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Abstract—This paper deals with person re-identification in a
multi-camera scenario with non-overlapping fields of view. Sig-
nature based matching has been the dominant choice for state-of-
the-art person re-identification across multiple non-overlapping
cameras. In contrast we propose a novel approach that exploits
pairwise dissimilarities between feature vectors to perform the
re-identification in a supervised learning framework. To achieve
the proposed objective we address the person re-identification
problem as follows: i) we extract multiple features from two
persons images and compare them using standard distance
metrics. This gives rise to what we called distance feature vector;
ii) we learn the set of positive and negative distance feature
vectors and perform the re-identification by classifying the test
distance feature vectors. We evaluate our approach on two
publicly available benchmark datasets and we compare it with
state-of-the-art methods for person re-identification.

I. INTRODUCTION

Recent achievements of image sensing technologies have
boosted video analytic systems for wide area surveillance.
Though the sensor devices are becoming cheaper, monitoring
a wide area by deploying a large number of cameras is still a
challenging task. As a matter of fact, in wide area surveillance
systems, not all the zones are usually covered by sensors.
This opens up to the critical issues of uncovered areas, named
“blind gaps”. As a result of the “blind-gaps”, large variation
of viewpoints, illumination conditions, scales, etc., the task of
re-identifying a person moving across such uncovered areas is
a challenge to the community.

To deal with these issues, during the last years much effort
has been made to design robust features that can be used to
describe and match a specific person across different cam-
eras [6], [12], [11]. Different approaches have been proposed
to find linear and non-linear [14], [9] transformation functions
between appearance features among pairs of cameras. The
problem of target re-identification has also been addressed by
finding the best distance metric [8], [18] that can be used to
match features across non-overlapping cameras.

Despite this, target re-identification in a non-overlapping
multi-camera scenario is still an open issue due to the chal-
lenging issues of pose variations, illumination changes, that
introduce unknown transformations of the features between
cameras. Motivated by the recent success of metric learning
methods and feature transformation approaches we propose
a novel target re-identification approach to address these
challenges. The core novelty of this work is a method that
aims to model not the way features are transformed across

camera, but to advantage of invariant features and proper
distance metrics to model how the distances between such
features are transformed across cameras. To achieve this goal
we extract the feature vectors from a pair of targets viewed
in different cameras, then we compute the distance between
such features and use the distances to form the distance feature
vector (DFV). The DFVs from the same person form the set of
positive samples, while the DFVs from different persons form
the negative set. Using the positive and negative DFVs we
re-identify persons in a supervised classification framework.

Positive and negative samples are classified by means of
a DFV applied on a pair of cameras. The proposed solution
can be easily included in a distribute framework like that we
previously proposed in [13].

To validate the proposed method we compare the perfor-
mance of our approach to state-of-the-art methods for per-
son re-identification using two publicly available benchmark
datasets.

II. RELATED WORK

In the past different approaches have been proposed by the
community to deal with the problem of person re-identification
across non-overlapping cameras: i) methods that use invariant
appearance features, ii) methods that capture the transforma-
tion of features across camera pairs, and iii) methods that learn
the optimal distance metric between appearance features.

Invariant feature methods are the most commonly explored
approaches for person re-identification. Particular interest has
been focused on finding the best set of features [11] that can
be exploited to match persons across cameras. In [4], [12],
[2] multiple local and global features were used to create
an invariant signature using multiple image frames. In [15],
frames were used to built a collaborative representation that
best approximates the query frames. In [10], the distribu-
tion of color features projected in the log-chromaticity space
was described using the shape context descriptor. In [17] an
unsupervised framework was proposed to extract distinctive
features. A patch matching method was used together with
adjacency constraint to tackle viewpoint changes and pose
variations.

Transformation methods were been explored in [9] to
capture the transformation across non-overlapping cameras in a
tracking scenario. Similarly, the problem of capturing the non-
linear transformation between features was addressed in [14].
In [1] the implicit transformation function of features was
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Fig. 1. An overview of our person re-identification approach. From each given image, we extract shape, color and texture features, then we compute the
pairwise distances between the feature vectors extracted for targets viewed by different cameras. The computed distances form the DFV. The DFV from a pair
of images of the same person is a positive sample, while the DFV from a pair of images of different persons is a negative sample. The DFVs are used to train
a binary classifier. The trained classifier is used to re-identify targets by classifying test DFV.

learned by concatenating appearance feature vectors of persons
viewed by different cameras.

Distance methods learn the best metric between appearance
features of the same person across camera pairs. In [8] the
Largest Margin Nearest Neighbor technique was exploited to
learn a Mahalanobis metric using pairs of labeled samples
from different cameras. In [5] the Large Margin Nearest
Neighbor with Rejection method was proposed. In [16] the
re-identification problem was formulated as a local distance
comparison problem introducing an energy-based loss function
that measures the similarity between appearance instances.

III. OUR APPROACH

An overview of our approach is shown in Figure 1. Given
a pair of images from non-overlapping cameras, we extract
multiple local and global features (Section III-A) and we
compute pairwise distances between them (Section III-B).
The computed distances form the DFV. To use this feature
for classification we train a binary classifier to classify new
examples.

A. Feature extraction

Here we describe the feature extraction methods used to
build a discriminative representation of the image of a person.

Motivation. The task of re-identifying targets across camera
pairs is challenging because of the issues of pose variation,
illumination and color changes. State-of-the-art methods for
person re-identification have successfully explored different
appearance features [11] to tackle these challenges. Inspired

by that, to obtain a robust feature representation of an im-
age across cameras, we considered, shape, color and texture
features invariant to the stated issues.

Shape. To capture the shape of a given person we used the
Pyramid Histogram of Oriented Gradients (PHOG) feature.
The PHOG feature is computed exploiting the spatial pyramid
technique. Let l = 0, · · · , L be the level of the spatial pyramid,
and 4l the number of cells in which the image is divided at
each level l. The PHOG feature Φ is the concatenation of the
HOG computed at the different levels and for different cells of
the spatial pyramid. The final PHOG feature vector is of size
b
∑L
l=0 4l, where b is the number of bins used to compute the

HOG features.

Color. Color histogram features are the most widely used
features to describe a person image. All state-of-the-art person
re-identification methods use color features relying on the as-
sumption that persons do not change their clothes as they move
between camera Fields-of-view. According to that, we extract
six different color histogram features from each given image.
We consider that most of the persons wear different clothes for
the upper and lower body part, so, before computing the color
features we detect the three salient body parts (i.e., head, torso
and legs) using a derivation of the approach proposed in [7].
We discard the head region from the feature computation since
it generally contains few and not informative pixels. To achieve
illumination invariant properties we equalize the histograms of
the two regions and project them into the Lab color space.
Then, we extract a histograms for each color channel c for
both the torso and legs regions. The histograms for the two
regions are denoted ΥT ∈ Rnc and ΥL ∈ Rnc , respectively.
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Fig. 2. Color and shape features. (a) Color histogram features extracted
from the torso and legs body parts. (b) PHOG features extracted from the
whole body at three different levels of the spatial image pyramid (L = 2).
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Fig. 3. (a) Gabor filter bank with 8 orientations and 5 sizes; (b) Standard
Schimid filter bank; (c) Leung-Malik filter bank. The set consists of first and
second derivatives of Gaussians at 6 orientations and 3 scales making a total
of 36; 8 Laplacian of Gaussian filters; and 4 Gaussians.

We use different bin quantizations nc, such that the lightness
component of the color space has a coarse representation.

Texture As for the color features, we use texture features to
capture the appearance of a person. To deal with object scale
and rotation variations, we consider texture features that have
invariant properties with respect to these issues. We used a
bank of Gabor filters with different sizes and orientations (see
Figure 3(a)). After convolving each image with a single filter
we computed the modulus of the response and we quantized
it in a histogram with g bins. We denote the set of all such
histograms as {Γi}Ii=1, where i indicates the ith Gabor filter.
Similarly we used the Schmid filters (Figure 3(b)) to get
the set of histograms {Ψj}Jj=1, each of which has s bins.
Finally we convolve each given image with the Leung-Malik
(LM) filter bank consisting of first and second derivatives
of Gaussians at 6 orientations and 3 scales, 8 Laplacian of
Gaussian (LoG) filters, and 4 Gaussians (Figure 3(c)). After
convolving the image with a single filter we quantized the
response in a histogram with m bins. {Λk}Kk=1 is the set of

(a) (b) (c) (d)

Fig. 4. Response images after convolutions with the three different filter banks
shown in Figure 3. All filter responses are sum and scaled for visualization. (a)
Input image. (b) Response after convolution of 40 Gabor filters. (c) Response
after convolution of 13 Schmid filters. (d) Response after convolution of 48
Leaung-Malik filters.

all such histograms, where k indicates the kth LM filter. An
example of the responses of the different filter banks is shown
in Figure 4.

B. Distance feature vector

Intuition. In the image representation discussed in Sec-
tion III-A, we compute color, shape and texture features
resulting in a very high-dimensional feature vector for each
image. Using such a large number of features is advantageous
because they can provide a richer representation and capture
more subtle visual distinctions between different persons.
However, the feature vector may contain non-discriminative
elements (some features might capture uninformative features).
Even though some invariant properties hold, projecting the
feature vector to the feature space of a different camera and
match features through proper distances is not always sufficient
for finding a good correspondence between persons images.
Therefore, we need to find a better way to use the invariant
properties of such features and to find the most discriminating
elements of the feature vector that allows us to perform a robust
re-identification. Towards this objective we propose not to use
the distance metrics to find direct correspondences between
persons across cameras, but we used the pairwise distance
between feature vectors as a new feature.

Distances. To form the DFV for a pair of images we compute
pairwise distances for all the considered features. Given two
images A and B and the corresponding features extracted as
described in Section III-A, we define the following pairwise
distances.

• PHOG: dΦ(AΦ, BΦ), where AΦ and BΦ are the
PHOG features for the image A and image B respec-
tively.

• Color: histograms are compared using distances
between feature vectors extracted from the same
body part for for each of the three channels as
dΥT

(AΥT , BΥT ) and dΥL
(AΥL , BΥL).

• Gabor: dΓ(AΓi , BΓi), for i = 1, · · · , I .
• Schmid: dΨ(AΨj , BΨj ), for j = 1, · · · , J .
• LM filters: dΛ(AΛk , BΛk), for k = 1, · · · ,K.

Notice that here we do not specify any particular distance
measure since the algorithm can be used with different metrics.



Algorithm 1: Random Forest for Classification of DFVs
Input : Training DFVs
Output: Trained ensemble of trees
for n← to N do

Draw a bootstrap sample Z∗ of size S from the
training data;
Grow a random-forest tree Tn to the bootstrapped
data, by recursively repeating the following steps
for each terminal node of the tree, until the
minimum node size smin is reached:

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point among the m.

iii. Split the node into two child nodes.
end
Output the ensemble of trees {Tn}Nn=1;

Classification. The DFV computed for a pair of images of the
same person is considered as a positive sample, while the DFV
computed for a pair of images of different persons is a negative
sample. We use our novel pairwise image representation to
discriminate in the distance feature space training a random
forest classifier [3].

Let A and B be two images, all the computed distances are
concatenated to form the DFV VA,B = 〈dΥT

, dΥL
, · · · , dΛ〉.

Then, the goal of classification is to learn a mapping from the
feature space of V , to the label space, Y = {−1,+1}.

The random forests algorithm builds a large collection
of de-correlated trees exploiting the bagging idea, where the
objective is to reduce the variance of an estimated prediction
function by pooling many noisy but approximately unbiased
models. Trees are ideal candidates for bagging as they capture
complex interaction structures in the data and have low bias.
Also, trees are very noisy, hence they benefit greatly from
the pooling procedure. As shown in [3], an average of N i.i.d.
random variables, each with variance σ2, has variance 1/Nσ2.
If the variables are simply i.d. (identically distributed, but not
necessarily independent) with positive pairwise correlation ρ,
the variance of the average is ρσ2 + 1−ρ

N σ2. As N increases,
the second term disappears, but the first remains, and hence
the size of the correlation of pairs of bagged trees limits the
benefits of pooling. The idea in random forests is to improve
the variance reduction of bagging by reducing the correlation
between the trees, without increasing the variance too much.
This is achieved in the tree-growing process through random
selection of the input variables.

To learn the parameters of the decision surface that sepa-
rates positive and negative DFVs we trained a random forest
classifier using the steps given in Algorithm 1. Once the
model has been trained, a new sample DFVs VA,B is assigned
a class label ĈN (VA,B) = majority vote{Ĉn(VA,B)}Nn=1

where Ĉn(VA,B) = {−1,+1} is the class prediction of the
n-th random-forest tree.

IV. EXPERIMENTAL RESULTS

We evaluate the performance our method using two
publicly available benchmark datasets: CAVIAR4REID [4]
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Fig. 5. Comparison of the proposed algorithm with state-of-the-art methods
for person re-identification on CAVIAR dataset. In (a) 42 persons have been
used for training and 8 person for testing. In (b) 25 persons have been used
for training and 25 person for testing.

and Wide Area Re-Identification Dataset (WARD) [12]. To
show the achieved performance, we computed the Cumulative
Matching Characteristic (CMC) curve.

Implementation details In our current framework, we selected
the following settings for all the experiments using 4-fold cross
validation.
Shape: PHOG features are extracted for L = 4 levels of the
spatial pyramid; the HOG histograms computed for each cell
have been quantized into b = 9 bins.
Color: the histograms for the torso and legs body parts have
been computed using 20, 30, and 30 bins for the L*, a*, and
b* channel respectively.
Texture: we used Gabor filters at 8 orientations and 5 scales.
We used the 13 standard Schmid filters and for LM filters
we considered the following. The four basic Gaussians have
scales σ = {

√
2, 2, 2

√
2, 4}. The first and second derivatives

of Gaussians occur at the first three scales with an elongation
factor of 3. Finally, the 8 Laplacian of Gaussian filters have
been defined using the same σ and 3σ.
Distances: we used the χ2 distance to compute all the distances
given in Section III-B.
Datasets: we followed a standard image normalization proce-
dure on the datasets and we re-sized all the images to 64×128.
We tested the performance of our approach using 40 positive
and 40 negative samples per person.

A. CAVIAR Dataset

The CAVIAR4REID dataset has 1220 images of 72 persons
out of which 50 are acquired by two non-overlapping cameras.
The images are of different sizes, varying from 39×17 to
144×72 with illumination and pose changes. We compare
our results with those achieved by SDALF [2], CPS [4] and
ICT [1], as reported in [1]. To fairly evaluate our approach
we used the same two setups proposed in [1] showing the
relative performance as a function of the size of the training
data. We run 10 independent trials for each setup and average
the achieved results.

Figure 5(a) shows the performance of the method when 42
persons have been used to form the training set. The remaining
8 persons form the test set. Using 42 persons as training
data our approach achieves similar performance to ICT and it
outperforms both the other two methods used for comparison.
We achieved 65% rank 1 correct matches and we re-identify all
the persons in the test set in the first 5 ranks thus outperforming
all other methods.



In figure 5(b), the recognition performance are computed
using a training set and a test set of 25 persons. As for the
previous scenario, the performances of the our approach are
similar to those of ICT. We achieved a recognition percentage
of about 78% for a rank score of 5. For the same rank score, a
recognition percentage of 72%, 67% and 56% is achieved by
ICT, CPS and SDALF, respectively. Similarly as before, we
achieve the 100% recognition percentage with a lower rank
score value than all other methods. In particular, we recognize
all the persons in the test set when the rank score is 15.

B. WARD Dataset

The WARD dataset has 4786 images of 70 persons cap-
tured by three non-overlapping cameras. The images are of
different sizes, with strong illumination changes. We compare
our results with those achieved by RWCAN et al. [12] and
SDALF [2], then we deeply investigate our performance under
two different setups. For each result we run 10 independent
trials and we show the average performance for the three
camera pairs, here denoted camera pair 1-2, 1-3 and 2-3.

Figure 6(a), 6(b) and 6(c) show the performance of our
method compared to RWACN and SDALF. The recognition
performance are computed using a training set and a test set
of 35 persons. For all the three camera pairs we outperform
the methods used for comparisons. For camera pair 1-2 (see
Fig. 6(a)), we achieve a recognition percentage of 84% for a
rank score of 5, while, for the same rank score, RWACN and
SDALF achieve a recognition percentage of 48% and 36%
respectively. Similarly, for camera pair 1-3 (see Fig. 6(b)), a
recognition percentage of 86% is achieved for a rank score of
5. The other state-of-the-art methods achieve the same recog-
nition percentage for a rank score of 19 and 23 respectively.
Finally, for camera pair 2-3 (see Fig. 6(c)), we achieve a
recognition percentage of more than 50% for a rank score of
1 thus outperforming both methods used for comparison.

Figure 7(a), 7(b) and 7(c) show the relative performance
of the approach as a function of the size of the training
data. The CMC curves have been computed using all the
color, shape and texture features as described in section III-A.
Notice that the maximum rank for each curve is given by the
number of persons used for testing. For all the three curves
the performance are not decreasing that much even if only
50% of the persons in the dataset are used for training and
the remaining 50% of persons for testing. In such case, the
worst performances still lead to a recognition rate higher than
33% for the rank 1 score. The best recognition percentage is
achieved for the camera pair 2-3, where a recognition rate of
52% is achieved. For all the three camera pairs, the recognition
rate strongly improves as the number of persons used for
training increases. When 63 persons out of 70 are used for
training a recognition rate higher than 60% is achieved for
rank 1 for all the camera pairs. In particular, a recognition
rate of 81% is reached for rank 1 score for camera pair 1-2.

Figure 8(a), 8(b) and 8(c) show the performance of the
method when 56 persons out of 70 have been used to form
the training for all the three cameras in the dataset. We show
different CMC curves for the remaining 14 persons when only
some of the proposed features are used for re-identification.
For all the three cameras the combination of all the proposed

features achieves the best overall performances. Despite of
that it’s worth noticing some facts. For the first and the third
camera pair, the most discriminative features are the color
and the shape features, while for the second camera pair
the color features have weaker performance than texture and
shape features. Considering the combination of all features we
achieved about 50% rank 1 correct matches for the first and
second camera pair. For the third camera pair the performance
increase significantly and a 70% rank 1 is achieved.

V. CONCLUSIONS

In this work we presented a novel approach for person
re-identification in a non-overlapping multi-camera scenario.
We introduced a method that models not the way features are
transformed across camera, but exploits invariant features and
robust distance metrics to model how the distances between
such features are transformed across non-overlapping cameras.
Towards this objective we extracted feature vectors from
pairs of persons images viewed in different cameras, and we
computed the distance between them to form the DFV. We
trained a binary classifier to discriminate between DFVs and to
perform the re-identification. To validate the proposed method
we compared the performance of our approach to state-of-the-
art methods using two publicly available benchmark datasets.

As future works we’ll evaluate the proposed algorithm
using different global and local features. This, combined with
the different distances that can be used to compute the DFVs
will give more details about the performance of our approach.
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Fig. 6. Comparison of the proposed algorithm with state-of-the-art methods for person re-identification on WARD dataset. (a) Recognition performance for
camera pair 1-2. (b) Recognition performance for camera pair 1-3. (c) Recognition performance for camera pair 2-3.
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Fig. 7. Performance on the WARD dataset for varying train and test dataset sizes. Recognition performance for camera pairs 1-2, 1-3 and 2-3 are shown
in (a), (b) and (c) respectively.
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Fig. 8. Performance on the WARD dataset using different combination of the proposed features. Recognition performance for camera pairs 1-2, 1-3 and 2-3
are shown in (a), (b) and (c) respectively.
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