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Recent hardware advances such as multi-core high-speed platforms allow cameras to perform multiple tasks 
whilst observing a scene: smart camera networks enable emerging applications that require adaptation to 
unforeseen conditions, changing tasks and constrained resources. 

 
The advent of smart cameras will significantly improve video analytics capabilities with the use of 
networked embedded devices for sensing, processing and communicating data and metadata. Smart camera 
networks underpin the emergence of pervasive applications such as unmanned vehicles to explore 
environments for search and rescue missions, disaster management, wildlife conservation and routine 
monitoring. Other growing uses of smart camera networks include in-home assistive technologies, 
collaborative recognition of events using networked wearable cameras, security and surveillance. Predicting 
human behavior in public spaces is also key to the vision of smart cities. 
Self-configuration of smart camera networks is necessary to yield efficient high-level understanding of and 
adaptation to dynamic scenes. In this article, we discuss recent approaches for autonomous smart camera 
network reconfiguration where camera cooperation plays a crucial role. We outline the requirements for 
self-reconfiguration, discuss existing solutions, challenges and open research issues. 

I.   WHY SELF-RECONFIGURATION? 

Smart camera networks operate in potentially unknown or poorly mapped dynamic environments, with 
limited or changing information about the relative camera location. Networks of cameras are composed of 
heterogeneous devices that may be handheld or on-board unmanned vehicles. Such devices need to adapt 
their position and their Field of View (FOV) in response to changes in tasks and in the environment. For 
example cooperation may lead to improved visual coverage and to increased accuracy in localization of the 
objects of interest by integrating multiple information sources (Figure 1). 
Smart camera network self-reconfiguration is the autonomous and cooperative search for a network state 
that optimizes certain criteria such as a predefined level of task performance or use of resources. This 
optimal state depends on the network structure and on the state of individual cameras. The optimization 
involves modifying algorithmic and hardware parameters. Algorithmic parameters include capturing and 
processing frame rates, image resolution, compression level and task definition [1][2][3]. Hardware 
parameters include the number of cameras participating in a task, their position and their individual FOV 
[4][5][6][7]. Changing the FOV involves optimizing its extrinsic parameters, such as orientation and zoom, 
and intrinsic parameters, such as iris and focus. This optimization depends on quality criteria defined over 
the captured images. Examples of quality criteria include a minimum resolution of observed targets and 
their orientation relative to the camera.  
Each smart camera coordinates with others via task-related and operational decisions. Task-related decisions 
include learning the appearance of moving targets and estimating their position, whereas operational 
decisions include information sharing across cameras to complete a specific task, such as scheduling video 
analytics procedures. Maximization of task performance in a distributed manner via autonomous and 
interacting cameras is preferred to the traditional centralized camera network paradigm. Compared to the 
centralized approach, distributed solutions may reduce the amount of bandwidth needed for communication, 
and improve reconfiguration efficiency and robustness to single points of failure. 
Robustness to failure is an important feature for smart camera networks as these networks need to cope with 
malfunctions, bandwidth limitations and time-variable network characteristics. The network structure can 
also be modified when cameras move, are turned off to save energy, and added or removed during runtime. 
For these reasons reconfiguration capabilities are required to adapt to unforeseen conditions while 
simultaneously performing a range of tasks. Such tasks cannot always be predefined and may need to be 
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Figure 1 Sample scenario for a self-reconfigurable smart camera network. Heterogeneous cameras 
cooperate to distribute video analytics tasks. Cameras adapt their FOVs and the amount and type of 
information to be shared across the network to accomplish the tasks needed to achieve the goal of the 
network. Tasks may include detection, tracking, recognition and identification. Reconfiguration selects 
cameras [4], manages FOVs [6] and assigns tasks [2]. In the scenario depicted in this figure, cameras 
on unmanned aerial vehicles (UAVs) observe wider areas and predict desirable task-dependent network 
configurations. Cameras placed on unmanned ground vehicles (UGVs) can be redirected to inspect the 
scene from more convenient viewpoints to recognize specific objects, people or body gestures. Wearable 
cameras can be finally tasked to collect high-quality target close-ups to facilitate recognition and post-
event investigation for law enforcement. 
 

updated in real time (e.g. when tracking firefighters and people fleeing a burning building while 
simultaneously monitoring the evolution of the fire itself).  
Cameras might need to allocate subtasks to other cameras in order to accomplish a particular goal (e.g. to 
track a temporarily occluded object from a different viewpoint). Procedural similarities can be found in 
control theory problems and wireless sensor networks [4]. However, concurrent task allocation is necessary 
in smart camera networks as the number of tasks may outnumber the number of cameras. Moreover, smart 
camera networks present specific challenges related to the adaptability and directionality of the FOV. 

 

II. THE FIVE PILLARS OF SELF-RECONFIGURATION 

Developing self-reconfiguration strategies for smart cameras requires modeling five interrelated elements, 
namely environment, camera, network, task and performance (Figure 2).  
The environment describes the physical space being monitored [1], which includes observation locations (or 
control points) that must always be covered by the cameras, and static and moving obstacles that might lead 
to visual occlusions. A camera to be reconfigured is defined by its physical location (calibration) and 
resources related to power consumption (battery), sensing (sensor type and FOV), computation power (CPU 
and memory) and communication capabilities.  
The network defines the connectivity among cameras, which can be described at vision and communication 
level [8]. Connectivity may change over time when considering camera mobility, time-varying numbers of 
cameras and communication bandwidth. A suitable protocol is necessary to manage communication and 
processing in the network. This protocol should consider many diverse aspects such as policies for sharing 
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Figure 2 Self-reconfiguring smart camera networks deal with five 
elements: environment, cameras, tasks, network and performance. 
Considering all these elements, smart cameras cooperate network-wide to 
find a configuration that maximizes situational awareness, which is 
achieved through the distributed and parallel execution of tasks such as 
detection, tracking and event analysis. 

the physical medium, robustness against transmission failures, energy-efficient routing of information and 
support communication among heterogeneous devices. 

Task completion needs to consider 
resource constraints such as energy and 
computation costs [2]. Appropriate load 
balancing of tasks among camera nodes 
requires task decomposition according 
to complexity and required resources. 
For example, behavior recognition may 
be decomposed into object detection, 
feature extraction and spatio-temporal 
reasoning [9]. Each sub-task can be 
then allocated and performed by a 
different smart camera.  
Finally, performance criteria quantify 
the success of a reconfiguration 
strategy. Typical performance measures 
consider the accuracy and the 
timeliness of task completion, the 
amount of energy used, the 
communication costs, and the lifetime 
of each camera and of the network. 
In the next sections we outline how 

these intertwined elements are addressed to enable cooperative reconfiguration (Figure 3) while addressing 
the major smart camera network challenges, namely topology discovery and self-calibration, resource and 
task allocation, and active vision.   

III. TOPOLOGY DISCOVERY AND SELF-CALIBRATION 

The structural information of the smart camera network describes the spatial relationships among cameras. 
The primary goal of self-reconfiguration is to dynamically define the neighbors of each camera to enable 
cooperation. Adaptive self-calibration techniques describe the relative location of cameras and fuse data to 
satisfy tasks (e.g. to locate a target). Effective reconfiguration depends on the capability of deriving and 
updating the network structure via topology discovery and self-calibration. 

 
Topology discovery identifies the neighbors of each camera. The concept of neighborhood is application and 
task dependent and, for a target tracking application, it is defined as the set of cameras which are more 
likely to capture a target that re-appears after leaving a FOV. The topology can be represented as an 
undirected weighted graph with links and nodes (cameras), where the links are weighted according to the 
spatial connectivity of the network. Directed graphs can be also considered if the relation between cameras 

 

Figure 3. The self-reconfiguration of a 
smart camera network is a continuous 
cycle. Evaluation criteria describe the 
rules and the parameters to define the 
quality of the video analytics to be 
performed by the network and guides new 
reconfigurations. The network 
reconfiguration block selects cameras to 
be switched on/off and assigns tasks to 
operating cameras. All the decisions are 
taken considering the available resources.  
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is not symmetrical, such as in the case of a one-way traffic flow across FOVs. For overlapping FOVs, a 
pairwise cooperation scheme can be applied to determine neighbors by sharing and matching image features 
of different FOVs. Large-scale networks often present neighboring cameras with disjoint FOVs where 
camera neighbors do not share their FOV thus leading to unobserved areas. In this case, additional nodes 
can be defined [10] that represent the set of entry or exit regions of each FOV and their connectivity is 
described with additional edges in the graph.  
The topology of a set of disjoint cameras 
can be found by analyzing motion 
patterns, by applying re-identification 
techniques to locate moving targets or by 
determining co-occurrences of events in 
the FOVs [11]. Target tracking in 
disjoint camera networks needs handover 
mechanisms that transfer the control of 
the tracking task across cameras and 
assign cameras to targets. When track-
ownership is transferred, the 
corresponding weight in the topology 
graph is increased to reinforce 
connectivity (Figure 4). Auction 
mechanisms can be used to coordinate 
the handover: each time a target leaves 
the FOV of the camera assigned to track, 
its features are broadcast and cameras 
which can detect this target will then 
confirm their willingness to track [5]. 
The updated network topology is finally 
used to decrease the range of broadcast 
messages in future handover processes.  
Self-Calibration is concerned with geometrical internal and external camera information. Internal camera 
information includes intrinsic parameters, which map the captured real world into the image plane, whereas 
external camera information comprises three-dimensional location and orientation within a global 
coordinate system. Calibration also allows computing the topology (i.e. the camera neighborhood) via 
geometrical analysis. Approaches for self-calibration vary depending on whether the FOVs are overlapping 
or disjoint. Generally, one camera is selected to define the coordinate system. A sequential calibration 
process starts from such initial camera and propagates throughout the network. Then cooperation strategies 
estimate the relative positions and orientations of the other cameras. For overlapping cameras, cooperative 
auto-calibration can be cast as a multi-view image matching problem where feature descriptors are extracted 
from each FOV and distributed across the network [12]. Cameras collaborate by comparing their locally 
computed descriptors with the descriptors received from the network in order to find the most suitable 
match. Pairwise correspondences are established between the FOVs to define potential matches. Next, 
calibration data is iteratively obtained and refined using optimization processes over the inter-camera 
correspondences. Cooperation can also be performed through local message exchange schemes, such as 
average consensus, to obtain estimations of the rotation and translation parameters for each camera [1]. For 
disjoint cameras, unobserved areas between FOVs make obtaining accurate calibration data a challenging 
task. As for topology, target motion can be employed to derive calibration data assuming a consistent 
motion structure across FOVs. In a network with disjoint FOVs, linear motion hypotheses are exploited to 
model the movement of multiple targets from one camera to another, and vice versa [13]. Such forward and 
backward models are employed to calibrate the cameras by pairwise cooperation via iterative refinement of 
the generated models. 

IV.           RESOURCE AND TASK ALLOCATION 

Resource-constrained smart camera networks need to manage their battery lifetime, communication 
bandwidth and computation power. The importance of controlling the use of these resources increases with 

 
Figure 4. Target re-identification between disjoint FOVs helps to infer 
the spatial relationships of the cameras in the network. An iterative 
process executed for all the cameras and for all the targets discovers the 
network structure. Once estimated, the topology information helps the 
prediction of the next target appearance for the handover of the target 
ownership among cameras. 
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the scale of the network. Moreover, these resource-constrained settings require sharing the computational 
effort among cameras by allocating video analytics tasks to different cameras. Self-reconfiguration 
strategies can be applied for camera placement, dynamic resource management and task allocation. 
Camera placement is concerned with deciding the number of cameras to be deployed, their absolute position 
and their relative configuration to fully cover an area of interest. This is an NP-hard problem for which a 
range of locally optimal solutions have been proposed considering different models of the FOVs and 
different objectives. For example, an activity density map that represents the locations in which targets 
frequently move can be matched with coverage models of the FOVs via centralized data fitting algorithms 
[6]. 
Dynamic resource management aims at changing the parameters of individual cameras and of the whole 
network to adapt to the scene dynamics and to the resource availability. Optimizing the use of resource to 
maximize network performance is an ongoing research area, sharing challenges with the control/robotics 
and the wireless sensor network communities [14]. These techniques manage camera power to meet the 
desired performance, to allocate resources for distributed tasks [2], or to optimize video data communication 
[3]. Performing such optimization in real-time is crucial for deploying sustainable networks and for 
extending their lifetime.  
Task allocation or scheduling is a critical operation due to the complexity and volume of tasks for smart 
camera networks. This operation assigns different goals to each camera such that the primary network 
objective is accomplished. The solution has to consider different constraints imposed by resource 
availability, including the choice of which subset of cameras is most appropriate to satisfy a task [7]. 
Switching off unnecessary cameras to preserve power defines a new network topology that needs to be 
identified and tasks should be reallocated accordingly in real time. A distributed solution [2] must identify 
the different tasks to assign to cameras such that the fusion of their results achieves the expected level of 
description for the monitored area. Optimization methods can also be used for task allocation when each 
target is assigned to a specific quality of service (QoS) and different video analytic activities are activated 
[2]. 
Techniques such as evolutionary algorithms can help in defining metrics to evaluate constraints and 
objectives such as energy usage, QoS of video analytics procedures and amount of processing required [1]. 
Camera self-awareness can be increased via online estimation of task reliability. For example, cameras 
tracking moving targets might detect performance drops due to temporal occlusions of targets. One solution 
is re-configuring their cooperation strategies to improve task performance by handing tasks over to other 
cameras. Alternatively a camera could move to recapture a target in its FOV, provided this does not affect 
the tracking of other targets. 
 

V. ACTIVE VISION 

Active vision involves the continuous interaction between smart cameras and the environment to decide 
what to observe and how to prioritize observation tasks. Cameras can actively change intrinsic and extrinsic 
parameters (translation, rotation, pan, tilt and zooming) to adapt their FOVs to specific tasks. This 
adaptation can, for example, maximize object localization accuracy. Cameras can pan and tilt to improve the 
portion of the image covered by a selected target, zoom in on the target (a face or a number plate) for a 
closer look or tune internal parameters to enhance the quality of the captured image. These tasks can be 
accomplished in several ways, such as by increasing the iris parameter when a target enters a zone with low 
illumination conditions (e.g. areas in shade).  
Cameras may compete or collaborate to maximize performance criteria. In the case of tracking, these 
performance criteria may include the target size and position. Selecting the most suitable camera to perform 
a task is frequently used for handover-based target tracking where cameras bargain to decide which tracks 
each target as it moves across different FOVs [15]. For example, collaboration via optimization methods 
ensures each target is covered by a certain number of active cameras reconfigured to achieve a specific FOV 
[2]. The optimization process computes a feasible configuration to satisfy the QoS for each target, which 
might also include distributing tasks among active cameras while meeting the network constraints.  
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Adapting a FOV based on the camera-network needs is subject to a trade-off between its capability to 
observe the whole scene and the capability to acquire important details about an object. For recognition 
tasks, a camera may need to narrow its FOV to zoom in on a particular feature, such as a face, thus 
neglecting information about the rest of the body and the wider scene. Other cameras must then cooperate to 
compensate for this lack of information by changing their parameters and modifying their FOVs 
accordingly. This task can be accomplished using game theory [4] by incorporating appropriate cost 
structures to quantify the performance of the tasks, the cameras and the overall network. For example, a 
camera may be providing close-up details of a target whereas a more distant camera can observe the whole 
target. Both cameras are rewarded with a higher preference (or lower cost, depending on the modeling) as 
they compensate each other for the risk of losing the global picture whilst capturing high-quality data. 
Provided individual task and camera costs are aligned to the global tasks of the network, cameras will adopt 
a cooperative strategy to maximize their preferences (or minimize their costs) and achieve an optimal 
solution. Scene understanding performance criteria such as tracking accuracy, pose, and image resolution 
can then be maximized [4]. A game-theoretic framework can be used jointly with a consensus approach [4] 
to implicitly coordinate the processing of neighboring cameras to estimate the location of moving targets. 
Explicit and implicit coordination strategies can be combined [9] to concurrently improve tracking accuracy 
and self-reconfiguration capabilities.  
Cooperation in large-scale camera networks implies sharing information acquired from different viewpoints. 
Interaction mechanisms have to be developed for communicating among heterogeneous stationary and 
mobile devices. For example, person re-identification in camera networks can be aided by taking advantage 
of the estimation of future target movements across heterogeneous cameras [16]. Active cameras can self-
configure for repositioning in order to increase re-identification performance. The integration of 
heterogeneous cameras as static and active sensors in the smart camera network is made challenging 
because of camera ego-motion, viewpoint differences and the need for image stabilization. 
[Ending\conclusions] 

Smart camera networks are at the frontier of work in cooperation and distributed decision-making for a 
broad variety of large-scale environments and applications. Networks of smart cameras can be employed to 
detect intruders in cities, to spot illegal logging in forests, to protect travel networks, and for search and 
rescue missions. Disaster recovery is receiving increasing interest as camera networks can support first 
responders after both man-made conflicts and natural disasters, as well as farming and wildlife conservation 
activities. Challenges to be addressed for facilitating the future development of cooperative reconfiguration 
strategies include adaptation to dynamic topology changes, coordination among heterogeneous devices, 
hierarchical data processing and the online evaluation of task performance. Envisioning large networks of 
heterogeneous smart cameras composed of static, wearable and mobile devices that autonomously interact 
and self-configure their capabilities to achieve the desired goals efficiently will depend on successfully 
addressing these challenges. 
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