The Logic Programming Paradigm: A Tutorial

Krzysztof R. Apt
CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
and
University of Amsterdam

January 25, 2000

1 Introduction

Logic programming (LP in short) is a simple yet powerful formalism suitable for computing
and for knowledge representation. It forms a formal basis for Prolog and for constraint
logic programming. More recent applications of logic programming involve representation
of various forms of reasoning and a computational approach to learning. The aim of this
chapter is to provide a simple introduction to Prolog via the logic programming.

The logic programming paradigm substantially differs from other programming para-
digms. The reason for it is that it has its roots in automated theorem proving, from which
it borrowed the notion of a deduction. What is new is that in the process of deduction
some values are computed. When stripped to the bare essentials, this paradigm can be
summarized by the following three features:

e values are assigned to variables by means of automatically generated substitutions,
called most general unifiers,

e the control is provided by a single mechanism: automatic backtracking,

e computing takes place over the domain of all terms over some alphabet.

Even such a brief summary shows both the strength and weakness of the logic pro-
gramming paradigm. Its strength lies in an enormous simplicity and conciseness; its
weakness has to do with the restrictions to one control mechanism and one data type.

So this framework has to be modified and enriched to tailor this paradigm to the
customary needs of computing, for example by providing the data type of integers with
the customary arithmetic operations. This can be done and in fact Prolog and constraint
logic programming languages are examples of such a customization of this framework. In
what follows we discuss first the logic programming framework and then explain how it
can be modified to take into account a computationally meaningful subset of Prolog that
deals with arithmetic.

2 Syntax

Syntactic conventions always play an important role in the discussion of any programming
paradigm and logic programming is no exception in this matter. In this section we discuss
both the syntax of LP and of Prolog.

2.1 Logic Programming Syntax

We begin by introducing an alphabet that consists of the following disjoint classes of
symbols:

e variables, denoted by x,y, z, ... possibly with subscripts,
e function symbols,

e parentheses, which are: (‘and),

e comma, that is: , .

We also postulate that each function symbol has a fixed arity, that is the number of
arguments associated with it. 0-ary function symbols are called

e constants, and are denoted by a,b,c,d,

We denote function symbols of positive arity by f, g, h,
Finally, terms are defined inductively as follows:

e a variable is a term,
e if f is an n-ary function symbol and t1, ..., 1, are terms, then f(¢,...,%,) is a term.

In particular every constant is a term. Terms are denoted by s,%,u,w,.... A term with
no variables is called ground. We now add to the alphabet

e relation symbols denoted by p,q,r, ...,
e reversed implication, that is: <.

As in the case of function symbols, we assume that each relation symbol has a fixed
arity associated with it. When the arity is 0, the relation symbol is usually called a
propositional symbol.

We now define atoms, queries, clauses and programs as follows:

e if p is an n-ary relation symbol and ¢4, ..., t, are terms then p(¢1,...,t,) is an atom,
e a query is a finite sequence of atoms,

e a clause is a construct of the form H < B, where H is an atom and B is a query;
H is called its head and B its body,

e a program is a finite set of clauses.

We denote atoms by A, B,C, H, ..., queries by @, A, B, C, clauses by ¢, and pro-
grams by P, all possibly with subscripts. By an expression we mean any syntactic entity
mentioned so far, e.g., a term, atom, clause or a program.

The empty query is denoted by O. It stands for the empty conjunction, so it is
considered true. When B is empty, H < B is written H < and is called a unit clause.
By the definition of a relation symbol p in a given program P we mean the set of all
clauses of P which use p in their heads.

In mathematical logic it is customary to write H «— Ay,..., A, as Ay A ... N A, — H.
The use of reversed implication is motivated by the procedural interpretation according
to which, given the atom p(s), the clause p(s) < Ai,..., A, is viewed as a part of the
definition of the relation p.

We adopt here a fixed universal language in which there are infinitely many variables,
and in which in each arity there are infinitely many function symbols and relation symbols,
and assume that all considered queries and programs are written in this universal language.
This choice sounds perhaps artificial but it is quite natural if one studies Prolog programs.
Indeed, any Prolog manual defines such a universal language in which arbitrary queries
and programs can be written. In fact, even in the case of one fixed program arbitrary
queries can be posed and in these queries arbitrary constants, function symbols and
relation symbols can appear.

2.2 Prolog Syntax

Syntax of Prolog differs in a number of small but important aspects from that of logic
programming. All programs presented here are legal Prolog programs so it is perhaps an
appropriate moment to discuss these differences.

First, variables are denoted by strings starting with an upper case letter or “” (un-
derscore) For example, Xs is a variable. In particular, Prolog allows so-called anonymous
variables, written as “_” (underscore). These variables have a special interpretation, be-
cause each occurrence of “_” in a query or in a clause is interpreted as a different variable.
That is why we talk about anonymous variables and not about the anonymous variable.
Thus by definition each anonymous variable occurs in a query or a clause only once.

Anonymous variables form a simple and elegant device and their use increases the
readability of programs in a remarkable way. Modern versions of Prolog, like SICStus
Prolog (see Carlsson & Widén (1993)) or ECLPS® (see A. Aggoun et al. (1995)) encourage
the use of anonymous variables by issuing a warning if a non-anonymous variable is
encountered that occurs only once in a clause.

Strings starting with a lower-case letter are reserved for the names of function or
relation symbols. For example, £ stands for a constant, function or relation symbol.

Another, regrettable, terminological difference between logic programming and Prolog
is that the word “atom” has a completely different meaning in the context of Prolog.
Namely, in Prolog, an atom denotes any non-numeric constant. In the sequel only the
logic programming meaning of “atom” will be used.

Next, a Prolog program is viewed as a sequence and not as a set of clauses. Finally,
the symbol “%” indicates the beginning of a comment line.

In what follows we adhere to Prolog’s notation while presenting Prolog programs but
when discussing semantics of programs we shift to the logic programming notation. This
will not cause confusion because no entities within logic programs are denoted by upper
case letters.

In contrast to first-order logic, in Prolog the same name can be used for function
or relation symbols of different arity. Even more, the same name with the same arity
can be used both for function symbols and for relation symbols. This facility is called
ambivalent syntaz. A function or a relation symbol f of arity n is then referred to as f/n.
So in a Prolog program we can use both a relation symbol p/2 and function symbols p/1
and p/2 and build syntactically legal terms or atoms like p(p(a,b),c,p(X)). In Prolog
terminology relation symbol is synonymous with predicate.

In the presence of ambivalent syntax the distinction between function symbols and
relation symbols and, consequently, between terms and atoms, disappears but in the
context of queries and clauses it is clear which symbol refers to which syntactic category.
The ambivalent syntax facility allows us to use the same name for naturally related
function or relation symbols.

More importantly, ambivalent syntax together with Prolog’s facility to declare binary
function and relation symbols as infix operators, allows us to pass queries, clauses and
programs as arguments. This facilitates meta-programming, that is, writing programs
that use other programs as data.

Finally, in Prolog “:-" is used instead of “ <7 (“<-” would have been a better choice),
each query and clause ends with the period “.” and in the unit clauses “:-" is omitted.
Unit clauses are called facts and non-unit clauses are called rules. Of course, queries and
clauses can be broken over several lines.

Prolog has several (around one hundred) of built-in relations, so relations that are
internally defined. The clauses, the heads of which refer to these built-in relations, are
ignored. This ensures that the built-in relations cannot be redefined. Thus one can rely
on their prescribed meaning. In more modern versions of Prolog, like SICStus Prolog and
ECL’PS®, a warning is issued in case such an attempt at redefining a built-in relation is
encountered.

2.3 Prolog: How to Run it

Even though we did not yet explain how computing in Prolog takes place, it is useful to
get an idea how one interacts with a Prolog system. For a more complete description the
reader is referred to a language manual. The interaction starts by typing sicstus for
SICStus Prolog or eclipse for the ECL'PS® system. There are some small differences in
interaction with these two systems which we shall disregard. The SICStus Prolog system
replies by the prompt “| ?-” while the prompt of the ECL'PS® system is “[eclipse
1]1:”7. Now the program can be read in by typing [file-name] followed by the period
“”. Assuming that the program is syntactically correct, the system replies with the
answer “yes” followed by the prompt. Now a query to the program can be submitted, by
typing it with the period “.” at its end.

The idea is that the system evaluates the query w.r.t. the program read and reports
an answer. The system replies are of two forms. If the query succeeds, an answer is

father_of (abraham, isaac) .
father_of (haran,lot).
father_of (haran,milcah).
father_of (haran,yiscah) .
father_of (terach,abraham) .
father_of (terach,haran).
father_of (terach,nachor) .

female(milcah) .
female(sarah) .
female(yiscah).

male (abraham) .
male(haran) .
male(isaac).
male(lot) .
male(nachor) .
male(terach) .

mother_of (sarah,isaac).
daughter_of (X,Y) :- father_of(Y,X), female(X).

son_of (X,Y) :- father_of(Y,X), male(X).

Figure 1: The BIBLICAL FAMILY program

printed followed by “yes”. The answer shows, informally, for what values of the variables
the query becomes true. (A precise definition will be given in the next section). At this
point typing the return key terminates the computation, whereas typing “;” (followed by
the return key for the SICStus Prolog) is interpreted as the request to produce the next
answer. If the query fails, or if a request to produce the next answer fails, the answer
“no” is printed.

Below, we use queries both to find one answer and to find all answers. Finally, typing
“halt.” finishes the interaction with the system.

2.4 First Example

As a first example of a Prolog program consider the program given in Figure 1 and taken
from Sterling & Shapiro (1986) (in fact ftp-ed from ftp.cwru.edu, directory ArtOfProlog).

Example .1 Biblical family relationships.
Here the relation father_of (X,Y) is to be read “X is the father of Y’ and similarly
for son_of (X, Y), so the last rule should be read as “X is a son of Y if Y is the father of

X and X is a male”, and analogously for the other facts and rules.
Even though we still need to explain how computing in Prolog takes place, it is useful
to get an idea how this program can be used. So first of all, it can used for testing:

[eclipse 2]: father_of (haran,lot).

yes.
[eclipse 3]: mother_of (haran,lot).

no (more) solution.

Next, it can be used to compute one or more solutions, like in this query that asks for all
sons of terach:

[eclipse 4]: son_of(X,terach).

X = abraham More? ()
X = haran More? (;)
X = nachor

yes

“More? (;)” is ECL'PS® prompt for requesting more solutions.
Further, this program can be used to compute answers to more complex queries like
this one which asks which of the sons of terach are fathers themselves:

[eclipse 5]: son_of (X, terach), father_of(X,_).

X = abraham More? (;)
X = haran More? (;)
X = haran More? (;)
X = haran More? (;)

no (more) solution.

We shall explain later why repeated answers are produced here. Note that the value of

w»

the anonymous variable “_” is not printed. O

2.5 Lists in Prolog

A data structure that supports use of sequences with a single operation on them — an
insertion of an element at the front — is usually called a list. Lists form a fundamental

/

| [--]\[”]
b/ \[-I-]
N\

Figure 2: A list

[]

data structure and in Prolog special, built-in notational facilities for them are available.
In particular, the pair consisting of a constant [] and a binary function symbol [.[..]
is used to define them. Formally, lists in Prolog are defined inductively as follows:

e [] is a list, called the empty list.

e if t is a list, then for any term h also [h | t] is a list; h is called its head and t is
called its tasl.

For example, [s(0) | [1] and [0 [X]|[1]] are lists, whereas [0|s(0)] is not, because
s(0) is not a list. Note that the elements of a list need not to be ground. The tree
depicted in Figure 2 represents the list [al [bl| [c|[11]].

The list notation is not very readable and even short lists become difficult to parse.
So the following shorthands are carried out internally in Prolog for n > 1:

e [so|[s1, -, sn|t]] abbreviates to [so, s1, -.-, Sn|t],
e [so,s1,...,sn|[|] abbreviates to [so, s1, ..., Sp.

Thus for example, [a| [blc]] abbreviates to [a,blc], and the depicted list [a| [b,c| [1]]
abbreviates to a more readable form, namely [a,b,c].

The following interaction with a Prolog system shows that these simplifications are
also carried out internally.

leclipse 1]1: X =[a | [b | c]].

X = [a, blc]
yes.
[eclipse 2]: [a,blc] = [a | [b | cI].

yes.
[eclipse 3]: X =T[a | [b, ¢ | [11].

X = [a, b, c]
yes.

% app(Xs, Ys, Zs) :- Zs is the result of concatenating the lists Xs and Vs.
app([], Ys, Ys).
app([X | Xsl, Ys, [X | Zs]) :- app(Xs, Ys, Zs).

Figure 3: The APPEND Program

[eclipse 4]: [a,b,c] = [a | [b, ¢ | [11].
yes.

To enhance the readability, one often uses in Prolog programs the names ending with
“s” to denote variables which are meant to be instantiated to lists.

Example .2 APPEND program.

To illustrate the use of lists we now discuss the perhaps most often cited Prolog
program. This program concatenates two lists. The inductive definition of concatenation
is as follows:

e the concatenation of the empty list [1 and the list ys yields the list ys,

e if the concatenation of the lists xs and ys equals zs, the concatenation of the lists
[x | xs] and ys equals [x | zs].

This translates into the program given in Figure 3.
APPEND can be used not only to concatenate the lists:

[eclipse 2]: app([mon, wed], [fri, sun], Zs).
Zs = [mon, wed, fri, sun] More? (;)

no (more) solution.

but also to split a list in all possible ways:

[eclipse 3]: app(Xs, Ys, [mon, wed, fri, sun]).

Xs (]
Ys = [mon, wed, fri, sun] More? (;)

Xs = [monl]
Ys = [wed, fri, sun] More? (;)

Xs = [mon, wed]
Ys = [fri, sun] More? (;)

Xs = [mon, wed, fri]
Ys = [sun] More? (;)
Xs = [mon, wed, fri, sun]
Ys = [] More? (;)

no (more) solution.

3 The Computation Process

Let us turn now our attention to the most crucial aspect, that of the computational
interpretation of logic programs. From the computational point of view a query Ay, ..., A,
should be viewed as a request for finding values for the variables z1, ..., xx such that the
conjunction A; A ... A A, becomes true.

In turn, a clause H < By, ..., B, should be interpreted as a statement “to prove H
prove each of B;’s”. The reverse implication can thus be read as “if” and “” as “and”.
The order in which these B;’ are to be proved is of importance and will be discussed
below.

In logic programming variables represent unknown values, very much like in mathe-
matics. This is in contrast to imperative programming languages, such as Pascal or C, in
which variables represent known but varying quantities.

The values assigned to variables are terms. These values are assigned by means of
substitutions that we now explain.

3.1 Substitutions and Most General Unifiers

Consider a fixed alphabet and consequently a fixed set of terms. A substitution is a finite
mapping from variables to terms which assigns to each variable z in its domain a term ¢
different from z. We write it as

{z1/t1,. .., xp/tn}

where
® 11,...,x, are different variables,
® 11,...,1, are terms,

o forie [l,n], z; #t.

Informally, it is to be read: the variables z1, ..., x, are simultaneously replaced by ti,...,1t,,
respectively. When n = 0, the mapping becomes the empty mapping. The resulting sub-
stitution is then called empty substitution and is denoted by e.

A substitution # that is a 1-1 and onto mapping from its domain to itself, is called a
renaming. For example {x/y,y/z, z/x} is a renaming while {z/y,y/z, z/y} not.

An expression E#f is called an instance of FE and if # is a renaming, then Ff is called a
variant of E. For example p(z, z) is a variant of p(z,y) because p(z,y){z/y,y/z,z/x} =
p(z,z) and {x/y,y/z,z/x} is a renaming.

Further, given a substitution 0 := {z1/t1,...,x,/t,}, we denote by Dom/(6) the set of
variables {z1,...,z,} and by Range(6) the set of terms {¢y,...,t,}.

We now define the result of applying a substitution 0 to an expression E, written as
E0, as the result of the simultaneous replacement of each occurrence in E of a variable
from Dom(@) by the corresponding term in Range(6).

Example .3 Consider a language allowing us to build arithmetic expressions in pre-
fix form. It contains two binary function symbols, “+” and “” and infinitely many
constants: 0, 1, Then s := +(-(z,7),-(4,y)) is a term and for the substitution
0 :={z/0,y/ + (2,2)} we have

s0 = +(-(0,7), -(4,+(2,2))).

Next, we define the composition of two substitutions.

Definition .4 Let # and n be substitutions. Their composition, written as 67, is defined
as follows. We put for a variable z

(0n)(z) := (z0)n.

In other words, #n assigns to a variable x the term obtained by applying the substitution
n to the term zf. Clearly, for x & Dom(0) U Dom(n) we have (6n)(x) = z, so 6n, limited
to the variables on which it is not an identity, is a finite mapping from variables to terms,
i.e. On uniquely identifies a substitution. O

For example, for § = {u/z,2/3,y/f(x,1)} and n = {z/4, z/u} we can check that
On ={x/3,y/f(4,1), z/u}.

Next, we introduce the following notion.

Definition .5 Let # and 7 be substitutions. We say that 8 is more general than 7 if for
some substitution n we have 7 = 6. O

For example, taking the above substitutions we note that {u/z,z/3,y/f(z,1)} is
more general than {z/3,y/f(4,1), z/u}, since we have {u/z,z/3,y/f(x,1)}{z/4, z/u} =
{2/3.y/F(4,1), 2 u}.

Also, the substitution {z/y} is more general than {z/a,y/a} since {z/y}{y/a} =
{z/a,y/a}.

Note that # is more general than 7 if 7 can be obtained from # by applying to it some
substitution 7. Since n can be chosen to be the empty substitution €, we conclude that
every substitution is more general than itself.

We conclude this string of definitions by introducing the crucial notion of a most
general unifier.

10

Definition .6 Consider a pair of atoms A and B. A substitution @ is called a unifier of
A and B if A = Bf. If a unifier 6 of A and B exists, then we say that A and B are
unifiable.

A unifier 6 of A and B is called a most general unifier (in short mgu) of A and B if it
is more general than all unifiers of A and B. O

Intuitively, an mgu is a substitution which makes two atoms equal but which does it
in a “most general way”, without unnecessary bindings. So # is an mgu of A and B iff
every unifier of A and B is of the form v for some substitution 7.

Consider some examples.

Example .7

(i) Consider the atoms p(g(z,a),z) and p(y,b). Then {z/c,y/g(c,a),z/b} is one of
their unifiers and so is {y/g(x,a),z/b} which is more general than the first one, since
{z/c,y/9(c,a), 2/b} = {y/g(x, a), z/bH{z/c}.

Actually, one can show that {y/g(z,a), z/b} is an mgu of p(g(z, a), z) and p(y, b).

(ii) Consider the atoms p(g(z,a),z) and p(g(z,b),b). They have no unifier as for no
substitution 6 we have afl = bf.

(iii) Finally consider the atoms p(z,a) and p(f(z),a). They have no unifier either because
for any substitution € the term z6 is a proper substring of f(z)#. O

The problem of deciding whether a pair of atoms has a unifier is called the unification
problem. The following result was established by Robinson (1965).

Theorem .8 (Unification) An algorithm exists that for a given pair of atoms deter-
mines whether they are unifiable. Additionally, if yes, it produces an mgu. O

3.2 The Computation Process of Logic Programs

Unification, i.e., the process of computing most general unifiers, forms a basic mechanism
by means of which logic programs compute. The use of unification to assign values to
variables forms a distinguishing feature of logic programming and is one of the main
differences between logic programming and other programming styles. Further, these
most general unifiers are automatically generated during the computation process, so —
in contrast to the imperative programming— the assignment of values to variables takes
place implicitly.

This operational semantics of logic programs is called a procedural interpretation. It
explains how logic programs compute. While Prolog differs from logic programming, it
can be naturally introduced by defining the computation mechanism of logic programs
first and then by explaining the differences.

This approach has the additional advantage of clarifying certain design decisions (like
the choice of the search mechanism) and of shedding light on the resulting dangers (like
the possibility of divergence).

To define the procedural interpretation we now consider pairs of the form (@ ; 0),
where () is a query with, if it is non-empty, one atom selected in it and where 6 is a
substitution.

11

Intuitively, (@ ; 6) denotes the query @ in the “environment” 6, that is, the variables
of @) should be “interpreted” as in . We do not identify (Q ; 0) with Q@ for technical
reasons we prefer not to elaborate upon. It suffices to note that the former contains more
information than the latter: QQf can be computed from (@ ; €) but not vice versa. The
role of the selected atom will be clear in a moment.

Consider a program P. We now define the “ —” relation

Q; 0)—(Q"; 0

as follows. Consider a pair (A, B,C ; #) with B the selected atom and a clause ¢ from
P. Let H < B be a variant of ¢ variable disjoint with (A, B, C ;), that is such that

Var(H + B) N (Var(A, B,C) U Var(9)) = 0,

where Var(E) denotes the set of variables occurring in an expression £ and Var(f) the
set, of all variables used in 6.

Suppose now that Bf and H unify and let n be an mgu of Bf and H. Then we call
the pair (A, B, C ; 6n) an SLD-resolvent of (A, B,C ;) and c and write

(A.B,C; 0) > (A,B,C; 0).

(The origin of the “SLD” abbreviation will be explained at the end of the chapter.) So
(A,B,C; 0n) is obtained from (A, B,C ;) by

e replacing B by B,
e applying 7 to 6.

By repeating the “ — " steps we obtain derivations that are tantamount to computa-
tions. More precisely, consider a program P and a query). By an SLD-derivation of Q)
w.r.t. P we mean a maximal sequence of pairs (Q; ; 6;), where i > 0, such that for all
j >0 we have (Q; ; 0;) = (Qj41; j+1)-

An SLD-derivation is called successful if it is finite and the query in the last pair
is empty. An SLD-derivation is called failed if it is finite, the query in the last pair is
non-empty and the last pair has no “ —” successor for all clauses ¢ from P.

If

(@; € —="(0; 1),
where “—*7” is the reflexive, transitive closure of “—" (i.e., “—*" is the outcome of
iterating “ — " zero or more times), then we call Q7 a computed instance of QQ w.r.t. P
and the restriction of 7 to the variables occuring in @), a computed answer substitution for
Q w.r.t. P.
Intuitively, (@ ; €) —* (O ; 7) means that the query @ has been proved with the
answer 7.

12

3.3 The Computation Process of Prolog

In Prolog always the first atom from the left is selected. The resulting SLD-derivations
starting in a pair (@) ; €) can be arranged in a tree, that we call computation tree, in which
the direct descendants of every node are ordered according to the order the clauses used
appear in the program. More precisely, in a computation tree

e the branches are SLD-derivations starting in (@ ; €) such that in each non-empty
query the leftmost atom is selected.

e every node (@' ; €') has exactly one direct descendant for every clause ¢ from P
that can be used to form a successor in the “ — 7 relation.

In the computation tree the backtracking search for computed answer substitutions
takes place. If in this search a leaf with the empty query is encountered, then the associ-
ated computed answer substitution is printed as a system of equations and the search is
suspended. The request for more solutions (“;” of Subsection 2.3) results in a resumption
of the search from the last visited leaf until a new leaf with the empty query is visited.
If the tree has no (respectively, no more) leaves with the empty query, then failure is
reported, by printing the answer “no” (respectively, ¢ ‘no (more) solution’’).

Figure 4 depicts the backtracking search over such a tree.

A

SUCCESS

, O
fail Success

Figure 4: Backtracking over a computation tree

The reader can now manually simulate (though it is a tedious exercise) the results
of the Prolog computations for the queries considered in Subsections 2.4 and 2.5. In
particular, the query son_of (X, terach), father_of(X,_) succeeds in three possible
ways because the direct descendant

(father of(haran,) ; {X/haran})

of
(son_of (X, terach), father_of(X,_) ; ¢)

13

succeeds in three possible ways, since terach has three sons. Prolog reports each success
separately disregarding the possibility that some of the answers are identical.

3.4 Power of Backtracking

The power of Prolog lies in automatic support for backtracking. To illustrate its use we
consider Example 2.11 of the Principles of Constraint Programming Lecture Notes. We
provide here a solution in Prolog to the problem of finding all legal labellings of the cube
scene given there in Figure 2.7.

The program CUBE given in Figure 5 is practically a verbatim formalization of the
constraints used. The query cube(AC, AE, AB, BF, BD, CD, DG, EF, FG) computes
all legal labellings of the cube. In total there are 4 solutions. The first one, listed below,
corresponds to the one given in Figure 2.10 of the lecture notes.

leclipse 3]: cube(AC, AE, AB, BF, BD, CD, DG, EF, FG).

AC =
AE =
AB =
BF =
BD =
Ch =
DG =
EF =
FG =

R R H -+ 4+ + R

4 Arithmetic in Prolog

4.1 Arithmetic Operators

Prolog provides integers and floating point numbers as built-in data structures. So we
have infinitely many integer constants:

0, -1, 1, =2, 2, ...
and infinitely many floating point numbers, such as
0.0, —1.72, 3.141, —2.0, ...

Floating point numbers are the computer representable “reals” and the number of digits
allowed after the obligatory decimal point “.” depends on the implementation. In what
follows by a number we mean either an integer constant or a floating point number.

Prolog provides various operations on integers and floating point numbers. These
operations include the following binary operations:

14

% the L constraint
1(r,1).
1(1,r).
1(+,r).
1(1,+).
1(-,1).
1(r,-).

% the fork constraint
fork(+,+,+).
fork(-,-,-).
fork(1l,r,-).
fork(-,1,r).
fork(r,-,1).

% the T constraint
t(r,1,r).
t(r,1,1).
t(r,1,+).
t(r,1,-).

% the arrow constraint
arrow(l,r,+).
arrow(+,+,-).
arrow(—,-,+).

% the edge constraint
edge(+,+) .
edge(-,-).
edge(r,1).
edge(1l,r).

% the cube relation computes legal labelling of the cube
% scene given in Figure 2.7.
cube (AC, AE, AB, BF, BD, CD, DG, EF, FG) :-
arrow(AC,AE,AB), fork(BA,BF,BD), 1(CA,CD),
arrow(DG,DC,DB), 1(EF,EA), arrow(FE,FG,FB),
1(GD,GF),
edge (AB,BA), edge(AC,CA), edge(CD,DC),
edge (BD,DB), edge(AE,EA), edge(EF,FE),
edge (BF,FB), edge(FG,GF), edge(DG,GD).

Figure 5: The CUBE program

15

e addition, written as +,

e subtraction, written as -,

e multiplication, written as *,

e integer division, written as //,

e remainder of the integer division, written as mod,
and the following unary operations:

e negation of a natural number, written as -,

e absolute value, written as abs.

We call the above operations arithmetic operators.

According to the usual notational convention of logic programming and Prolog, the
relation and function symbols are written in a prefiz form, that is in front of the arguments.
In contrast, in accordance with the usage in arithmetic, the binary arithmetic operators
are written in the infix form, that is between the arguments, while the unary arithmetic
operators are written in the prefix form. Moreover, negation of a natural number can be
written in the bracketless prefiz form, that is without brackets surrounding its argument.

Recall that the integer division is defined as the integer part of the usual division
outcome and given two integers x and y such that y # 0, x mod y is defined as x -
yx(x//y).

The arithmetic operators and the above introduced set of numbers uniquely determine
a set of terms. We call terms defined in this language arithmetic expressions and introduce
the abbreviation gae for ground arithmetic expressions.

4.2 Arithmetic Comparison Relations

With each gae we can uniquely associate its value, computed in the expected way. Prolog
allows us to compare the values of gaes by means of the following six arithmetic comparison
relations (in short comparison relations):

e “less than”, written as <,

e “less than or equal”, written as =<,

e “equality”, written as =:=,

e “inequality”, written as =\=,

e “greater than or equal”, written as >=,

e “greater than”, written as >.

16

The equality relation =:= should not be confused with the “is unifiable with” relation
=/2 that in Prolog denotes the “is unifiable” relation (internally defined by the single
clause X = X. .)

The comparison relations work on gaes and produce the outcome expected to anyone
familiar with the basics of arithmetic. So for instance, > compares the values of two gaes
and succeeds if the value of the first argument is larger than the value of the second and
fails otherwise. Thus, for example

[eclipse 7]: 5%2 > 3+4.
yes

[eclipse 8]: 7 > 3+4.
no (more) solution.

However, when one of the arguments of the comparison relations is not a gae, the
computation ends in an error. For example, we have

[eclipse 9]: [] < 5.
undefined arithmetic expression _59 is [] in module eclipse

Such type of errors are called run-time errors, because they happen during the program
execution. As a simple example of the use of the comparison relations consider the
program in Figure 6 that checks whether a list is an ordered one.

% ordered(Xs) :— Xs is an =<-ordered list of numbers
ordered([]).

ordered([_]).

ordered([X, Y | Xs]) :- X =<Y, ordered([Y| Xs]).

Figure 6: The ORDERED Program

We now have

[eclipse 2]: ordered([1,1,2,3]).

yes.
but also

[eclipse 3]: ordered([1,X,1]).
instantiation fault in 1 =< X

Here a run-time took place here because at certain stage the comparison relation =< was
applied to an argument that is not a number.

17

Quicksort

One of the most fundamental operations on the lists is sorting. The task is to sort a
list of integers. We present here Prolog’s version of the quicksort procedure proposed
by Hoare (1962). According to this sorting procedure, a list is first partitioned into two
sublists using an element X of it, one consisting of elements smaller than X and the other
consisting of elements larger or equal than X. Then each sublist is quicksorted and the
resulting sorted sublists are appended with the element X put in the middle. This can be
expressed in Prolog by means of the program in Figure 7, where X is chosen to be the first
element of the given list:

% gqs(Xs, Ys) :- Ys is an ordered permutation of the list Xs.
gs(l1, [1).
gs([X | Xs], Ys) :-

part(X, Xs, Littles, Bigs),

gs(Littles, Ls),

gs(Bigs, Bs),

app(Ls, [X | Bs], Ys).

% part(X, Xs, Ls, Bs) :- Ls is a list of elements of Xs which are < X,
% Bs is a list of elements of Xs which are >= X.
part(_, [1, 01, [1).

part(X, [Y | Xs], [Y | Ls], Bs) :- X > Y, part(X, Xs, Ls, Bs).

part(X, [Y | Xs], Ls, [Y | Bs]) :- X =< Y, part(X, Xs, Ls, Bs).

augmented by the APPEND program.

Figure 7: The QUICKSORT Program

For example:

[eclipse 4]: qgs([7,9,8,1,5], Ys).
Ys = [1, 5, 7, 8, 9] More? (;)

no (more) solution.
However, we also have

[eclipse 5]: qs([3,X,0,1], Ys).
instantiation fault in 3 > X

because during the computation the comparison relation > is applied to non-gae argu-
ments.

18

4.3 Evaluation of Arithmetic Expressions

So far we have presented programs that use ground arithmetic expressions, but have
not yet presented any means of evaluating them. For example, no facilities have been
introduced so far to evaluate 3+4. All we can do at this stage is to check that the

outcome is 7 by using the comparison relation =:= and the query 7 =:= 3+4. But using
the comparison relations it is not possible to assign the value of 3+4, that is 7, to a
variable, say X. Note that the query X =:= 3+4 ends in an error.

To overcome this problem the arithmetic evaluator is/2 is incorporated into Prolog.
is/2 is defined internally as an infix operator with the following declaration in the case
of SICStus Prolog and ECLPS¢:

:— op(700, xfx, is).

Consider the call s is t. Then t has to be a ground arithmetic expression (gae). The
call of s is t results in the unification of the value of the gae t with s. If t is not a gae
then a run-time error arises.

Thus, the following possibilities arise.

e tis a gae.

Let val(t) be the value of t.

— 8 is identical to val(t).

Then the arithmetic evaluator succeeds and the empty computed answer sub-
stitution is produced. For example,

[eclipse 11]: 7 is 3+4.

yes

— s is a variable.

Then the arithmetic evaluator also succeeds and the computed answer substi-
tution {s/val(t)} is produced. For example,

[eclipse 12]: X is 3+4.
X=17
yes.

— s is not identical to val(t) and is not a variable.

Then the arithmetic evaluator fails if s is a number and otherwise a run-time
error arises. For example,

[eclipse 13]: 8 is 3+4.
no (more) solution.

[eclipse 14]: 3+4 is 3+4.
number expected in +(3, 4, 3 + 4)

19

e t is not a gae.

Then a run-time error arises. For example,

[eclipse 15]: X is Y+1.
instantiation fault in +(Y, 1, X)

As an example of the use of an arithmetic evaluator consider the program LENGTH that
computer the length of a list. (Actually length is a built-in of Prolog.)

% length(Xs, N) :- N is the length of the list Xs.
length([1, 0).
length([_ | Ts], N) :- length(Ts, M), N is M+1.

Figure 8: The LENGTH program

In turn, in Figure 9 we listed a more involved program that by means of backtracking
generates all the integer values in a given range.

% between(X, Y, Z) :- X, Y are gaes and Z is an integer between
% X and Y inclusive.

between(X, Y, Z) :- X =< Y, Z is X.

between(X, Y, Z) :- X <Y, X1 is X+1, between(X1, Y, Z).

Figure 9: The BETWEEN program

For example:

[eclipse 17]: between(10, 14, Z).

Z =10 More? (;)
Z =11 More? (;)
Z =12 More? (;)
Z =13 More? (;)
Z =14 More? (;)

no (more) solution.

Note the use of a local variable X1 in the arithmetic evaluator X1 is X+1 to compute
the increment of X. Such use of a local variable is typical for computing using integers in
Prolog.

20

4.4 Concluding Remarks

We introduced in this section the comparison relations on ground arithmetic expressions
and the arithmetic evaluator is. Let us now try to assess these Prolog features.

4.4.1 Comparison Relations

Because of the possibility of errors, the use of arithmetic expressions in Prolog is quite
cumbersome and can easily lead to problems. Suppose for example that we wish to
consider natural numbers in the range [1,100]. One way to do this is by listing all the
relevant facts, so small num(1), small num(2), etc. This is hardly a meaningful way of
programming. It is more natural to define what constitutes a desired number by means
of arithmetic expressions. Thus, we naturally define

small_num(X) :- 1 =< X, X =< 100.

Unfortunately, these two definitions are not equivalent. For example, with the first
definition of small num the query small num(X), X < 10 produces all numbers smaller
than 10 whereas with the second definition an error arises, because of the improper use
of the built-in relation =<. In fact, one needs to use here the more complicated program
BETWEEN, defined in the previous subsection.

As another example of the complications suppose that we wish to produce all pairs of
natural numbers X, Y such that X +Y = 3. Both queries X >= 0, Y >= 0, X + Y =:=
3and X + Y =:= 3, X >= 0, Y >= 0 are incorrect and we actually need to use a more
complicated and artificial query between(0,3,X), Y is 3-X.

4.4.2 Arithmetic Evaluator

Ground arithmetic expressions can be evaluated only using the arithmetic evaluator is.
However, its use can also easily cause a run-time error. Moreover, the appropriate use of
is in specific programs, like BETWEEN, is quite subtle because it relies on the introduction of
fresh variables for holding intermediate results. This proliferation of local variables makes
an understanding of such programs more difficult. In imperative programming languages
the reuse of the same variables in computation can be seen in such circumstances as an
advantage. In functional programming the corresponding functions can be programmed
in a much more natural way.

We conclude that arithmetic facilities in Prolog are quite subtle and require good
insights to be properly used.

5 Operators (Optional)

The use of the infix and bracketless prefix form for arithmetic operators leads to well-
known ambiguities. For example, 4+3%5 could be interpreted either as (4+3) *5 or 4+ (3%5)
and -3+4 could be interpreted either as (-3)+4 or -(3+4). Further, 12//4//3 could be
interpreted either as (12//4)//3 or 12//(4//3), etc.

21

Such ambiguities are resolved in Prolog in a way that also allows for the presence of
other function symbols written in the infix or bracketless prefix form. To this end Prolog
provides a means to declare an arbitrary function symbol as an infix binary symbol or
as a bracketless prefix unary symbol, with a fixed priority that determines its binding
power and a certain mnemonics that implies some (or no) form of associativity. Function
symbols that are declared in such a way are called operators.

The priority and mnemonics information allows us to associate with each term written
using the infix or bracketless prefix notation, a unique term written in the customary prefix
notation, that serves as the interpretation of the original one.

In SICStus Prolog and ECL‘PS® priority is a natural number between 1 and 1200
inclusive. Informally, the higher the priority the lower the binding power.

There are seven mnemonics. We list them together with (if any) the associativity
information each of them implies. For the binary function symbols these are

e xfx (no associativity),
e xfy (right associativity),

e yfx (left associativity),

and for the unary function symbols these are
o fx,
* fy,

o xf,

o yf.

The mnemonics yfy is not allowed, as it would imply both left and right associativity
and would thus permit the interpretation of a term of the form s £ t £ u both as (s £
t) f uand s £ (t £ u). Consequently, it would not provide a unique interpretation to
the term.

The declaration of an operator g is a statement of the form

:~ op(pr, mn, g).

written in the program before the first use of g; pr is the priority of g and mn is the
mnemonic of g.

Formally, in presence of operator declarations, terms are defined inductively as follows,
where with each term we associate a priority in the form of a natural number between 0
and 1200 inclusive and an interpretation in the sense mentioned above:

e a variable is a term with priority 0 and itself as its interpretation,

e if ¢ is a term with interpretation i(¢), then (¢) is a term with priority 0 and inter-
pretation i(¢) (that is, bracketing reduces the priority to 0),

22

e if f is an n-ary function symbol and ¢4, ..., %, are terms with respective interpreta-
tions i(t1),...,i(t,), then f(t1,...,t,) is a term with priority 0 and interpretation

f(i(tl)a e 2.(tn)):

e if f is a binary operator with priority pr and s and ¢ are terms with respective
priorities pr(s) and pr(t) and interpretations i(s) and i(t), then sft is a term with
priority pr and interpretation f(i(s),i(t)), according to the table below and subject
to the corresponding conditions:

mnemonics | conditions

xfx pr(s) < pr, pr(t) < pr
xfy pr(s) < pr, pr(t) < pr
yfx pr(s) < pr, pr(t) < pr

e if f is a unary operator with priority pr and s is a term with priority pr(s) and
interpretation i(s), then the following is a term with priority pr and interpretation
f(i(s)), according to the table below and subject to the corresponding condition:

term | mnemonics | condition

fs | fx pr(s) < pr
fs fy pr(s) <pr
sf xf pr(s) < pr
sf yf pr(s) <pr

The arithmetic operators are disambiguated by declaring them internally as follows
(the declarations are the ones used in SICStus Prolog and ECL!PS®):

:= op(500, yfx, [+, -1).
:- op(500, fx, -).

:— op(400, yfx, [x, //1).
:-= op(300, xfx, mod) .

Here a list notation is used to group together the declarations of the operators with the
same mnemonics and priority.

Returning to our original examples of possibly ambiguous arithmetic terms, we now
see that 4+3%5 is a term with priority 500 and interpretation +(4, *(3,5)), -3+4 is
a term with priority 500 and interpretation +(-(3), 4) and 12//4//3 is a term with
priority 400 and interpretation //(//(12,4), 3). In addition, note that the declaration
of negation of a natural number with the mnemonics £x implies that - - 3 is not a (legal)
term. In contrast, -(-3) is a (legal) term.

It is worthwhile mentioning that Prolog built-in operators, in particular arithmetic
operators, can also be written in the customary prefix notation. In particular, each
arithmetic expression can also be written as a term that is its interpretation in the sense
discussed above. In the case of ground arithmetic expressions both forms are equal. For
example, we have

23

[eclipse 6]: 4+3%5 =:= +(4, *(3,5)).

yes

6 Bibliographic Remarks

Use of unification for computing is due to Kowalski (1974). The definition of SLD-
derivations we used here is due to T. Nipkow (unpublished). SLD-resolution stands for
Selection rule driven Linear resolution for Definite clauses. Linearity means that each
resolvent depends only on the previous one, so that derivations become sequences. Definite
clauses are clauses in our terminology.

The elegant program CUBE given in Figure 5 is taken from By (1997). We discussed
here the subject of Prolog only very briefly. Two most often used books on Prolog are
Bratko (1986) and Sterling & Shapiro (1986). The book of Clocksin & Mellish (1984)
explains various subtle points of the language and the book of O’Keefe (1990) discusses in
depth the efficiency and pragmatics of programming in Prolog. In Apt (1997) a systematic
introduction to Prolog via logic programming is offered. Another, very concise, book on
Prolog is Clocksin (1997).

References

A. Aggoun et al. (1995), ECL'PS¢ 3.5 User Manual, Munich, Germany.
Apt, K. R. (1997), From Logic Programming to Prolog, Prentice-Hall, London, U.K.

Bratko, 1. (1986), PROLOG Programming for Artificial Intelligence, International Com-
puter Science Series, Addison-Wesley.

By, T. (1997), Line labelling by meta-programming, Technical Report CS-97-07, Univer-
sity of Sheffield.

Carlsson, M. & Widén, J. (1993), SICStus Prolog User’s Manual, P.O. Box 1263, S-164
28 Kista, Sweden.

Clocksin, W. & Mellish, C. (1984), Programming in Prolog, second edn, Springer-Verlag,
Berlin.

Clocksin, W. F. (1997), Clause and Effect, Springer-Verlag, Berlin.
Hoare, C. (1962), ‘Quicksort’, BCS Computer Journal 5(1), 10-15.

Kowalski, R. (1974), Predicate logic as a programming language, in ‘Proceedings IFTP’74’,
North-Holland, pp. 569-574.

O’Keefe, R. (1990), The Craft of Prolog, MIT Press.

24

Robinson, J. (1965), ‘A machine-oriented logic based on the resolution principle’, J. ACM
12(1), 23-41.

Sterling, L. & Shapiro, E. (1986), The Art of Prolog, MIT Press.

25

