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ABSTRACT
This paper deals with the problem of camera networks recon-
figuration. In particular, the case of Pan-Tilt-Zoom (PTZ)
cameras is considered, and a method is proposed in order
to automatically change the pan, tilt and zoom parameters
in order to maximize the coverage of relevant portions of
the observed environment. Here, the “relevant portions”
are defined in terms of motion activity maps, measuring
the passage of moving objects over a map of the monitored
scene, however the method can be applied to arbitrary maps.
Moreover, occlusions are explicitly handled, so that the map
is different for each camera, depending on which portions
of the scene are visible from a given point of view. The
proposed technique works by approximating the observed
zones with ellipses and finds a locally optimal solution by
using the Expectation Maximization algorithm. In order to
avoid unfeasible solutions (ellipses that cannot be obtained
by any PTZ configuration) the computation is performed in
a proper space where the geometric constraints due to the
camera positions become null.

1. INTRODUCTION
Networks of video sensors are nowadays becoming more

and more common in order to meet the requirements of
many real-world scenarios, generally focused on security-
oriented applications or more generally on ambient mon-
itoring. While networks of static cameras were the only
sensible choice in the past years, today the recent develop-
ments in the hardware industry have lead to the production
of cheap Pan-Tilt-Zoom (PTZ) cameras, which can be suc-
cessfully used in modern systems. However, the use of such
sensors is often limited to human operators manually chang-
ing the camera orientation and/or zoom. An important as-
pect of PTZ networks has not been deeply investigated yet:
how can the pan, tilt and zoom parameters be configured
in order to maximize the network performance according to
a specific task? For example, consider a surveillance sys-
tem whose aim is to detect activity patterns (e.g. passing
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people): what is the best camera configuration in order to
guarantee maximum coverage in the areas where the most
relevant activities have been detected? The question is not
trivial, since it must take in consideration several aspects
such as camera constraints (the position of the cameras are
generally fixed, and only PTZ parameters can be modified),
presence of occlusions in the monitored environment, and
dynamic changes (e.g. in the activity data, or in the net-
work topology because of the failure of a sensor) that could
make the previous configuration obsolete.

Since this is a relatively recent research area, the state
of the art in this sector is limited. Karuppiah et al. [3]
proposed two new metrics that, based on the dynamics of
the scene, allow to choose the pair of cameras that maxi-
mize the detection probability of a moving object. In [7],
a distributed look-up table based approach is proposed to
determine the cameras’ viewing frustums that allows to se-
lect the best cameras for tracking purposes. In [2], Kansal
et al. proposed an optimization process for the determina-
tion of the network configuration that maximizes a proper
metric. It is interesting to note how the adopted metrics
are concretely bound to real sensors thus propose a feasible
instrument for real applications. More recently, Mittal and
Davis [5,6] introduced a method for determining good sensor
configurations that would maximize performance measures
for a better system performance. In particular, the authors
based the configuration on the presence of random occluding
objects and proposed two techniques to analyze the visibil-
ity of the objects. Qureshi and Terzopoulos [8] proposed a
proactive control of multiple PTZ cameras through a solu-
tion that plans assignment and handoff. In particular, the
authors cast the problem of controlling multiple cameras as
a multibody planning problem in which a central planner
controls the actions of multiple physical agents. In the con-
text of person tracking, their approach computes the rele-
vance of a PTZ camera to an observation task by considering
five factors: a) camera-pedestrian distance, b) frontal view-
ing direction, c) PTZ limits , d) observational range and e)
handoff success probability. The planing is then achieved
by employing a greedy best-first search to find the optimal
sequence of states.

A different approach to network reconfiguration for per-
son tracking by means of PTZ camera can be developed by
employing the game theory. Arslan et al. [1], demonstrate
the Nash equilibrium for the strategies lies in probability dis-
tribution. From this formulation, different approaches [4, 9]
proposing a set of utility functions solve the camera assign-
ment problem by maximizing a global utility function. Dif-



ferent mechanisms to compute the utilities can be provided
as in [4, 9, 10], then a bargaining process is executed on the
predictions of person utilities at each step. The cameras
with the highest probabilities are used to track the target
thus providing a solution to the handoff problem in a video
network. On the other hand, when a PTZ camera is recon-
figured to track an object or switched on/off to save power
the topology of the network is modified. As consequence, a
new configuration is required to provide optimal coverage of
the monitored environment. Song et al. [9] adopt a uniform
distribution of the targets and the coverage resolution utility
to negotiate the new network reconfiguration.

The aim of this paper is to propose a PTZ camera net-
work optimal reconfiguration technique. The pan, tilt and
zoom parameters of each camera are automatically modified
in order to maximize the environment coverage according to
a predefined activity map describing the presence of moving
objects over the observed area: the idea is that the cameras
should focus on the zones of highest activity, possibly leaving
out the least used zones if no full coverage is possible. The
camera coverages could be limited by the presence of envi-
ronmental occlusions, which are explicitly handled by the
proposed method. The method is based on a slightly modi-
fied version of the popular Expectation-Maximization (EM)
algorithm, applied in a proper space where the constraints
due to the camera positions become null.

The paper is structured as follows: in section 2 the ba-
sics of the Expectation-Maximization algorithm are briefly
given. The main idea of performing the reconfiguration of
a network of sensors is described in section 3, in which we
discuss both which are the optimality criteria to be satisfied
and how EM could be used to perform this task. The de-
tails of the proposed algorithm are given in section 4, where
a variation of the EM algorithm is presented in order to
compute only feasible solutions. Finally, section 5 presents
some experimental results performed on both synthetic and
real data.

2. EXPECTATION MAXIMIZATION
In order to understand the rest of the proposed technique,

it is useful to briefly recall here the basic principles of Ex-
pectation Maximization. Expectation Maximization (EM)
is a popular tool for data fitting: given a family of proba-
bility density functions (PDF), it searches for the function
f that best describes the distribution of a given data set
X = {x1, . . . ,xN}. We will here consider the special case of
the mixture of isotropic Gaussian functions, where the PDF
are defined as

f(x; Φ) =

K∑
k=1

G(x,µk, σk)ck (1)

and G is an isotropic, multivariate (D-dimensional) Gaus-
sian function1:

G(x,µk, σk) =
1

(
√

2πσk)D
e
− ‖x−µk‖

2

2σ2
k (2)

The vector Φ contains all the parameters needed to uniquely
define a PDF, this is the weights c1, . . . , cK , the means
µ1, . . . ,µK and the variances σ1, . . . , σK .

1The focus on isotropic functions will be justified in the next
section.

The “best” PDF is defined by the set of parameters Φ̂
maximizing the likelihood function Λ, defined as:

Λ(X,Φ) =

N∏
n=1

f(xn; Φ) (3)

The optimal parameters Φ̂ are thus defined as:

Φ̂ = argmax
Φ

Λ(X,Φ)

= argmax
Φ

ln Λ(X,Φ)

= argmax
Φ

N∑
n=1

ln f(xn; Φ)

= argmax
µ,σ,c

N∑
n=1

ln

K∑
k=1

G(x,µk, σk)ck

(4)

A solution for the optimization problem (4) can be computed
by setting to zero the partial derivatives of ln Λ(X,Φ) with
respect to µ, σ and c respectively. This leads to the equa-
tions

µk =

∑N
n=1 xnp(k|n)∑N
n=1 p(k|n)

σ2
k =

∑N
n=1 ‖xn − µk‖2p(k|n)

D
∑N

n=1 p(k|n)
(5)

ck =
1

N

N∑
n=1

p(k|n)

for each Gaussian distribution k, where the term p(k|n) is
the probability that, given a data point xn, it has been
drawn from the distribution k, and it is defined as

p(k|n) =
G(xn,µk, σk)ck∑K
z=1G(xn,µz, σz)cz

(6)

The equations (5) and (6) cannot be easily solved since
they are mutually dependent. The Expectation-Maximization
algorithm solves the problem by starting from an arbitrary
set of values for µ, σ and c for each Gaussian, and iteratively
alternating the computation of (6) (Expectation step) and
(5) (Maximization step).

3. DEFINING THE OPTIMAL CONFIGU-
RATION

In order to search for the optimal configuration for the
pan, tilt and zoom parameters of the cameras, an optimal-
ity criterion must be defined. In this work, we have chosen
to work with relevance maps, 2-dimensional discrete func-
tions in the form of m : N2 7→ R representing a relevance
value for each point of a discrete map of the scene. For ex-
ample, figure 1(a) shows a relevance map based on moving
object activity. In this case, several cameras have been ob-
serving the area of a parking lot, and moving objects have
been detected with standard change detection algorithms.
The position of each moving object has been projected on
a discretized version of the scene map using homographic
transformations, and each “cell” of the map is incremented
whenever a moving object crosses that region. The map thus
associates to each observed region its usage in terms of pass-
ing objects. Even though the experimental section of this



paper will be focused on tests performed on these activity
maps, the proposed optimization technique is independent
from the type of relevance maps used: the maps could even
be computed from different types of sensors such as acoustic
ones.

If there are no occlusions in the camera views, a single
relevance map would be sufficient. However, the presence
of static occlusions lead to different relevance maps for each
camera, since the areas behind the occlusion cannot be ob-
served and thus should have a relevance of 0 (see figure 1).
Handling occlusions is a fundamental step in a sensor recon-
figuration system, since the occluded zone not visible from
a given camera could be covered by other sensors in the
network.

Under the assumption of a planar scene, the intersection
of a camera cone of view with the ground plane is an ellipse
(assuming that the camera is not looking above the horizon).
The problem of finding an optimal camera configuration can
thus be reduced to a data fitting problem, in which a set of
ellipses (one for each camera) matches the relevance maps
in order to maximize their coverage. This can be obtained
by applying the Expectation-Maximization algorithm, prior
a minor modification to the basic algorithm in order to sup-
port different relevance weights for each point (equations in
the next section). Switching from the Gaussians computed
by EM to the required ellipses is straightforward, since the
isoprobability curves of a generic bivariate Gaussian distri-
bution are ellipses, and each ellipse corresponds to a specific
quantile of the distribution. For example, given a Gaussian
with mean µ and covariance matrix Σ, the isoprobability el-
lipse with equation

√
(x− µ)T Σ−1(x− µ) = 2 corresponds

to the 95% quantile: in other words, by interpreting that
ellipse as a camera coverage, we ensure that the region ob-
served by the camera will contain the data associated to that
specific Gaussian function with a probability of 0.95 (these
will be the values used in the experimental section).

However, only a small subset of all the possible ellipses can
really be interpreted as an intersection of a cone of view with
the ground plane, since their main axis must be oriented
toward the camera, as clearly shown by figure 2. The vast
majority of the solutions found by a direct application of EM
would actually be unfeasible. A simple yet effective solution
to this problem is proposed in the next section.

Figure 2: Top view of a camera and its observed el-
liptical region. No configurations of the pan, tilt and
zoom parameters could lead to an observed region
shaped as the red ellipse.

4. FINDING ONLY FEASIBLE SOLUTIONS

Figure 3: The pan-tilt space of a camera can be rep-
resented as a sphere surrounding the camera. Ob-
serve that ellipses in the ground plane become cir-
cles in the pan-tilt space. Moreover, any circle in the
pan-tilt space can be associated to a valid PTZ con-
figuration, a property that does not hold for generic
ellipses in on the ground plane.

As discussed in the previous section, EM cannot be di-
rectly applied on relevance maps, since it could possibly
compute solutions that cannot be interpreted as the ob-
served regions for a set of cameras. We propose to solve
this problem by performing the computations in a new space
where any possible solution is acceptable. Figure 3 gives an
intuitive interpretation of the proposed method: any valid
ellipse on the ground plane is projected into a circle on the
surface of a sphere centered on the camera. If the data
fitting process is performed in the spherical space, the prob-
lem becomes unconstrained, since any circle corresponds to
a valid pan, tilt and zoom configuration of the camera: the
pan and tilt parameters will define the position of the circle,
while the zoom parameter will define its radius. The pro-
posed method thus relies on applying EM in this new space,
which essentially implies a switch to spherical coordinates.
In particular, for any point (x, y) on the ground plane and a
given camera placed at coordinates (Xc, Yc, Zc), we compute
the pan (φ) and tilt (θ) coordinates of the point as:

φ = arctan
(

y−Yc
x−Xc

)
θ = arctan

(√
(x−Xc)2+(y−Yc)2

Zc

)
(7)

A further coordinate system change is applied by moving to
polar coordinates: {

u = θ cosφ

v = θ sinφ
(8)

Ellipses in the ground plane correspond to circles in the
newly defined uv-space, as shown in figure 4. Performing
the computation of EM in the uv-space thus will always lead
to feasible solutions if the algorithm is forced to find only
circular-shaped solutions. This can be obtained by using the
equations for isotropic Gaussians, as done in equations (5)
and (6). Note that each camera will have its own uv-space,



(a) (b) (c)

Figure 1: Relevance maps based on motion activity. (a) the global relevance map; (b) as seen from camera 1;
(c) as seen from camera 2. Map colors represent the degree of detected activity (blue=low activity, red=high
activity).

(a) (b)

Figure 4: Ellipses in the ground plane are mapped
to circles in the uv-space. (a) the ground plane; (b)
the uv-space.

but this does not influence the solving equations, since each
Gaussian “interacts” with the other ones only in the Expec-
tation step (equation (6)), and in that equation the only
requirement is the possibility of computing the probability
of a given point for each Gaussian, a computation that can
be performed in a separate uv-space for each camera.

Finally, the original EM equations do not consider the
possibility of having different weights for each point (the
values of the relevance maps), but the extension is straight-
forward. Moreover, if different sets of weights are used for
each camera, it is also possible to handle occlusions, since it
will be sufficient to set the weight to zero for all those point
not directly visible from the camera.

The proposed algorithm can thus be defined in this way:
for each point xn with coordinates (xn, yn) on the ground
plane, compute its projection x̂nk on the uv-space of each
camera k centered in (Xk, Yk, Zk):

φnk = arctan

(
yn − Yk

xn −Xk

)
θnk = arctan

(√
(xn −Xk)2 + (yn − Yk)2

Zk

)
x̂nk = [θnk cosφnk, θnk sinφnk]

Then, find an EM solution by iteratively applying the fol-
lowing steps:

• Expectation step:

p(k|n) =
wnkG(x̂nk,µk, σk)ck∑K
z=1 wnzG(x̂nz,µz, σz)cz

(9)

• Maximization step:

µk =

∑N
n=1 wnk p(k|n) x̂nk∑N

n=1 wnk p(k|n)

σ2
k =

∑N
n=1 wnk p(k|n) ‖x̂nk − µk‖2

2
∑N

n=1 wnk p(k|n)
(10)

ck =

∑N
n=1 wnk p(k|n)∑N

n=1 wnk

where wnk is the weight (relevance) of point xn taken from
the relevance map associated to camera k.

Once the algorithm has converged to a solution, the pan
and tilt values for each camera k can be found by computing
the inverse polar transformation for the point µk:{

φk = arctan
(
µk(2)

µk(1)

)
θk =

√
µk(1)2 + µk(2)2

(11)

while the zoom level will be proportional to σk.

5. EXPERIMENTAL RESULTS
In order to evaluate the performance of the proposed al-

gorithm, we first tested it on synthetic data and then on real
measurements coming from a surveillance system. We used
a Matlab trajectory generator we previously developed for
a trajectory analysis work and which is publicly available2.
The trajectory generator creates a set of random trajecto-
ries grouped in a variable number of clusters, plus some out-
liers. The trajectory map is then discretized into a 48× 64
grid and for each grid cell we count how many trajectories
cross it; this way a relevance map is created. Once the map
is created, a rectangular-shaped occlusion of limited size is
randomly put on the map (figure 1(a)). The number and po-
sition of the cameras is again randomly chosen (always on
the map borders) and the new relevance maps for each cam-
eras are computed by identifying the occluded areas (figures
1(b) and 1(c)).

Figures 5(a)–(c) show the computed results after 2, 4 and
10 iterations respectively in the case of three cameras and
an occlusion; after the 10th iteration the algorithms has con-
verged to a stable solution. Figures 5(d)–(f) show the final
result as seen from each one of the three cameras. Observe

2http://avires.dimi.uniud.it/papers/trclust/



(a) (b) (c)

(d) (e) (f)

Figure 5: Network reconfiguration for optimal relevance map coverage. (a)–(c) results after 2, 4 and 10
iteration respectively; (d)–(f) the relevance maps and the observed regions for camera 1, 2 and 3 respectively.

how camera 3 focuses only on its visible region, while dis-
carding all the zones behind the occlusion; however, the hid-
den region is covered by camera 1, from which the zone is
fully visible.

In order to measure the quality of the data coverage, we
define a score sn for each data point xn defined as

sn =

K∑
k=1

wnk G(x̂nk,µk, σk) (12)

This way, the score reflects that the Gaussians should be cen-
tered on the most relevant points (with high weights wnk);
moreover the score is higher if high-relevance points are cov-
ered by more than one Gaussian. A global configuration
score can then be defined as

1

N

N∑
n=1

sn (13)

This score allows to monitor the iterative EM process, thus
making possible to check if the algorithm really converges
to a better solution than the initial one. Figure 6 shows the
score values at each iteration for the experiment shown in
figure 5. As it can be seen, the score has increased up to
convergence, meaning that the algorithm has really found
a better solution at each iteration step. This behavior has
been observed in all the performed tests.

Even though the score can measure the performance im-
provement as the algorithm iterates, it does not have an
immediate and intuitive meaning, thus making it not suit-
able for batch results. we thus defined another performance
measure which has a more intuitive interpretation, the cov-
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Figure 6: The overall score at different iteration
steps for the experiment shown in figure 5.

erage c defined as:

c =

∑
n∈E maxk(wnk)∑N
n=1 maxk(wnk)

(14)

where E is the set of all the points falling within at least
one ellipse. The value c is thus a measure of the cover-
age of the data points, ranging from 0 to 1 (total coverage)
and giving more importance to the points with high rele-
vance. This performance metric gives an intuitive meaning
to the results shown in table 1. Here, 50 tests have been
performed, each one with a random number and position of
cameras and with random relevance maps with occlusions.



The test data are publicly available in order to encourage fu-
ture comparative results3. As it can be seen, the proposed
method seems to give good results in terms of coverage, with
a minimum coverage of 0.9333 and a maximum coverage of
1, with a mean of 0.9757 and a standard deviation of 0.0157.
Observe that the score values are not easily comparable be-
tween different tests, since they depend also on the number
of Gaussians (cameras), which is randomly chosen for each
test. The scores are here reported only for comparison with
other techniques applied on the same data sets.

test score coverage test score coverage

1 66.7272 0.9851 26 149.7472 0.9773
2 19.0007 1.0000 27 34.8725 0.9920
3 192.4728 0.9799 28 24.9652 0.9695
4 19.9578 0.9958 29 122.9014 0.9670
5 49.7638 0.9840 30 126.9778 0.9632
6 67.3638 0.9800 31 75.1907 0.9833
7 143.3025 0.9983 32 184.6799 0.9584
8 72.9799 0.9973 33 151.1612 0.9905
9 126.6761 0.9868 34 34.8747 0.9512
10 233.0987 0.9654 35 33.6040 0.9870
11 137.9270 0.9830 36 58.9277 0.9925
12 78.4417 0.9798 37 256.8763 0.9630
13 41.7085 0.9746 38 58.1713 0.9778
14 71.5236 0.9757 39 144.4666 0.9726
15 41.4097 0.9758 40 39.0397 0.9333
16 120.6578 0.9678 41 72.6748 0.9588
17 26.5087 0.9986 42 99.7195 0.9596
18 35.2319 0.9792 43 50.1147 0.9839
19 26.6857 0.9909 44 109.4096 0.9883
20 128.2982 0.9436 45 33.1720 0.9639
21 189.8183 0.9760 46 116.3147 0.9597
22 17.9085 0.9399 47 163.1278 0.9887
23 188.4652 0.9624 48 69.1296 0.9778
24 155.6098 0.9652 49 67.8829 0.9992
25 191.8158 0.9610 50 194.3093 0.9814

Table 1: Test results over 50 random data sets. For
each data set (available online) the score and cover-
age metrics are given.

Finally, an example taken from real world is shown in
figure 7. In this case, the parking lot in front of our uni-
versity building has been monitored using wide field-of-view
cameras for 4 hours, during which the moving objects have
been detected and tracked (figure 7(a)). This has led to the
motion activity map shown in figure 7(b). The proposed
algorithm has been applied in order to reconfigure two PTZ
cameras mounted on the roof of the building. The two cam-
eras can span full 360ř in pan and 0ř-120ř in tilt direction,
and thus can achieve any feasible solution computed by the
system. The minimum and maximum zoom levels instead
imposed a lower and an upper bound to the computed values
of σ2 (see eq. 10). The final result is shown again in figure
7(b); the final coverage is 0.9681.

6. CONCLUSIONS
In this paper we have presented a method for achieving

an automatic and optimal reconfiguration of a network of

3available in Matlab format at http://avires.dimi.uniud.
it/papers/icdsc10/icdsc2010_dataset.zip

PTZ cameras. The reconfiguration consists in finding the
pan, tilt and zoom parameter for each camera that lead
to an optimal coverage of relevance maps. Relevance maps
represent the points visible from each camera and their im-
portance (also considering occlusions); the maps used in this
work are based on the number of detected moving objects in
each zone across the observed scene, however other relevance
maps could be used. Reconfiguration is achieved by using a
variation of the Expectation-Maximization algorithm, where
all the computations are performed in a proper data space
where any solution found is automatically feasible, in the
sense that it can be expressed as a pan, tilt and zoom con-
figuration for a given camera. Experimental results give a
performance measurement of the proposed technique.
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