

What is Systems Biology?

H. Kitano – Science 2002

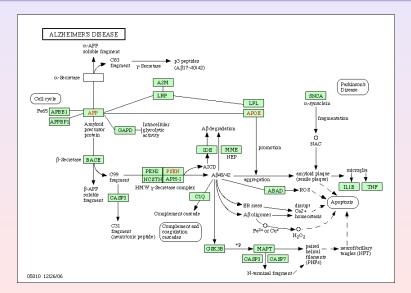
System-level understanding, the approach advocated in systems biology, requires a shift in our notion of "what to look for" in biology. While an understanding of genes and proteins continues to be important, the focus is on understanding a system's structure and dynamics.

What can we do for Systems Biology?

P. Nurse – Nature 2003

An important part of the search for such explanations is the identification, characterization and classification of the logical and informational modules that operate in cells. For example, the types of modules that may be involved in the dynamics of intracellular communication include feedback loops, switches, timers, oscillators and amplifiers. Many of these could be similar in formal structure to those already studied in the development of machine theory, computing and electronic circuitry.

Outline	The Problems	The Desiderata	Models and Logics	Few References	Conclusions
	Outline				



- 3 Models and Logics
- 4 Few References

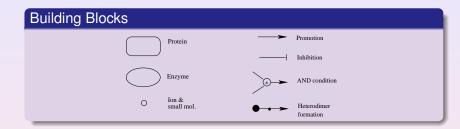
5 Conclusions

Input: Pathways

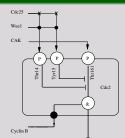
Pathways and DataBases

KEGG – Kyoto Encyclopedia of Genes and Genomes

KEGG PATHWAY is a collection of manually drawn pathway maps representing our knowledge on the molecular interaction and reaction networks.

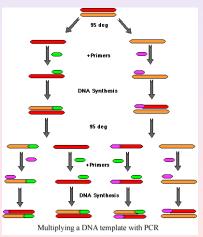

Entry	2597	CDS	H.sapiens	
Gene name	GAPDH, GAPD			
Definition	glyceraldehyde-3	phosphat	e dehydrogenase (EC:1.2.1.12)	
Orthology	KO: K00134 glyce	eraldehyd	e 3-phosphate dehydrogenase [EC:1.2.1.12]	
Pathway	PATH: hsa01510 / PATH: hsa05010 / PATH: hsa05040 /	Neurodege Alzheimer Huntingto		
Class	BRITE hierarchy			
SSDB	Ortholog (Paralog)	Gene cluste	n i i i i i i i i i i i i i i i i i i i	
Motif	Pfam: DapB_N Gp_c PROSITE: GAPDH Motif	dh_N Gp_d	h_C	
Other DBs	04114: 138400 NGEI-GE: 7669492 NGEI-Genetib: 2567 NGEI-Genetib: 2567 NGEI-Genetib: 2567 NGEI-GENETIB: 2567 Ensembi: 156520000111640 UniProt: F04400 053465			
LinkDB	All DBs			
Characterist	PDB: 1U8F 1ZNO	100 10	S	

H. Kitano. *A graphical notation for biochemical networks*. BIOSILICO 2003

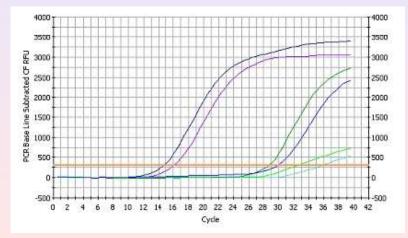

This is at the basis of standard graphical notation for Systems Biology Mark-up Language (SBML) Level-III:

- State Transition Diagrams. Represent the evolution of the molecules during the reaction. They are graphs in which each node is a state of a component and each edge represents a transition between states.
- Block Diagrams. Represent the relationships among molecular species. Each molecule is represented only once. Each node is a molecule and each edge represents the interaction between two or more nodes.
- Flow Charts. Describe the evolution of the biological events. They abstract state-transition diagrams.

Block Diagrams



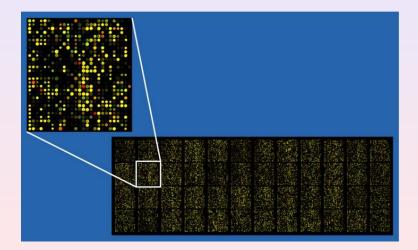
Example


Input: (1) Polymerase Chain Reaction

Polymerase chain reaction (PCR) is a technique for exponentially amplifying a fragment of DNA (RNA).

Input: (1) Polymerase Chain Reaction

Polymerase chain reaction (PCR) is a technique for exponentially amplifying a fragment of DNA (RNA).

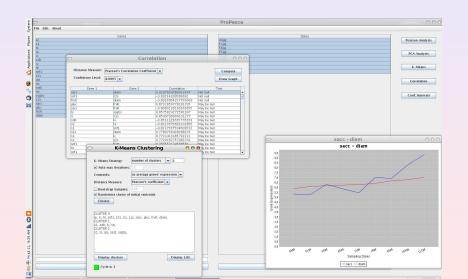


Input: (1) Polymerase Chain Reaction

Polymerase chain reaction (PCR) is a technique for exponentially amplifying a fragment of DNA (RNA).

It can be used for Gene Profiling.

Input: (2) Microarrays



PCR and Microarray Data

	Edit View Insert Format Tools Data	"S 🖏 🔏 🗇 📋	- 🛓
	Arial 💿 10 💽		
D12	 fie Σ = 		
1	Label	в C(T)	c
2	YML042W 2003 1gg	17400	
3	YML042W 2003 2gg	31320	
4	YML042W 2003 3gg	25230	
5	YML042W 2003 4gg	15660	
6	YML042W 2003 5gg	12470	
7	YML042W 2003 6gg	11970	
8	YML042W 2003 7gg	8880	
9	YML042W 2003 8gg	8360	
10	YML042W 2003 9gg	1270	
11	YML042W 2003 10gg	760	
		284C / YKR009C / YKL188C /	YALO54CI < >

We can treat them as random variables and apply Statistical Methods... or even Information Theory.

ProPesca

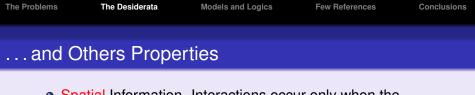
The Problems	The Desiderata	Models and Logics	Few References	Conclusions
¿Output?				

Biologists questions:

- Is this pathway complete? Are there missing nodes or edges?
- Which are the admissible equilibria? Is there a periodic behavior?
- If these are the PCR data, which is the hidden pathway?
- Which genes control this phenomenon?
- Which are the main phases in this behavior?

The Problems	The Desiderata	Models and Logics	Few References	Conclusions
¿Output?				

Biologists questions:


- Is this pathway complete? Are there missing nodes or edges?
- Which are the admissible equilibria? Is there a periodic behavior?
- If these are the PCR data, which is the hidden pathway?
- Which genes control this phenomenon?
- Which are the main phases in this behavior?

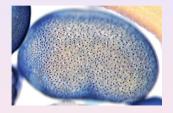
Our answers (9): I cannot tell. I need more information. I need consistent data.

Robustness Property

H. Kitano – Nature 2004

Robustness is a ubiquitously observed property of biological systems. It is considered to be a fundamental feature of complex evolvable systems. It is attained by several underlying principles that are universal to both biological organisms and sophisticated engineering systems. Robustness facilitates evolvability and robust traits are often selected by evolution.

Spatial Information. Interactions occur only when the reactants are "close".

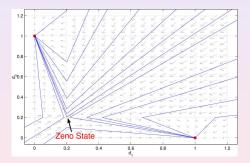

• Fast/Slow Reactions. When different phenomena involve different time scales it seems necessary to study them separately, but sometime they are mutually dependent.

• Scalability. We are modeling cells. The challenge is to model tissues, organs, systems.

• ... see, e.g., B. Mishra et al. A Sense of Life. OMICS 2003.

Delta Notch Example

Delta and Notch are proteins involved in cell differentiation (see, e.g., Collier et al., Ghosh et al.).


Notch production is triggered by high Delta levels in neighboring cells.

Delta production is triggered by low Notch concentrations in the same cell.

High Delta levels lead to differentiation.

Delta-Notch Example – Two Cells

Involves spatial information, scalability, ...

... and robustness. A Zeno state occur if the cells have identical initial concentrations.

Which kind of Model/Logic?

- Quantitative vs Qualitative. Do we have enough data?
- Dense vs Discrete. Is nature discrete or dense?
- Stochastic vs (Non) Deterministic.
 - Does (non) determinism exist in nature?

Which kind of Model/Logic?

- Quantitative vs Qualitative. Do we have enough data?
- Dense vs Discrete. Is nature discrete or dense?
- Stochastic vs (Non) Deterministic.
 Does (non) determinism exist in nature?

• Mathematical vs Computational.

J. Fisher and T. A. Henzinger. *Executable cell biology*. Nat. Biotech. 2007

Which kind of Model/Logic?

- Quantitative vs Qualitative. Do we have enough data?
- Dense vs Discrete. Is nature discrete or dense?
- Stochastic vs (Non) Deterministic.
 Does (non) determinism exist in nature?

• Mathematical vs Computational.

J. Fisher and T. A. Henzinger. *Executable cell biology*. Nat. Biotech. 2007

We should mix things up: Hybrid Models

Mathematical and Computational Models

J. Fisher and T. A. Henzinger 2007.

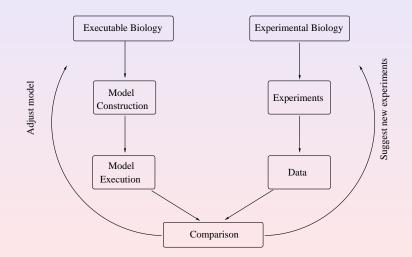
Computational Models

A computational model is a formal model whose primary semantics is operational; that is, the model prescribes a sequence of steps or instructions that can be executed by an abstract machine, which can be implemented on a real computer.

Mathematical Models

A mathematical model is a formal model whose primary semantics is denotational; that is, the model describes by equations a relationship between quantities and how they change over time.

Quantitative and Qualitative Models


J. Fisher and T. A. Henzinger 2007.

Quantitative Models

Quantitative models are difficult to obtain and analyze if the number of interdependent variables grows and if the relationships depend on qualitative events, such as a concentration reaching a threshold value.

Qualitative Models

A significant advantage of qualitative models is that different models can be used to describe the same system at different levels of detail and that the various levels can be related formally.

Differential Equations

Differential Equation and Dynamical Systems have been largely used as modeling language in physics, chemistry, biology, engineering, economics.

Definition

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and of its derivatives of various orders.

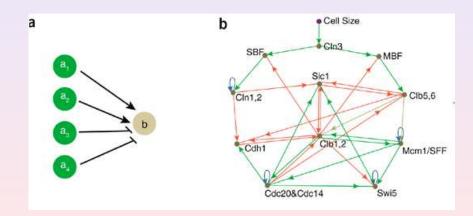
- Numerical Analysis methods allow to approximate/simulate solutions.
- Dynamical Systems methods study the qualitative behaviors.

Law of Mass Action

Example

Consider the following set of chemical reactions:

$$\begin{array}{rccc} A+B & \stackrel{k_1}{\to} & C+C \\ A+C & \stackrel{k_2}{\to} & D \end{array}$$

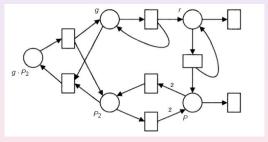

It is modeled by the following ODE:

$$\begin{cases} [\dot{A}] &= -k_1[A][B] - k_2[A][C]\\ [\dot{B}] &= -k_1[A][B]\\ [\dot{C}] &= 2k_1[A][B] - k_2[A][C]\\ [\dot{D}] &= k_2[A][C] \end{cases}$$

Boolean Networks – S. A. Kauffman 1969

- Boolean networks are qualitative, discrete, computational models.
- Each molecule (e.g., gene or protein) is either active or inactive.
- A molecule becomes active if the sum of its activations is larger than the sum of its inhibitions.
- The state of the system is the set of active molecules.
- The states are nodes of a graph. State changes are edges.
- Loops are used to deduce stable states. The number of loops is used to reason about robustness.

Boolean Network – Cell Cycle Budding Yeast

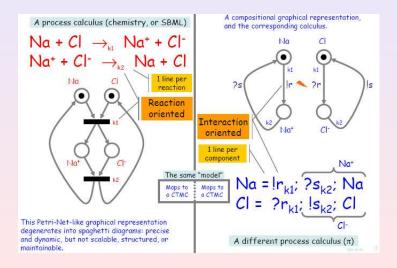


They are not hierarchical and hard to compose.

Petri Nets – C. A. Petri 1962, Talcott et al. 2005

- A Petri net is a graph with two types of nodes: places (resources) and transitions (state changes).
- The edges of the graph connect places to transitions and vice-versa.
- The state of the system is represented by places holding tokens.
- Transitions change the state of the system by moving tokens along edges.
- We can also find coloured and stochastic Petri nets.

Petri Nets – Example



- $g + P_2 \leftrightarrow g \cdot P_2$ $g \rightarrow g + r$ $r \rightarrow r + P$ $2P \leftrightarrow P_2$ $r \rightarrow \emptyset$ $P \rightarrow \emptyset$
- Repression Transcription Translation Dimerisation mRNA degradation Protein degradation

Process Calculi – R. Milner 1973, C. Priami 1995, L. Cardelli 2002, ...

- We are moving toward quantitative, dense, stochastic, computational models.
- Processes model molecules. Many copies of the same process run in parallel to simulate the existence of many molecules.
- Communication between processes models interactions between molecules.
- It is applicable to molecular interactions that occur stochastically.
- Scalability is an issue.

Process Calculi – Example

Other Approaches

- Model Checking and Temporal Logics (see, e.g., Alur et al., Fages et al., Mishra et al.)
- Constraint Programming (see, e.g., WCB proceedings)
- Answer Set Programming (see, e.g., Schaub et al.)
- . . .
- Hybrid Automata. Do not miss the second part of this tutorial.

The Problems	The Desiderata	Models and Logics	Few References	Conclusions
lssues				

There are so many ...

- Compositionality
- Scalability
- Computational Complexity
- Comparisons
- Query Languages
- Robustness
- ...

The Problems	The Desiderata	Models and Logics	Few References	Conclusions
Issues				

There are so many ...

- Compositionality
- Scalability
- Computational Complexity
- Comparisons
- Query Languages
- Robustness
- ...

Suggestions/Solutions are welcome.

Please, BOB (Bring Other Biologists).

- Bisca Project: Bologna, Pisa, Siena, Trento, Udine
- Camerino, Milano

 Rajeev Alur, Calin Belta, Luca Cardelli, Edmund Clarke, François Fages, David Harel, Thomas Henzinger, Katsuhisa Horimoto, Hiroaki Kitano, Reinhard Laubenbacher, Bud Mishra, George Pappas, Torsten Schaub, Carolyn Talcott, Ashish Tiwari, Claire Tomlin, Adelinde Uhrmacher, ...

Conferences, Journals, Schools

- Algebraic Biology (AB)
- Computational Methods in Systems Biology (CMSB)
- International Conference on Systems Biology (ICSB)
- From Biology to Concurrency (FBTC)
- Membrane Computing and Biologically Inspired Process Calculi (MeCBIC)
- Workshop on Constraint Based Methods for Bioinformatics (WCB)
- Transactions on Computational Systems Biology
- IEEE/ACM Transactions on Computational Biology and Bioinformatics
- Biology, Computation, and Information (BCI)
- Lipari Summer School on BioInformatics and Computational Biology

- Biology provides us a bunch of interesting problems.
- We briefly talked together about "one" of them.
- There is space for models, logics, algorithms, ...
- However, integration is fundamental:
 - integration with the biologists.
 - integration of modeling techniques.

Thank you!