability to change the angular coefficient of disturbances v and w
p_change_v = 0.2;
p_change_w = 0.5;
% Simulation length
N_step = 50;

Filter Synthesis

% Continuous-time
F=[0 0 1 0; 0 0 0 1; -(k1+k2) k2 -h h; k2 -k2 h -h];
G=[0; 0; k1; 0];
Hz=[1 0 0 0];
Hy=[1 -1 0 0];

sysc_z = ss(F, G, Hz, 0);
sysc_y = ss(F, G, Hy, 0);
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% Discrete-time
sysd_z = c2d(sysc_z, Ts);
sysd_y = c2d(sysc_y, Ts);

[Azd,Bzd,Czd,Dzd] = ssdata(sysd_z);
[Ayd,Byd,Cyd,Dyd] = ssdata(sysd_y);

[m, d] = ss2tf (Azd,Bzd,Czd,Dzd);
[n, d] = ss2tf (Ayd,Byd,Cyd,Dyd);

m=m’;
n=n’;
d=d’;

[a,b,c,mrgn] = bos(d,m,n,beta,gamma,ord_com,mu)

a=a’;
b=b’;
c=c’;

Simulation
Sinusoidal Input Function

[m, d] = ss2tf (Azd,Bzd,Czd,Dzd);
[n, d] = ss2tf (Ayd,Byd,Cyd,Dyd);

[dim, dim]=size(Ayd);

% State initialization
x = zeros(dim,1);
x_eq = zeros(ord_com,1);

% Systems
[A,B,Cz,Dz] = tf2ss(m,d);
[A,B,Cy,Dy] = tf2ss(n,d);
[A_eq,B_eq,C_eq,D_eq] = tf2ss(b,a);

% Bode diagram of the filter
figure(1)
dbode(b,a,Ts)

z_plot = 0;
z_eq_plot = 0;
t_plot = 0;
y = 0;
z = 0;

% Start simulation
omega_v = rand*omega_max;
omega_w = rand*omega_max;

for k=0:N_step

change_v = rand;
if change_v < p_change_v
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omega_v = rand*omega_max;
end
v=gamma*cos(omega_v*k*Ts);

change_w = rand;
if change_w < p_change_w

omega_w = rand*omega_max;
end
w=beta*cos(omega_w*k*Ts);

% Equalized filter
z_eq = C_eq *x_eq + D_eq * y;
x_eq = A_eq *x_eq + B_eq * y;

% Plot
t_plot = [t_plot k];
z_plot = [z_plot z];
z_eq_plot = [z_eq_plot z_eq];

% Plant
z=Cz*x+Dz*v;
y=Cy*x+Dy*v;
x=A*x+B*v;
y=y+w;

end
figure(2)
subplot(2,1,1)
plot(t_plot,z_plot,’b’,t_plot,z_eq_plot,’r’)
grid
subplot(2,1,2)
plot(t_plot,z_plot-z_eq_plot,’r’, t_plot, mu, ’.-’, t_plot, -mu, ’.-’)
grid

Linear Input Function

[m, d] = ss2tf (Azd,Bzd,Czd,Dzd);
[n, d] = ss2tf (Ayd,Byd,Cyd,Dyd);

[dim, dim]=size(Ayd);

% State initialization
x = zeros(dim,1);
x_eq = zeros(ord_com,1);

% Systems
[A,B,Cz,Dz] = tf2ss(m,d);
[A,B,Cy,Dy] = tf2ss(n,d);
[A_eq,B_eq,C_eq,D_eq] = tf2ss(b,a);

% Bode diagram of the filter
figure(1)
dbode(b,a,Ts)

z_plot = 0;
z_eq_plot = 0;
t_plot = 0;
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y = 0;
z = 0;

% Start simulation
v = 0;
w = 0;
r = rand;
alfa = alfa_min*r+alfa_max*(1-r);
h = rand;
ang = ang_min*h+ang_max*(1-h);

for k=0:N_step

change_v = rand;
if change_v < p_change_v

r = rand;
alfa = alfa_min*r+alfa_max*(1-r);

end
v = v+alfa*Ts;
if v > gamma

v = gamma;
elseif v < -gamma

v = -gamma;
end

change_w = rand;
if change_w < p_change_w

h = rand;
ang = ang_min*h+ang_max*(1-h);

end
w = w+ang*Ts;
if w > beta

w = beta;
elseif w < -beta

w = -beta;
end

% Equalized filter
z_eq = C_eq *x_eq + D_eq * y;
x_eq = A_eq *x_eq + B_eq * y;

% Plot
t_plot = [t_plot k];
z_plot = [z_plot z];
z_eq_plot = [z_eq_plot z_eq];

% Plant
z=Cz*x+Dz*v;
y=Cy*x+Dy*v;
x=A*x+B*v;
y=y+w;

end
figure(2)
subplot(2,1,1)
plot(t_plot,z_plot,’b’,t_plot,z_eq_plot,’r’)
grid
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subplot(2,1,2)
plot(t_plot,z_plot-z_eq_plot,’r’, t_plot, mu, ’.-’, t_plot, -mu, ’.-’)
grid

A.4 Example: Fourth Order Quantized System

Here we report the code for the comparative simulation between the equalized and the
Kalman filter, for a system in presence of a known (control) input too.

Data File Example

% SYSTEM PARAMETERS
omega1 = 4;
omega2 = 4;
Ts = 0.2; % Sampling time for discretization

% TO OBTAIN OPTIMAL FILTER
beta = 1;
gamma = 1;
ord_com = 4;
mu = 19.2;

% TO RUN SIMULATION
% Maximum frequency value and amplitude value of sinusoidal input u
omega_max = 5;
ampiezza_max = 45;
% Probability to change the frequency value of input u
p_change_u = 0.2;
% Simulation length
N_step = 100;

Filter Synthesis

sysc_z = tf ( [0 1 0] , conv([1 0 omega1^2],[1 0 omega2^2]) );
sysc_y = tf ( [0 0 1] , conv([1 0 omega1^2],[1 0 omega2^2]) );

sysd_z = c2d(sysc_z, Ts);
sysd_y = c2d(sysc_y, Ts);

[Azd,Bzd,Czd,Dzd] = ssdata(sysd_z);
[Ayd,Byd,Cyd,Dyd] = ssdata(sysd_y);

[m, d] = ss2tf (Azd,Bzd,Czd,Dzd);
[n, d] = ss2tf (Ayd,Byd,Cyd,Dyd);

m=m’;
n=n’;
d=d’;

[a,b,c,mrgn] = bos(d,m,n,beta,gamma,ord_com,mu)

a=a’;
b=b’;
c=c’;
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Kalman Filter Synthesis
[m, d] = ss2tf (Azd,Bzd,Czd,Dzd);
[n, d] = ss2tf (Ayd,Byd,Cyd,Dyd);

[A,B,Cz,Dz] = tf2ss(m,d);
[A,B,Cy,Dy] = tf2ss(n,d);

[P,CLEV,G] = dare(Ayd’,Cyd’,Byd*Byd’);

L=Ayd*P*Cyd’*(Cyd*P*Cyd’+1)^(-1);

A_kal = Ayd - L*Cyd;
B_kal = L;
C_kal = Czd;
D_kal = Dzd;

Comparative Simulation
[m, d] = ss2tf (Azd,Bzd,Czd,Dzd);
[n, d] = ss2tf (Ayd,Byd,Cyd,Dyd);

[dim, dim]=size(Ayd);

% State initialization
x = zeros(dim,1);
x_kal = zeros(dim,1);
x_b = zeros(ord_com,1);
x_c = zeros(ord_com,1);

% Systems
[A,B,Cz,Dz] = tf2ss(m,d);
[A,B,Cy,Dy] = tf2ss(n,d);
[A_b,B_b,C_b,D_b] = tf2ss(b,a);
[A_c,B_c,C_c,D_c] = tf2ss(c,a);
[b_kal,a_kal] = ss2tf(A_kal,B_kal,C_kal,D_kal);

% Bode diagram of the filter
figure(1)
dbode(b_kal,a_kal,Ts,’r’)
figure(2)
dbode(b,a,Ts, ’b’)
figure(3)
dbode(c,a,Ts, ’b’)

z_plot = 0;
z_kal_plot=0;
z_eq_plot = 0;
t_plot = 0;
y = 0;
z = 0;

% Start simulation
r = rand*omega_max;

for k=0:N_step
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change = rand;
if change < p_change_u

r = rand*omega_max;
end

u = ampiezza_max*cos(r*k*Ts);
u_q = round(u/(gamma*2))*gamma*2;

% Filter - part b
z_b = C_b *x_b + D_b * y;
x_b = A_b *x_b + B_b * y;

% Filter - part c
z_c = C_c *x_c + D_c * u;
x_c = A_c *x_c + B_c * u;

% Total filter
z_eq = z_b + z_c;

% Kalman filter
z_kal = C_kal *x_kal + D_kal * y;
x_kal = A_kal *x_kal + B_kal * y + B * u_q;

% Plot
t_plot = [t_plot k];
z_plot = [z_plot z];
z_eq_plot = [z_eq_plot z_eq];
z_kal_plot = [z_kal_plot z_kal];

% Plant
z=Cz*x+Dz*u_q;
y_ex=Cy*x+Dy*u_q;
x=A*x+B*u_q;
y = round(y_ex/(beta*2))*beta*2;

end
figure(4)
subplot(2,1,1)
plot(t_plot,z_plot,’k’,t_plot,z_kal_plot,’r’,t_plot,z_eq_plot,’b’)
grid
subplot(2,1,2)
plot(t_plot,z_plot-z_kal_plot,’r’,t_plot,z_plot-z_eq_plot,’b’)
grid





Appendix B

Hints about Convex Optimization

Convex optimization is a subfield of mathematical optimization which studies the prob-
lem of minimizing convex functions. This special class of mathematical optimization prob-
lems includes least–squares and linear programming problems. Least–squares and linear
programming problems have a fairly complete theory, arise in a variety of applications, and
can be solved numerically very efficiently: the same can be said for the larger class of con-
vex optimization problems. The convexity of the functions and of their domains makes the
powerful tools of convex analysis applicable: this leads to a theory of necessary and suffi-
cient conditions for optimality, a duality theory generalizing that for linear programming
and effective computational methods.

We present here a summary of the basic concepts from [8] and many excerpts are quoted
from the book. Just some hints are given about the wide and complex topic: for further
deepening, consult [8].

Mathematical Optimization

A mathematical optimization problem has the form

minimize f0(x)
subject to: fi(x) ≤ bi, i = 1, . . . ,m

(B.1)

where the vector x = (x1, . . . , xn) is the optimization variable of the problem, the function
f0 : Rn → R is the objective function, the functions fi : Rn → R, i = 1, . . . ,m are the
(inequality) constraint functions, and the constants b1, . . . , bm are the limits, or bounds, for
the constraints. A vector x∗ is called optimal, or a solution of the problem (B.1), if it has
the smallest objective value among all vectors that satisfy the constraints: for any z with
f1(z) ≤ b1, . . . , fm(z) ≤ bm, we have f0(z) ≥ f0(x∗).

Optimization problems can be classified in families characterized by particular forms of
the objective and constraint functions.

The optimization problem (B.1) is called a linear program if the objective and constraint
functions f0, . . . , fm are linear (satisfy fi(αx + βy) = αfi(x) + βfi(y) for all x, y ∈ Rn and
all α, β ∈ R).

In a convex optimization problem, the objective and constraint functions are convex:
they satisfy the inequality

fi(αx+ βy) ≤ αfi(x) + βfi(y) (B.2)

for all x, y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0. Convexity is more
general than linearity: inequality replaces the more restrictive equality, and the inequality
must hold only for certain values of α and β. Since any linear program is therefore a
convex optimization problem, convex optimization can be considered a generalization of
linear programming.
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Affine and Convex Sets
Suppose x1 6= x2 are two points in Rn. Points of the form y = ϑx1 + (1 − ϑ)x2, where

ϑ ∈ R, form the line passing through x1 and x2. The parameter value ϑ = 0 corresponds
to y = x2 and ϑ = 1 corresponds to y = x1. Values of the parameter ϑ between 0 and 1
correspond to the line segment between x1 and x2.

Expressing y in the form y = x2 + ϑ(x1 − x2) gives another interpretation: y is the sum
of the base point x2 (corresponding to ϑ = 0) and the direction x1 − x2 (which points from
x2 to x1) scaled by the parameter ϑ. Thus, ϑ gives the fraction of the way from x2 to x1
where y lies. As ϑ increases from 0 to 1, the point y moves from x2 to x1; for ϑ > 1, the
point y lies on the line beyond x1. This is illustrated in Fig. B.1.





  
 

  

 
  

Figure B.1: The line passing through x1 and x2 is described parametrically by ϑx1+(1−ϑ)x2,
where ϑ varies over R. The line segment between x1 and x2, which corresponds to ϑ between
0 and 1, is shown darker (from [8])

A set C ⊆ Rn is affine if the line through any two distinct points in C lies in C, i.e., if for
any x1, x2 ∈ C and ϑ ∈ R, we have ϑx1 + (1−ϑ)x2 ∈ C. C contains the linear combination
of any two points in C, provided the coefficients in the linear combination sum to one.

The idea can be generalized to more than two points. We refer to a point of the form
ϑ1x1 + · · ·+ϑkxk, where ϑ1 + · · ·+ϑk = 1, as an affine combination of the points x1, . . . , xk.
Since an affine set contains every affine combination of two points in it, by induction it can
be shown that an affine set contains every affine combination of its points: if C is an affine
set, x1, . . . , xk ∈ C, and ϑ1 + · · ·+ ϑk = 1, then the point ϑ1x1 + · · ·+ ϑkxk also belongs to
C.

If C is an affine set and x0 ∈ C, then the set V = C − x0 = {x − x0|x ∈ C} is a
subspace (it is closed under sums and scalar multiplication). To see this, suppose v1, v2 ∈ V
and α, β ∈ R. Then we have v1 + x0 ∈ C and v2 + x0 ∈ C, and so αv1 + βv2 + x0 =
α(v1 + x0) + β(v2 + x0) + (1− α− β)x0 ∈ C, since C is affine, and α+ β + (1− α− β) = 1.
We conclude that αv1 + βv2 ∈ V , since αv1 + βv2 + x0 ∈ C. Thus, the affine set C can
be expressed as C = V + x0 = {v + x0|v ∈ V }, a subspace plus an offset. The subspace V
associated with the affine set C does not depend on the choice of x0, so x0 can be chosen as
any point in C. We define the dimension of an affine set C as the dimension of the subspace
V = C − x0, where x0 is any element of C.

Example 1. The solution set of a system of linear equations, C = {x|Ax = b}, where
A ∈ Rm×n and b ∈ Rm, is an affine set. Conversely, every affine set can be expressed as the
solution set of a system of linear equations.

A set C is convex if the line segment between any two points in C lies in C: for any
x1, x2 ∈ C and any real ϑ with 0 ≤ ϑ ≤ 1, we have ϑx1 + (1− ϑ)x2 ∈ C. Every affine set is
also convex.

We call a point of the form ϑ1x1 + · · ·+ ϑkxk, where ϑ1 + · · ·+ ϑk = 1 and ϑi ≥ 0, i =
1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine sets, it can be shown
that a set is convex if and only if it contains every convex combination of its points.

A set C is called a cone, or nonnegative homogeneous, if for every x ∈ C and ϑ ≥ 0 we
have ϑx ∈ C. A set C is a convex cone if it is convex and a cone: for any x1, x2 ∈ C and
ϑ1, ϑ2 ≥ 0, we have ϑ1x1 + ϑ2x2 ∈ C. Points of this form can be described geometrically as
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forming the two-dimensional pie slice with apex 0 and edges passing through x1 and x2. A
point of the form ϑ1x1 + · · ·+ ϑkxk with ϑ1, . . . , ϑk ≥ 0 is called a conic combination (or a
nonnegative linear combination) of x1, . . . , xk. If xi are in a convex cone C, then every conic
combination of xi is in C. Conversely, a set C is a convex cone if and only if it contains all
conic combinations of its elements.

The idea of affine, convex, conic combination can be generalized to infinite sums and
integrals.

Some Examples
• The empty set ∅, any single point (singleton) {x0}, and the whole space Rn are affine
(hence, convex) subsets of Rn.

• Any line is affine. If it passes through zero, it is a subspace, hence also a convex cone.

• A line segment is convex, but not affine (unless it reduces to a point).

• A ray, which has the form {x0 + ϑv|ϑ ≥ 0}, where v 6= 0, is convex, but not affine. It
is a convex cone if its base x0 is 0.

• Any subspace is affine, and a convex cone (hence convex).

• A hyperplane is a set of the form {x|aTx = b}, where a ∈ Rn, a 6= 0, and b ∈ R.
Analytically it is the solution set of a nontrivial linear equation among the components
of x (and hence an affine set). Geometrically, the hyperplane {x|aTx = b} can be
interpreted as the set of points with a constant inner product to a given vector a
(normal vector); the constant b ∈ R determines the offset of the hyperplane from the
origin. The hyperplane can be expressed in the form {x|aT (x− x0) = 0}, where x0 is
any point in the hyperplane (any point that satisfies aTx0 = b). This representation
can in turn be expressed as {x|aT (x − x0) = 0} = x0 + a⊥, where a⊥ denotes the
orthogonal complement of a, the set of all vectors orthogonal to it: a⊥ = {v|aT v = 0}.
Thus the hyperplane consists of an offset x0, plus all vectors orthogonal to the normal
vector a.

• A hyperplane divides Rn into two halfspaces. A closed halfspace is a set of the form
{x|aTx ≤ b}, where a 6= 0: it is the solution set of a nontrivial linear inequality.
Halfspaces are convex, but not affine. The halfspace can also be expressed as {x|aT (x−
x0) ≤ 0}, where x0 is any point on the associated hyperplane (satisfies aTx0 = b).
Hence a simple geometric interpretation: the halfspace consists of x0 plus any vector
that makes an obtuse angle with the outward normal vector a. The boundary of the
halfspace is the hyperplane {x|aTx = b}. The set {x|aTx < b}, which is the interior
of the halfspace {x|aTx ≤ b}, is called an open halfspace.

• A (Euclidean) ball in Rn has the form B(xc, r) = {x| ‖x− xc‖2 ≤ r} = {x|(x−xc)T (x−
xc) ≤ r2}, where r > 0, and ‖·‖2 denotes the Euclidean norm, ‖u‖2 = (uTu)1/2. The
vector xc is the center of the ball and the scalar r is its radius; B(xc, r) consists of all
points within a distance r of the center xc. Another common representation for the
Euclidean ball is B(xc, r) = {xc + ru| ‖u‖2 ≤ 1}. A Euclidean ball is a convex set.

• Suppose ‖·‖ is any norm on Rn; a norm ball of radius r and center xc, given by
{x| ‖x− xc‖ ≤ r}, is convex.

• A polyhedron, the intersection of a finite number of halfspaces and hyperplanes, is a
convex set. Affine sets (subspaces, hyperplanes, lines, . . . ), rays, line segments, and
halfspaces are all polyhedra.

Besides, a set C is convex if it is obtained from simple convex sets (hyperplanes, half-
spaces, norm balls,. . . ) by operations that preserve convexity, such as, for example, inter-
section and affine function (if f is an affine function, the image of a convex set under f is
convex and the inverse image f−1(C) of a convex set under f is convex).
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Convex Functions

A function f : Rn → R is convex if dom(f) is a convex set and if for all x, y ∈ dom(f),
and ϑ with 0 ≤ ϑ ≤ 1, we have

f(ϑx+ (1− ϑ)y) ≤ ϑf(x) + (1− ϑ)f(y). (B.3)

Geometrically, this inequality means that the line segment between (x, f(x)) and (y, f(y)),
which is the chord from x to y, lies above the graph of f (Fig. B.2).

  

  

Figure B.2: Graph of a convex function: the chord between any two points on the graph
lies above the graph (from [8])

A function f is strictly convex if strict inequality holds in (B.3) whenever x 6= y and
0 < ϑ < 1. f is concave if −f is convex, and strictly concave if −f is strictly convex. For
an affine function we always have equality in (B.3), so all affine functions are both convex
and concave. Conversely, any function that is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that intersects
its domain: f is convex if and only if for all x ∈ dom(f) and all v, the function g(t) = f(x+tv)
is convex (on its domain, {t|x+ tv ∈ dom(f)}). This property is very useful, since it allows
us to check whether a function is convex by restricting it to a line. The analysis of convex
functions is a well developed field: one simple result, for example, is that a convex function
is continuous on the relative interior of its domain; it can have discontinuities only on its
relative boundary.

As for convex sets, there are operations that preserve the convexity of a function and
allow us to construct new convex function from simple ones: e.g., nonnegative weighted
sum, composition with affine function, pointwise maximum and supremum, scalar/vector
composition, minimization.

Some conditions allow us to recognise a convex function.

First Order Condition

Suppose f is differentiable: its gradient

∇f =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xn

)
exists at each point in dom(f), which is open. Then f is convex if and only if dom(f) is
convex and f(y) ≥ f(x) +∇f(x)T (y − x) holds for all x, y ∈ dom(f).

The affine function of y given by f(x) + ∇f(x)T (y − x) is the first–order Taylor ap-
proximation of f near x. The inequality states that for a convex function, the first–order
Taylor approximation is in fact a global underestimator of the function. Conversely, if the
first–order Taylor approximation of a function is always a global underestimator of the func-
tion, then the function is convex. From local information about a convex function (its value
and derivative at a point) we can derive global information (a global underestimator of it).
This is perhaps the most important property of convex functions, and explains some of the
remarkable properties of convex functions and convex optimization problems. As one simple
example, the inequality shows that, if∇f(x) = 0, then for all y ∈ dom(f), f(y) ≥ f(x): x is a
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Figure B.3: If f is convex and differentiable, then f(x) + ∇f(x)T (y − x) ≤ f(y) for all
x, y ∈ dom(f) (from [8])

global minimizer of the function f . Strict convexity can also be characterized by a first–order
condition: f is strictly convex if and only if dom(f) is convex and for x, y ∈ dom(f), x 6= y,
we have f(y) > f(x)+∇f(x)T (y−x). For concave functions we have the corresponding char-
acterization: f is concave if and only if dom(f) is convex and f(y) ≤ f(x) +∇f(x)T (y− x)
for all x, y ∈ dom(f).

Second Order Condition

We now assume that f is twice differentiable: its Hessian matrix or second derivative
∇2f exists at each point in dom(f), which is open. Then f is convex if and only if dom(f)
is convex and its Hessian is positive semidefinite: for all x ∈ dom(f), ∇2f(x) ≥ 0. For
a function on R, this reduces to the simple condition f(x)′′ ≥ 0 (and dom(f) convex, i.e.
an interval), which means that the derivative is nondecreasing. The condition ∇2f(x) ≥ 0
can be interpreted geometrically as the requirement that the graph of the function have
positive (upward) curvature at x. Similarly, f is concave if and only if dom(f) is convex
and ∇2f(x) ≤ 0 for all x ∈ dom(f). Strict convexity can be partially characterized by
second–order conditions. If ∇2f(x) < 0 for all x ∈ dom(f), then f is strictly convex. The
converse, however, is not true: for example, the function f : R → R given by f(x) = x4 is
strictly convex but has zero second derivative at x = 0.

Optimization Problems
We use the notation

minimize f0(x)
subject to: fi(x) ≤ 0, i = 1, . . . ,m
hi(x) = 0, i = 1, . . . , p

(B.4)

to describe the problem of finding an x that minimizes f0(x) among all x that satisfy
the conditions fi(x) ≤ 0, i = 1, . . . ,m and hi(x) = 0, i = 1, . . . , p. x ∈ Rn is the
optimization variable and the function f0 : Rn → R the objective function or cost function.
The inequalities fi(x) ≤ 0 are called inequality constraints, and the corresponding functions
fi : Rn → R inequality constraint functions. The equations hi(x) = 0 are called the equality
constraints, and the functions hi : Rn → R equality constraint functions.

Remark 5. Every equality constraint h(x) = 0 can be equivalently replaced by a pair of
inequality constraints h(x) ≤ 0 and −h(x) ≤ 0. Therefore, for theoretical purposes, equality
constraints are redundant; however, it can be beneficial to treat them specially in practice.

If there are no explicit constraints (m = p = 0) the problem (B.4) is unconstrained. Yet
every problem has an implicit constraint: the set of points for which the objective and all
constraint functions are defined,

D =

m⋂
i=0

dom(fi) ∩
p⋂
i=1

dom(hi),
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is called the domain of the optimization problem (B.4). A point x ∈ D is feasible if it
satisfies the constraints fi(x) ≤ 0, i = 1, . . . ,m and hi(x) = 0, i = 1, . . . , p. The problem
(B.4) is said to be feasible if there exists at least one feasible point, and unfeasible otherwise.
The set of all feasible points is called the feasible set or the constraint set.

The optimal value p∗ of the problem (B.4) is defined as p∗ = inf{f0(x)|fi(x) ≤ 0, i =
1, . . . ,m, hi(x) = 0, i = 1, . . . , p}. We allow p∗ to take on the extended values ±∞. If the
problem is unfeasible, we have by convention p∗ = +∞. If there are feasible points xk with
f0(xk)→ −∞ as k →∞, then p∗ = −∞, and the problem (B.4) is unbounded below.

Optimal and Locally Optimal Points
x∗ is an optimal point, or solves the problem (B.4), if x∗ is feasible and f0(x∗) = p∗.

The set of all optimal points is the optimal set, denoted Xopt = {x|fi(x) ≤ 0, i =
1, . . . ,m, hi(x) = 0, i = 1, . . . , p, f0(x) = p∗}. If there exists an optimal point for the
problem (B.4), the optimal value is attained or achieved, and the problem is solvable. If
Xopt is empty, the optimal value is not attained or not achieved. This always occurs when
the problem is unbounded below. A feasible point x with f0(x) ≤ p∗ + ε (where ε > 0) is
called ε–suboptimal, and the set of all ε–suboptimal points is called the ε–suboptimal set
for the problem (B.4). A feasible point x is locally optimal if there is an R > 0 such that
f0(x) = inf{f0(z)|fi(z) ≤ 0, i = 1, . . . ,m, hi(z) = 0, i = 1, . . . , p, ‖z − x‖2 ≤ R}, or, in
other words, x solves the optimization problem

minimize f0(z)
subject to: fi(z) ≤ 0, i = 1, . . . ,m
hi(z) = 0, i = 1, . . . , p
‖z − x‖2 ≤ R

with variable z. This means x minimizes f0 over nearby points in the feasible set. The term
‘globally optimal’ is sometimes used for ‘optimal’ to distinguish between ‘locally optimal’
and ‘optimal’.

A constraint is redundant if deleting it does not change the feasible set.

Example 2. Here are a few simple unconstrained optimization problems with variable x ∈ R,
and dom(f0) = R++:

• f0(x) = 1/x: p∗ = 0, but the optimal value is not achieved.

• f0(x) = − log x: p∗ = −∞, so this problem is unbounded below.

• f0(x) = x log x: p∗ = −1/e, achieved at the (unique) optimal point x∗ = 1/e.

Feasibility Problems
If the objective function is identically zero, the optimal value is either zero (if the feasible

set is nonempty) or ∞ (if the feasible set is empty). This is a feasibility problem, which can
be written as

find x
subject to: fi(x) ≤ 0, i = 1, . . . ,m
hi(x) = 0, i = 1, . . . , p

The feasibility problem is thus to determine whether the constraints are consistent, and
if so, find a point that satisfies them.

Standard Form
We refer to (B.4) as an optimization problem in standard form: the righthand side of the

inequality and equality constraints are zero. This can always be arranged by subtracting
any nonzero righthand side: we represent the equality constraint gi(x) = g̃i(x), for example,
as hi(x) = 0, where hi(x) = gi(x) − g̃i(x). In a similar way we express inequalities of the
form fi(x) ≥ 0 as −fi(x) ≤ 0.
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Maximization Problems

We concentrate on the minimization problem by convention: the maximization problem

maximize f0(x)
subject to: fi(x) ≤ 0, i = 1, . . . ,m
hi(x) = 0, i = 1, . . . , p

(B.5)

can be solved by minimizing the function −f0 subject to the constraints. When the maxi-
mization problem is considered, the objective is sometimes called the utility or satisfaction
level instead of the cost.

This shows that convex optimization has applications beyond minimizing convex func-
tions: for instance, it is useful also for maximizing concave functions, since the problem of
maximizing a concave function can be re–formulated equivalently as a problem of minimizing
a convex function.

Equivalent Problems

Two problems can be considered equivalent if from a solution of one, a solution of the
other is readily found, and vice versa. So it is useful to convert a problem to its equivalent
standard form, and then solve it.

There are some general transformations that yield equivalent problems, such as change
of variables, transformation of objective and constraint functions, eliminating/introducing
equality constraints, introducing slack variables, optimizing over some variables.

The following problems (all treated in detail in [8]) are, or can be transformed into,
convex optimization problems:

• least squares problems

• linear programming (LP)

• linear–fractional programming

• quadratic programming (QP)

• geometric programming (GP)

• second order cone programming (SOC)

• semidefinite programming (SDP)

• quadratically constrained quadratic programming (QCQP)

• entropy maximization

Convex Optimization Problem

A convex optimization problem can be written in the form

minimize f0(x)
subject to: fi(x) ≤ 0, i = 1, . . . ,m
aTi x = bi, i = 1, . . . , p

or equivalently
minimize f0(x)
subject to: fi(x) ≤ 0, i = 1, . . . ,m
Ax = b

where f0, f1, . . . , fm are convex functions and equality constraints are affine.
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Remark 6. An important property is that the feasible set of a convex optimization problem
is convex, since it is the intersection of the domain of the problem D =

⋂m
i=0 dom(fi), which

is a convex set, with m (convex) sublevel sets {x|fi(x) ≤ 0} and p hyperplanes {x|aTi x = bi}.
We can assume without loss of generality that ai 6= 0: if ai = 0 and bi = 0 for some i, then
the ith equality constraint can be deleted; if ai = 0 and bi 6= 0, the ith equality constraint is
inconsistent, and the problem is unfeasible.

Thus, in a convex optimization problem, we minimize a convex objective function over
a convex set.

Another fundamental property of convex optimization problems is that any locally opti-
mal point is also (globally) optimal.

Optimality criteria can be found for differentiable f0, based upon ∇f0.
Such results are described in [8], along with a more exhaustive treatment of the subject

(involving the separating hyperplane theorem, the supporting hyperplane theorem, Farkas’
lemma, duality theory, applications, methods and algorithms of resolution).

Software
The solution of convex optimization problems is found numerically and many software

packages have been developed for this purpose, such as CVX. CVX uses the convex optimization
solvers SeDuMi and SDPT3, all compatible with MATLAB environment (see [7]). They solve
convex optimization problems via interior–point methods (developed by Nemirovski and
Nesterov, see [8]).


