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Abstract—We present an active stereo vision system composedtask to perform some operations like stereo image reciificat
by two pan-tiit-zoom (PTZ) cameras for video surveillance jn an active stereo vision system.
applications. The rectification of stereo images is perforrad based Recently, a novel image rectification algorithm has been

on the sigmoid interpolation with a set of neural networks. The df dual-PTZ based st ; 8l |
orientation parameters (pan and tilt values) and the rectifcation P'OPOSed Tor a auai- -camera based stereo system [8]. In

transformations of corresponding images are used as the ing- SUch a system, the inconsistency of the intensities in two
output pairs for network’s training. The input data is directly camera images is solved by addressing a two-step stereo
read from cameras, whereas the output data is computed offle. matching strategy. Another interesting approach in case of
The trained neural network is used to interpolate rectificaion active stereo vision system has been proposed with thetanaly

transformations in real time for the stereo images capturedat f lation in 191. An off-line initializati .
arbitrary pan and tilt settings. The correspondence betwesn the ormulation in [9]. An off-line initialization process is ep-

stereo images is obtained using a chain of homographies bake formed to initialize essential matriX USing knOWn Caliﬁmat
scheme. Heterogeneity between the intrinsic parameters dhe parameters. During on-line operations the rotation angfes
cameras is managed through zoom compensation to improve the the cameras are retrieved and exploited to compute therturre
quality of stereo rectification. This stereo active vision gstem IS aggential matrix. However, if the zoom is considered, the
used for two different video surveillance applications: l@alization . - ' . . :

of partially occluded targets and construction of multiresolution calibration for any adopted zoom !evel IS _requ're_d fgr both
depth map mosaic for scene understanding. cameras. Moreover, the d|ScrepanC|eS [10] in the fieldiefrv
(FOV) and in magnification of the two cameras lead difficultie
not only into the stereo rectification but also in the depth
estimation.

To solve some of the aforementioned problems, a new image
rectification process for an active stereo system composed
by two PTZ cameras is here proposed. A Look-Up-Table

The developments of modern video surveillance systeqIsUT) associating the rectification transformation for sipe
have been attracted a lot of interests [1]-[5]. Recentlg, thhan and tilt values of the PTZ pair is constructed off-lineeT
concept of stereo vision has been exploited in surveillanggtation ranges (pan and tilt) of the two cameras are sampled
systems to make them more efficient. Stereo vision has thge rotation parameters are interpolated with respectuengi
advantage to estimate the 3D position of an object in gan and tilt values for computing the required rectification
given coordinate system from two perspective images [Gfansformations. Neural network based sigmoid interjiarat
Traditional stereo vision reserach uses static camerahéar s adopted due to its function approximation property in
low cost and relative simplicity in modeling. A pan-tiit@m case of highly nonlinear data. The data from a Look-Up-
(PTZ) camera is a typical and the simplest active camermble (LUT) are used for the network’s training. Such a
whose pose can be fully controlled by pan, tilt and zoomuT is constructed off-line by sampling the pan and tilt
parameters. As PTZ cameras are able to obtain multi-angignges of the two PTZ cameras for a common zoom level. It
views and multiresolution information (i.e. both globaldan contains the pan-tilt combinations and the rotation patarse
local image information), these are used for wide area moujf the rectification transformations as the independentthad
toring [7]. Thus, a dual PTZ stereo vision system, compose@pendent variables, respectively. In case of zoom-in omzo
by a pair of PTZ cameras, is able to cover large environme#iit operations in any PTZ camera, a focal ratio based approac
and to reduce the occlusions drawbacks. However, such tyg&ised to compensate the effect of unequal zoom levels [11]
of active stereo vision systems are much more challengipgtween the two cameras.
when compared to the traditional stereo vision system. PTZsTo show the effectiveness of the proposed approach, two
on purpose (e.g. zoom on face, zoom on license plate etglifferent applications are considered. The first applarati
can vary both the intrinsic and the extrinsic parameters thshows the stereo vision based localization of a partially oc
changing the stereo properties. In this context, it is na@@sy cluded target on a given ground plane map. Existing norester

) i ) . o systems often localize objects in the environment by definin
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I. INTRODUCTION



active stereo vision system solves this problem by making . . Static >
. . . 'Y \ £ Cameras R ® \ -
the localization based on a stereo camera system instead of a ( 1 Network i )

single camera based system. It can be used subsequentty in th [J Pz Cameras ﬁj

. . . . . . b etwor AC )
computation of reliable object’s trajectories [13]-[18hiah - :
H H . . . . Offline Steps Online Steps
is really important for different contexts like traffic maooi- ( ) »
ing, behavior analysis [19]-[21], suspicious event détect Stereo Vatching " omleatione.

[22], sensor network configuration [17], [23]-[33], etc.the
second application, we emphasize the importance of zoom
settings of PTZ cameras in the scene understanding. In cas€
of static cameras based stereo system, the images areezhptur .

with the same resolution. However in case of PTZ cameras, \  [“ltamns. . >\ Compensaion | )
we can consider the two facts: 1) if a region has small depth

variations, i.e. aImosF flat in nature, low resolution irnagq:ig 1. A virtual design of the proposed stereo system.
can be used for obtaining the depth map, and 2) when large

depth variations occur in a region, high resolution images a

required. Based on these two facts, PTZ cameras based stgge@etected by the SCU, the system delivers the information
vision system provides a multiresolution depth map that cg® the ASU for focusing the two PTZ cameras towards the
be used for a better scene understanding and required lg¥fected region. The ASU starts the stereo task as soon as
computational cost in case of a wide-area. In this contexhe selected target appears in the FOVs of both cameras.
another application of dual PTZ camera based stereo systeAe handover of scene information [37] between the differen
is to grab images with the above facts in an automatic man&imeras allows a cooperative tracking of the objects withén

and creation of a multiresolution depth map mosaic of a wiggonitored environment. The sequences acquired by the two

Computation of
Rectification Matrices

Construction of  LUT

= Interpolation-based
<=| - => Rectification
A

area. PTZ cameras in ASU are transmitted to a central node together
In brief, the main advantages of the proposed PTZ caméfsh their respective orientation and resolution inforinat
based stereo vision system are: A communication system based on a multi-cast protocol [5]
« there is no need to assume a fixed center of projectiused for the cooperation within these cameras’ network.
for the PTZ camera during rotations. This communication system is designed in such a way that it
« the 3D localization of the objects works with high accurequires a low bandwidth. A logic architecture of the pragabs
racy even in case of partially occluded objects. system is shown in Fig. 1, where the top layer of the cameras
« both localization and depth-map computations can bepresents the SCU, while the ASU is shown in the second
achieved with wide baseline stereo systems. layer.

« only limited a-priori information (i.e., information pro- The properties of the PTZ camera deployment make the
vided by a static camera) is required to compute mustereo vision problem more difficult when compared to clas-
tiresolution depth maps for a large environment. sical stereo systems. In particular, in the proposed system

In particular, concerning the last advantage, contraailid4], captured images from the pair of PTZ cameras are hetero-
there is no need to have the coarse depth map and the preggeeous in nature (may have different intrinsic paramgters
FOV of the left camera. In addition, instead of using wid$§ we perform rectification on these heterogeneous pairs, it
baseline feature matching techniques [35], [36], that evaill introduce relevant errors (distortion effect) in thectified
though efficient are computationally expensive, an apgroainages. Thus, it is difficult to compute disparity maps from
based on a chain of 2D homographies is proposed to fititese erroneously rectified images. Therefore, the efféct o
corresponding points between wide baseline images in retilese unequal intrinsic parameters must be compensataabef
time. rectification. Here, the images are made homogeneous isterm
of internal image parameters using the resolution infoionat

Il. SYSTEM ARCHITECTURE AND CORRESPONDENCE The focal lengths are estimated directly from the zoom value

BETWEEN STEREOIMAGES The ratio between the zoom values of two cameras is used
to compensate the effect of heterogeneity. Once the frames

A. System Description e . .
] ] ] are homogeneous, the rectification transformations aes-int
The proposed system contains mainly two different unifsp|ated using a neural network.

of cameras. The first unit, called static camera unit (SC&), i

composed of a generic number of static cameras. These static _

cameras have wide FOV and cover a large environment with Correspondence Between Wide Baseline Stereo Images
limited overlapping FOV. The second unit contains two dif- SIFT matching [38] is a popular tool for extracting matching
ferent PTZ cameras placed at a wide distance (7 meters) frpmints from a pair of stereo images. However, this method
each other and considered as a dual-PTZ based stereo sysiemot very accurate in a case when images do not share
This unit is called active stereo unit (ASU), and maintains sufficient common FOV. It can happen when objects are close
good cooperativeness with SCU. The main functionalities & both the cameras placed at a wide baseline (See Fig. 2).
SCU are object detection [12], behavior understanding afd sidestep such a problem, we propose a method based on
anomalous event detection [22]. Once a region of interestchain of homographies for establishing the corresporelenc



between the pair of stereo images. Our idea is to initialize The homographyH™ can be used to establish correspon-
the correspondence between the images of two PTZ cametteace between the imagd8 and I? which is not easy to
captured for a far scene and then subsequently use it for othbtain directly in case of wide baseline stereo systems.3ig
pair of images. To do this, we require the correspondengies an intuitive interpretation of the above describeacpr
between different overlapped images captured at diffggant dure. The final homography matrBd™ can be computed for
and tilt settings in case of each PTZ camera which can bay value ofn; however, the above procedure can accumulate
obtained using SIFT. errors in the final homography due to the multiplication of
several matrices. In order to minimize this error: 1) we keep

——— % [F=u\. ¥ & the sampling step (i.e. the difference in pan and tilt angiss

{ — | low as possible, with a constraint that any pair of images. (e.
I /T,Ig/t}) has to share at least 30% of the FOV; 2) outliers
from matching points should be removed before applying a
robust approach for the homography estimation.

IIl. OFFLINE STEPS

It is necessary to perform an offline initialization for deri
ing all the information necessary to determine the rectifica
transformations during online operations. This includes t
computation of the rectification transformations for image
pairs captured at different pan and tilt sampling from tw@PT
cameras. The rotation parameters related to these refitifica
transformations are stored in the LUT corresponding to the
respective pan and tilt values of the PTZ cameras. The LUT
data is used for the training of a set of neural networks that
are used for sigmoid interpolation of these transformation

Fig. 2. SIFT matching between wide baseline stereo images faf (top) .
and near (bottom) scenes along the optical axis of camera. real time.

1 71 i i

Let (I, I,) be apar of images of a far scene dd pe the . A. Computation of Rectification Transformations and Look-

homography obtained from the SIFT based matching ponBs
i . : p Table
between these two images. L@, I7') be a pair of images - o .
of a scene/object near to the cameras along their optical axi A rectification transformation is a linear one-to-one trans
The problem is to autonomously establish the corresporedefiermation of the projective plane, which is represented by a
between the imaged?,I?). Such a correspondence can b8 x 3 non-singular matrix. For a pair of stereo imadesand
established by capturing images between the scenes thosk, the rectification can be expressed as:
- o S

are inI; andI? from the left PTZ camera. A similar image 3= AL J = ALL

grabbing process is required for right PTZ camera to capture
the images between the scenes those arEl iand I”. Let \here (J;,J,) are the rectified images ar(\;, A,) are the
these two sets of images 6§/, 17 .. .1}") and (I}, I2...T}').  rectification matrices. In case of uncalibrated cameragas
The required correspondence between the imaljed)') in  stereo system, a quasi epipolar rectification [39] has been
terms of a homographfi™ can be achieved in the following proposed for computing these rectification transformatiop

steps: minimizing the following function.
1) Establish the correspondence between image pairs R -
1, 17), (I,13), ..., (I7"1,17) in terms of their re- > lm)"ATFoc Aimi] ®3)
spective homographieH, %, H;*, ..., H} """ such i
thatTi = H"/'TH fori=1,...,n — 1. where(m;, m,) are pairs of matching points between images
2) Repeat the procedure given in the above step to comp@teand I,. F., is the fundamental matrix for the rectified
H!?, H23, ..., H?~ 1" for the images captured with pair of images. Generally, the minimization of (3) is time-
the right camera. consuming and therefore it is not easy to compute the rectifi-
3) Compute the homographié§, andH, as cation transformations in real time. Here, we use this seéhem
[39] for computing rectification transformations offliner filne
n—2 _ _ n—2 4 4 image pairs captured at different pan and tilt samplingekd r
H =[] 13 R ¢ [T HE-4F9"="  time, this information can be used for computing rectifioati
i=0 i=0 1) transformations for a given pan and tilt setting by using

sigmoid interpolation. Recently, in [40] such an interpiaa
based method is adopted to make rectification of stereo pairs
in real time. An offline LUT containing rectification matrige
H" = H H' (H)! (2) corresponding to various image pairs captured at predefined

4) Compute the required homography matlK® for the
pair the imaged]* andI as



Fig. 3. Wide baseline stereo matching using a chain of hoapigc matrices.

pan and tilt angles is constructed. Then, the rectificatiang- assumptions. Then the intrinsic matrices can be written as:
formations can be interpolated in real-time for any arljtra

orientation of both PTZ cameras by using LUT data. However, _ S 0 w/2\ fr 0 w/2
the interpolation of eighteen parameters (nine elements fokKi=| 0 /i h/2 [K,=| 0 f. h/2 (6)
each rectification transformation) is again computatitynal 0 0 1 0 0 1

EXpeNSIve. Here, our effgrt IS _to _reduce the _number of thpfvsv‘ﬁerew andh are the width and the height of the image. The
interpolated parameters into six instead of eighteen bygusi
some suitable assumptions of camera projection matrix.
The meaning of stereo image rectification is that for a
given pair of the original camera projection matrid®s and
P,, two new virtual projection matrice®; and P, can be
obtained to rotate the cameras around their optical centgils
the focal planes become coplanar. Therefore, the reciditat

transformationsA; and A,. can be decomposed as

focal lengthsf; and f,. can be computed directly by reading the
zoom parameter of the two PTZ cameras. Thus, the problem of

'omputing a pair of rectification transformations is comwer
into the computation of only two rotation matricéR;, R,)

. Hence, for any pan and tilt combination, only three rotatio
parameters has to be stored in the LUT instead of nine entries
of a rectification transformation.

Thus, the main steps to construct the LUT are:

A, =P P!, A, =P, P! 4) 1) The overall monitoring wide-area is divided into a
number of subarea in such a way that each subarea

A camera matrixP can be decomposed into the intrinsic is covered in the FOV of each PTZ camera just by

and extrinsic matrice® = KD, where K is the intrinsic changing the pan and tilt angles settig, ¢/ )/=,1:)" .
matrix andD = [R t] denotes the extrinsic matrix containing 2) Capturent: = (n,, x n;)* pairs of images of all these
rotation matrixR and translation vectot. Since there is no local subarea with the two PTZ cameras at equal zoom.
translation involved in the rectification process, (4) can b 3) Compute the possiblé(> n..) pairs of rectification
rewritten as transformation(A¥, A¥) for the different combination
of stereo images. The used images pairs should have
A =KRK ', A =KRK;! (5) images sharing at least the B0of their FOV.
4) Decompose rectification transformations as per earlier
where R, = RlRfl and R, — RrRr_l are the rotation described scheme and compute their corresponding ro-

tation parameters.

5) Store the rotation parameters in a LUT as dependent
variables corresponding to their four independent vari-
ables(pl,tl,pr,tr).

matrices involved in rectification process. Here, the oadji
intrinsic parameter matricg¥;, K,) and the rotation matri-
ces(R;, R,) are unknown, whereas the new intrinsic matrices
(K;, K,) can be set arbitrarily, provided that the focal
lengths and the coordinates of the principal points must B&e main problem to be addressed in the creation of the
equal. During the rectification process, the unknown istdn LUT is the establishment of the correspondence between wide
parameters can be reduced by considering the zero skbaseline stereo images. This has been solved by explofteng t
square pixel and principal point in the center of the imagearlier described chain of homographies based approach.



the focal length is computed in two steps: a) offline fitting
of focal lengths corresponding to zoom settings and b) enlin
estimation given a particular zoom level.

Concerning the first step, the aim is to find out a mapping
between the zoom value and the corresponding focal length.
For such a purpose, the whole zoom range is sampled and
the focal length is estimated by using a calibration profeiss
every sampled zoom tick. In the case of motorized lenses [41]
the relation between a given zoom tiekand corresponding
focal lengthf is

ag

= - 8
1) 1+a1z+a222+asz3+...+a2" (8)

Fig. 4. Architecture of employed neural network where the ordemn and the unknownu,...,a, are camera
dependent. For the adopted camera, following the methodol-
. ) ogy in [41], the estimated optimal value afis 2. Therefore,
B. Training a neural network using LUT ag, a1 anday can be estimated by minimizing the following
sigmoid interpolation via a set of neural networks is usegbnlinear function

for computing the rectification transformations in real g¢im K 5
corresponding to any arbitrary orientation of two PTZ caaser Cla) = Z {f(zi) B ag @)
The data stored in LUT is used to train the neural networks. 1+a1z + az?

=1
The neural network based interpolation has been chosen
to its strong function approximation property with respgrct
highly non-linear data. A supervised learning scheme [1

?—\Joe\/vever from (9), the estimation of the focal length is not
iF]\IiabIe for small values of zoom, then (9) can be written as

using LUT data has been adopted for the off-line training of K 912
the neural networks. C(b) = Z [p(zi) = (bo + b1z + bp2?)] (10)
The network considers the pan and tilt angles as input and i=1

returns the parameters of the rotation matrices correspomthereby = 1/ag, b1 = a1/ag, bo = az/ap and p(z;) =
ing to the required rectification transformatiof&;, A,) as 1/f(z;) denotes the lens power. The minimization of (10) is
output. The sets of input and output data are related byreliable for lower as well as higher zoom settings. The value
non-linear mappindJ = f(p;,t;). For a known set of input- by, b; and by corresponding to the minimum value 6f(b)
output values, the problem is to find the functiéi{-) that are chosen to define the optimal valuesagf a; andas. In

approximatesf(-) over all inputs. That is, the real time, the focal lengtff for any given zoom levet
is estimated as
| Fp,t) = f(p,t) [[<e  forall(p,1), @) "
- : fo) = ——— (11)
where e is a small error. The architecture of the proposed 1+ a1z + azz?

neural network is shown in Fig. 4, where two output nodeg,o apove method has been tested on various zoom samples

are f:orrespondmg to the angles for Ieft.and right rOtaF'O;ihd it has been found reliable for estimating the focal lengt
matrices. Three different networks are trained for yawchpit corresponding to a given zoom

and roll elements of the rotation matrices. A detailed lgarn
process for the proposed network is given in [11], where back

propagation algorithm is used with gradient information. IV. ONLINE STEPS

During tracking, stereo tasks can be performed by applying
a zoom compensation followed by the rectification of the

C. Zoom to Focal Length Fitting L . . . . o
) , resulting images. This section contains a detailed desmnip
As aforementioned, the proposed framework is based oA ase two steps.

zoom compensation process in case of heterogeneous image-

pairs. The effect of such an unequal zoom is compensated )

by using a focal ratio information which requires the foceft- Unequal Zoom Compensation

lengths corresponding to both images. For a static cameraThe proposed framework allows to operate with couples of
the focal length can be estimated offline once consideriag tHPTZ camera acquiring images with different zoom levelssThi
the image parameters (specifically focal length) will remaintroduces a heterogeneity between internal imaging param
constant for the whole process. In case of PTZ cameras, thes of both cameras. However, equivalent zoom values have
focal length changes as the zoom level is changed to zodteen used for the two PTZ cameras during the construction of
in/out. Thus, the determination of the accurate focal lengthe LUT containing rectification transformations. Therefo
associated to any acquired frame is a fundamental evenlthoagcompensation is required to deal with this heterogeneity
not an easy task. Moreover, if its computation is not precisgth real time performance. A novel approach based on the
enough, the rectification accuracy of the proposed alguoritifocal lengths of the two cameras is used to tackle such
could be significantly affected. To overcome such a problefmeterogeneity. In a perspective projection model, thetjposi



Stereo Localization

of any pixel is always proportional to the focal length foeth  Menocuar tocaizaion Monocular Localzation i case of occluded object

in case of occluded object

respective camera. Therefore, if the two images are aatjuire O %D Positon
with different zoom levels, then this heterogeneity can b t X
compensated by shrinking the higher zoom image with a foc e e \ L

ratio information.

. LetI; andI, of sizew x h be the two images captured a'i:ig. 5. Target localization. Left to right: monocular camédrased approach,
different zoom levels;; and z, from the dual PTZ cameras.monocular camera based approach in case of partially cedltarget and
Let the corresponding focal lengths b and £, obtained proposed stereo camera based approach in case of partallyded target.
from earlier described scheme. The idea behind the process
of heterogeneity compensation is achieved by shrinking the
image having longest focal length by mean of a focal ratio.
The overall compensation algorithm is given in Algorithm 1. The rectified stereo frames can be used for several appli-

cations in the intelligent video surveillance domain. Tehes

Algorithm 1. Compensation of unequal zoom settings in PEZest applications include target recognition/detection, lizedion

V. APPLICATIONS

Read (2, z,) on a 2D map, tracking and activity recognition. In this work,
Calculate{ fi, f,} = Interpolation(z, z,) we focused on target localization and generation of high
if f, = f, then resolution depth map images of a selected region. Findily, t

STOP high resolution depth maps are used to generate a depth map
else if f, > f, then mosaic of a large environment for scene understanding.

R = fl/fr

I = Shrink(I;, R) A. Stereo Vision based Target Localization

Il = Zeropad(I], Size{l,}) and I!'=1I,

The localization of the moving targets on a given 2D map, is
an essential step for tracking in a complex environment-Usu
ally, the localization task is done by transforming the &ty
position (usually its lower pixel) in the image into a positi
onto a 2D map. A priori estimated 2D homography matrix
. ) between ground plane of test environment and a given 2D
. where the function Shrink(L, ) represents that_ the map is used in transformation. The accuracy of the locatinat
image /; is shrunk by a factor ofR. The function 40,045 on the contact position of the target with the ground

! o o
Zeropad(l}, Size{l,}) denotes that the zero padding is per|EJIane and on the robustness of the homography estimation.

fqrme?Iarc_)rl;]nd_ Image u_ntjllh |t?h3|_zehbecomes equgl ;[0 theWhen the target is partially occluded, i.e. its contact wtith
size of I. The image pai(l;’, I') is homogeneous in ermSground plane is not visible, the accuracy of the localizatio

of the intrinsic image parameters which is necessary tdsfyectdoeS not meet its requirements (see Fig. 5). In such cases,

the stereo images correctly. stereo vision can be used in the localization by taking the
advantage of 3D position of a target, i.e. by calculating the
B. Rectification of Images ground plane position from stereo 3D data and transforming
Once the zoom compensation is completed, the new pairibpnto given 2D map.
images has to be rectified for further stereo processings Thi For reducing the computational cost for calculating the 3D
operation can be achieved in the following steps: position (X, Y., Z,,), We restrict the correspondence search
1) Interpolate the parameters for generating rotation m@0ly on the corresponding epipolar lines related to target
trices R¢ and R¢ from the trained neural network by region in the two _rectlfled images. Tc_) match a p0|_nt of the
giving the pan and tilt angles as input for current paf@rget in the left image, a sliding window is applied only

else

I = Shrink(I,,1/R)

IM = Zeropad(I]., Size{I;}) and I} =1,
end if

of frames. on the corresponding epipolar line in the right image. The
2) Calculate rectification transformations for currentiess  disparityd(z, y) for a pixel (z, y) is computed by minimizing
as the cost functiorC(z, y, d) from (13). To do this, windows are

o . o . compared through the normalized sum of square differences
A7 =K/R{(K])", AT=K/RJ(K;, )" (12) (SSD) measure, which quantifies the difference between the

where, (K¢, K¢) and (K¢, K¢) are the pairs of intrin- INensity patterns.

sic matrices in the original and the rectified cameras’ >z +&y+n) —l(z+d+ &y +n)
geometries. C(z,y,d) = ) (13)
3) Warp the current pair of frames as a rectified pair of X @+ &y+n)? 3 e+ &y +n)?

images usingA¢ and A¢. &) &m

¢ _ ACTe 3¢ — AT where,£ € [-n,n] andn € [—n,n| represent the dimensions
! L r e of the sliding window along horizontal and vertical directs,
The above procedure is performed in real time. In this wasgspectively. It can be observed that squared differeneed n
rectified pairs of frames can be obtained by using the orieto-be computed only once for each disparity. Moreover, when

tation information of left and right PTZ cameras. the window moves by one pixel, the convolution sum can take



advantage of the previous computation without requirisg it
computation from scratch.

Once the disparityl is computed for the position of the
target from left and right images, the distance of the target
Z,, from the camera along optical axis is computed using the
following formula

b
Zw=F (14)
where f is the focal length for the rectified pair of images
andb denotes the distance between the optical centers of two
PTZ cameras. Letx;, y;) be the position of the target in the
left camera image, then the position of the target in theeplan
normal to the optical axis of the camera is given by

lew Zw

Y
Y, = =22
! f

Xw =

!
7
N

(c)

The location(xz,,y,) of a target in a ground plane map isrig. 6. Procedure for acquainting region of interests by R@zeras with

calculated as follows
Lg

Yg
1

— Hw

m

X
Yy
1

maximal resolution.

region as flat or complex. In the former case, the process is
stopped and the computed disparity map is used to compute

where HY is the homography matrix between the homogelepths. In the latter case, further processing is required.
neous coordinates of ground plane positidf,, Y,,) of some following steps are proposed to obtain high resolution kept
selected points and their respective positiay,y,) on the maps:

given test map. 1)
2)
B. High Resolution Depth Map Estimation and Mosaic Con-
struction

The second application of the proposed system is studied
for scene understanding in the case of a large environment,
Depth obtained from the stereo images can be a very cruciaP
cue in scene understanding. In a scene having large varsatio
in depths at various positions (like parking lot or a hilly, i
is necessary to use higher resolution images for obtaining
depth map. In case of a flat region (like empty ground)
where depths at different points have smooth variationgtow
resolution images can be used to obtain the depth map.4
Such a multiresolution depth map based strategy is useful fo
establishing a trade off between accuracy and computationa5
cost. Finally, the depth map of the whole environment can
be obtained by making the mosaic of several overlapped and
multiresolution depth maps.

1) Depth Map EstimationA multi step process is proposed 6)
for selecting the optimal zoom values of the two cameras
according to the earlier described strategy. When an event
of interest has taken place in the FOV of any static camera
(let say S1), this camera delivers the information to the dual 8
PTZ cameras for focusing on the region of interests. et
delivers the information to the PTZ camergdsandC,.. Firstly, 9)
the initial resolutions forC; and C,. is set in such a way Fig.

Detect the event of interest in the static cam&ra
Deliver the information to both PTZ cameré&s;, C,.)
system for focusing towards the regions of interest. Let
the region visible in FOVs of these cameras initially be

RE? and RE? and the corresponding images Heand
0

) Change the resolution of the left camera in such a

way that the event of interest is acquired with best
possible resolution to capture the imaleSome priori
information about various zoom settings of the left
camera and its corresponding FOV are used to adopt
the zoom setting for best possible resolution.

) Compute the disparity ma@° (having disparities

d(z,y) for all (x,y)) from the images; and|’.

) Check whether the dispariti@$(z,y) have large varia-

tions for all (z, y) in the disparity ma°. If not, stop
the algorithm and usB® for computing its correspond-
ing depth ma@. Otherwise, proceed to the next step.
Compute an imagé’ asl = 1; + D°.

7) Change the resolution of the right camera based on

the imagel; and acquire a new imagk. with such
a resolution.

) Find the higher resolution disparity mdp from the

imagesl; andl,. _
Compute the depth map from the disparity ma.

6 provides a graphical representation of the process

that it covers the whole scene, i.e. a low resolution more described in the above steps.

less equivalent to the static camera. In the second step, th@)

Construction of Depth Map Mosaictn general, two

resolution forC; is refined to acquire the selected region witlapproaches can be used to obtain a depth map mosaic of a
maximum resolution. Then the disparity map is calculatddrge scene. The first approach [42] works by stitching the
between the high resolution image from left camera andoxerlapped images for each camera separately to obtain the
low resolution image of right camera. The variation of depthiwo stereo panoramic images and then performing the ditgpari
are checked from the disparity map to classify the assatiatestimation. The second way foresees to compute a depth map



for each stereo image pair and then mosaic all the depth mi
to construct the panoramic depth map. The main difficulty |
the later one is the estimation of matching points between e
depth maps of overlapped images, since it is very difficL iy
to apply feature matching between depth maps. To cope t
problem, we use the same transformation matrices which i Fs=8

used for stitching the images of left camera. However, ti}&
second approach has the following advantages when compz 8
to the earlier one.

« Multiresolution depth cues can be easily maintained in
final depth map mosaic. Fig. 7. SIFT 'x’ and Chain of Homographies ‘+' based correspence
« We obtain the final depth map mosaic (for a large regioR§tween wide baseline stereo images.
by stitching several depth maps (of various small regions).
In this context, the depth value for each pixel belonging to

the overlapped regions in consecutive images is calculated

by fusing two depth cues, so the robustness and accuracyor the eXperimental validation of the proposed frameWOfk,
of the final depth mosaic can be maintained. a network of static cameras composed by AXIS 221 network

« The final depth map can be updated anytime for a ne&s@meras has been adopted. For the stereo unit, two different
image pair. PTZ cameras (i.e., Axis 213 and Axis 233D) are used. Four

. . . . different types of experiments have been performed to: 1
The use of disparity drift [34] compensates the uncertain aluate %2 correspgn dence between stere% images a:hptu?e
in the reading of pan, tilt and zoom parameters which IS

required for correct interpolation of rotation paramet&sso- th the two cameras placed far away from each other (i.e.,
>q . . polal otation p . wide baseline stereo), 2) evaluate the proposed inteipolat
ciated with their corresponding rectification transforioias.

Assuming that there are. rectified pairs(l? 1°) of stereo based rectification algorithm for various pairs of stereages
. 9 . P (I5,15) X aving unequal zoom, 3) evaluate the proposed algorithm for
Images captured at different pan, tilt and zoom setting® T arget localization on a given 2D map and 4) evaluate the
followmg steps are adopted to construct the final depth m%Bmputation of high resolution depth map mosaic for large
mosaic. _ . o scene understanding. Different criterions have been used f
1) Perform stereo matching between all image p@jrd;), comparing the performance of the proposed framework in each
and obtain their corresponding disparity mdps for case.
1=1,2,...,n.
2) Normalize the gray-level values between consecutiye correspondence between wide baseline stereo images

disparity maps. The process starts from the maps use . . _

to specify the reference panoramic image coordinatedros'.hOW tlhe |Irrr11por_tance of tr;e ggalnbof hl(') mograph|e.s based
system. This process can be done by finding the line tching algorithm in case ot wide baseline stereo 'Mmages,
regression parametefs:, 5;) between each Consecutivecc_;rrespondence betwegn a pair of images has been gonS|dered
pairs of disparity maps for all matching pixels,,, y,.). First, a homographyH“ has been computed by using the

matching points extracted with SIFT method between this
pair of images. Then, the homography has been evaluated by
using the proposed chain of homographies based approach.
wherei =1,2,...,n— 1. To do this, a pair of stereo images has been captured of a
3) Calculate the disparity drift’ for each disparity map far scene where SIFT can be implemented accurately. Then,
D’ two different chains of homogrpahies have been computed
using five different tilt positions in case of each cameras
separately. Finally, the final homograpli/* has been com-
D! =D’ + pil4 puted using (2). Corresponding points in the right imageshav
been computed for 12 selected points in left image using the
wherel; represents an identity matrix having the sam@omographies ¢ and H™). Fig. 7 shows the results for

VI. RESULTS AND DISCUSSIONS

DU = a; D' + 5; (15)

4) Compute the modified disparity maps as

size as the disparity map. this experiment and it can be observed that the correspgndin
5) Compute the depth mafdd‘ from their corresponding points obtained from proposed chain of homographies based

disparity mapsD:. approach are accurate enough, while the correspondingspoin
6) Construct the depth map mos@dM by stitching all obtained from direct method are erroneous.

depth mapsﬁ" fori=1, 2, ..., n, into the reference

panoramic image coordinate system. B. Rectification

Sometimes for a complex scene, a fusion of several depth cueMainly, the unequal zoom settings between the two PTZ
is required for a better representation of the depths fonescecameras produce a distortion error in the rectified imaghks. T

understanding. A weighted average method as in [34] can tistorted images produce the error in the final stereo baBed 3
used for fusing several depth cues together. localization. Fig. 8 shows the rectified image pairs obtdine



Fig. 8. Direct (a) and Proposed (b) rectification for a imagé aving
unequal zoom levels.

Fig. 11. Localization of a target on 2D map in case of uneqaahzbetween
two PTZ camera with the proposed zoom compensation ‘+', autlzoom
compensation ‘x’ approaches. The ‘O’ represents the grdwith position
Fig. 9. Rectification of synthetic image pairs: Originalrp@irst row); direct ~ of the target. First row: Master (static) camera image, séaqow: Left PTZ
rectification (middle row); proposed rectification (in tmott row). camera image, third row: right PTZ camera image and finalbalization in
bottom row.

Proposed Algorithm
= = = Direct Algoritm |

the two images while the vertical axis represents the mean

| relative error in the 3D position of the reconstructed pmint

R ] using the rectified images. The error is calculated by taking

] the average over the sum of all three coordinate positions of

N ] all synthetic points. It is clearly visible that the recaunstion

. 1 error is minor when images are rectified with the proposed

] algorithm. When the focal ratio decreases, the error dwalfi
] increases for the direct rectification while it is tolerafiethe

* Focal Ratia o ! proposed rectification method.

Average Precentage Error
on rereconstructed 3D point position

o kN ®w » 0 o N ® ©
.

Fig. 10. Errors in the 3D position of synthetic points fromedt and proposed
rectified pairs of images.

C. Target Localization

Experimental studies with real video sequences have been
carried out in order to test the performance of the proposed
with the direct rectification (without compensating theseffof localization algorithm in a parking lot scenario. The exper
unequal zoom) and proposed interpolation based methasl. Itmental results have been obtained by considering difteren
clear from the given results that the rectified images obthincases, i.e. with occluded and non-occluded targets, using
with direct method are distorted badly, while the rectifiedifferent zoom levels for PTZ cameras, etc.
images are accurate enough for using in the computation offwo different criteria have been selected for this expenime
3D position of the target. Moreover, the correctness of the the first set of experiments, a moving target has been
proposed interpolation based rectification process has beketected in the different frames captured at different pién,
evaluated on synthetic data in terms of 3D positions obthinand zoom settings. These different pairs of frames have been
with stereo vision based reconstruction. Fig.9 shows thegli® rectified using the proposed LUT based rectification alparit
for the rectification of an image pair having points in a @rclThen, the moving target is localized using the proposeester
geometry. It is important to notice that the circle is digtdr vision based approach. Fig. 11 shows the achieved lodalizat
in the rectified images when direct rectification has beed,useesults in three different pairs of images with unequal zoom
while the proposed algorithm is almost shape preserving.\values. The first row contains images captured by a static
performance comparison between the proposed rectificatcamera (master), second and third rows contain the images
algorithm and a direct rectification algorithm is shown iraptured by left and right PTZ cameras, respectively. The
Fig.10. The horizontal axis represents the focal ratio betw zoom levels are decreasing for the images captured by the
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Fig. 13. Error in localization versus distance of targenfroamera at occlusion’s heightOm (no occlusion),0.5m and1.0m (left to right).

the target correctly even in presence of occlusions. In such
situations, the proposed stereo vision based scheme m@educ
better localization than a monocular camera based scheme.
Fig. 13 shows three bar charts representing the localizatio
error for different distances of the target from the camera.
These bar charts (left to right) are plotted for three défer
values of the occlusion’s heiglitOm (no occlusion),0.5m
and1.0m, respectively . It is observed that, if the distance of
the object from the left camera or the height of occlusion is
increasing, the error is also increasing in the case of maaoc
camera based scheme. Instead, the proposed stereo lboaliza
framework generates an error that is almost constant and not
dependent to the occlusion height or object distance. lmger

of quantitative analysis, a person, dm from the cameras
and occluded from feet td.00m height, is localized by the
proposed method with an error ®47m. The monocular
system, in the same conditions, has an error4df6m.

This analysis proves the better performance of the proposed
localization framework over the existing monocular camera
based techniques. A speed of 4 frame per second (fps) have
been obtained for the localization of the target coupled wit

the interpolation based computation of rectification tfanrs
Fig. 12. Localization of a partially occluded target on 2Dpmaith the mations.
proposed ‘+’ and monocular ‘X’ approaches. The ‘O’ représemound truth
position of target. First row: Master (static) camera imaggrond row: Left

PTZ camera image, third row: right PTZ camera image and finadlalization
in bottom row. D. Depth Map

High resolution depth maps are estimated for a far and large
scene in a complex environment. Fig. 14 shows the depth map
left PTZ camera from left to right and vice versa for the rightbtained for a building by adopting a coarse-to-fine strateg
PTZ camera in third row. The rectification is performed witiwo successive iterations. The top row represents the riigpa
and without compensating the effect of unequal zoom level fmap results obtained from a pair of images captured at low
all three pairs of stereo frames and then localization isenagesolution of both cameras, i.e. in the first iteration of the
from both kinds of rectified frames. It can be seen, from thsrocess when both PTZ cameras are directed towards this
presented results, that the localization accuracy is betten region. Then the zoom level of left PTZ camera is selected
rectification has been performed after compensating tleeteffwith the proposed resolution strategy and a corresponding
of unequal zoom. disparity map is obtained. From the obtained disparity nitap,
The second set of experiments are presented in Fig. 12found that the variation in depths are larger for the detbc
to show the superiority of the proposed stereo framework&gion of interests. In this context, the FOV of the right PTZ
over monocular camera based approach in the localizaticamera is refined to acquire high resolution image. The high
of partially occluded objects. Again, three different gadf resolution images for the selected region are given in the
frames have been considered having different distances freecond row. Finally, the high resolution depth map (righstmo
cameras and occlusion’s heights. The better performanceirofthe second row) is obtained with this pair of images. The
the proposed stereo vision based localization algorithmbga  higher zoom difference between these two pairs of images
seen in Fig. 12. The proposed algorithm is capable to logaliresults in a better depth information for the selected megio
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Fig. 14. Experiment for high resolution depth estimatiomhiro successive iterations (top to bottom). In each row lafnera image, right camera image
and corresponding depth map image.

Fig. 15. Testing points with matching lines in two successterations (left to right).

. X . TABLE |
To judge the accuracy of high resolution depth map OVefoupariSON OFDEPTHESTIMATION IN TWO SUCCESSIVEI TERATIONS

the low resolution depth map, three points at different dept

S . . L. Parameters Itr-1 Itr-2
have been selected within the region of interest. In théainit . >
depth map (low resolution), the points appear to have the Mean Relative Error (%) 329 086
. ! . ) Standard Dev. Error (%) 3.50 1.04
same depths, while these three points appear to be at differe , :
depths in the high resolution depth map. To give a quantéati Relative depth uncertainty (m) 0.797 0.307
) Disparity drift p (m) -.0088 -.0064

evaluation of the results obtained with the iterative pthoe,
twenty points with ground truth depths information haverbee
selected. The matching is performed for finding correspuondi
points in all three rectified image pairs (see Fig. 15) witbdjo
pixel precision. Five points have been randomly selected X g P 2
compute the disparity drift for both pairs of images. Let tho" the region having more depth variations, Heferepresents
calculated and ground truth disparities for these five pdiet (he average depth in a depth map imageand v is the

d; andd;, respectively. The disparity drift has been calculatdiprizontal resolution of the rectified images. Table | shows
as the comparison results based on the above mentioned ariteri

It is important to notice that all the measures are improving
with further iterations, i.e. the depth errors are very high

the first iteration while these reduce significantly in theafin

_ iteration. In the similar way, relative depth uncertaintyda

For the other 15 points, we have estimated the degths: disparity drift iteratively improve. Finally, the depth waics

J (b/(d;+ p)) and computed the mean and standard deviatim several low and high resolution depth maps have been
of the absolute differences between ground truth and etinagenerated. For thig?2 different pairs of images captured from
depths in the two successive iterations. Moreover, we hayéth PTZ cameras at various zoom settings have been used.
compared the depth uncertainfy= d’ (u/b) in support of The zoom settings are automatically adapted by both cameras

@yr claim that the high resolution depth map is more accurate

5
1 .
p:gg [(d} — dj)] for j=1,2, ..., 5
i=1
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using the proposed scheme. All depth map images have ben D. Wan and J. Zhaou, “Stereo vision using two ptz camé@emputer
stitched in the coordinate frame of a priori selected image, Vision and Image Understandingol. 112(2), pp. 184-194, 2008.

Perspective transformation is used to aIign such depth mps [9] J. Hart, B. Scassellati, and S. Zucker, “Epipolar geaynéir humanoid
generating the mosaic. Fi§? shows the generated depth map
mosaic, in which the gray value linearly reveals the magtetu [10]
of the depth value. The visual quality of the obtained depth
map mosaic represents that the proposed method works well
for a large and complex environment. (11]

VIlI. CONCLUSIONS

A dual PTZ camera based stereo system has been presthzel
for different video surveillance applications. First, ameeal
time rectification algorithm has been proposed. The reaéti [13]
rectification transformations have been achieved by iolatp
ing the rotation parameters for given orientations of the& PT14]
cameras. A process for compensating the unequal zoomsffect
between the images of a stereo pairs has been given to geneiaf
more accurate rectified images. The rectified frames have bee
used in two different applications: a) target localizatamd [16]
b) depth map mosaic. The evaluation of the proposed system
performed on real sequence allows to derive the following
considerations: [17]

1) The proposed interpolation based rectification works
very well for achieving real-time rectification. [18]
For the localization of partially occluded targets, the
proposed system outperforms monocular camera based
systems. [19]
The proposed framework is able to obtain high reso-
lution depth maps for regions having larger variatiopo)
in depths and the low resolution depth maps for flatter
regions. Moreover, this process requires only limited 1]
priori information.
In the near future, the proposed framework will be used b[?z]
develop a multispectral stereo active system (using @si
and thermal PTZ cameras). This will allow to perform stereo
tasks in environmental conditions (like foggy, rainy etehere (23]
visible cameras do not perform well.

2)

3)
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