Decidable Compositions of O-Minimal Automata

Alberto Casagrande^{1,2} Pietro Corvaja¹ Carla Piazza¹ Bud Mishra^{3,4}

¹DIMI, Univ. di Udine, Udine, Italy

²Institute of Applied Genomics, Udine, Italy.

³Courant Institute, NYU, New York, USA

⁴NYU School of Medicine, New York, USA

Hybrid Systems

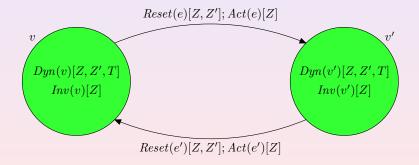
Many real systems have a double nature. They:

- evolve in a continuous way
- are ruled by a discrete system

We call such systems hybrid systems and we can formalize them using hybrid automata

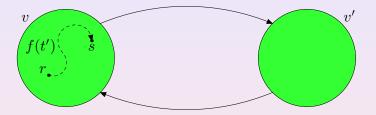
Hybrid Automata - Intuitively

A hybrid automaton *H* is a finite state automaton with continuous variables *Z*



A state is a pair $\langle v, r \rangle$ where r is an evaluation for Z

Hybrid Automata - Semantics

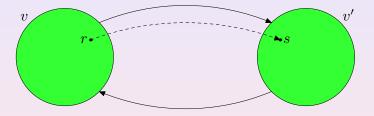


Definition (Continuous Transition)

$$\langle \boldsymbol{v}, \boldsymbol{r} \rangle \xrightarrow{t}_{C} \langle \boldsymbol{v}, \boldsymbol{s} \rangle \quad \Longleftrightarrow$$

there exists a continuous $f : \mathbb{R}^+ \mapsto \mathbb{R}^k$ such that r = f(0), s = f(t), and for each $t' \in [0, t]$ the formulæ Inv(v)[f(t')] and Dyn(v)[r, f(t'), t']hold

Hybrid Automata - Semantics



Definition (Discrete Transition)

$$\langle \boldsymbol{v}, \boldsymbol{r} \rangle \xrightarrow{\langle \boldsymbol{v}, \lambda, \boldsymbol{v}' \rangle} D \langle \boldsymbol{v}', \boldsymbol{s} \rangle \quad \iff$$

 $\begin{array}{ll} \langle v, \lambda, v' \rangle & \in & \mathcal{E} \quad \text{and} \\ Inv(v)[r], & Act(\langle v, \lambda, v' \rangle)[r], \\ Reset(\langle v, \lambda, v' \rangle)[r, s], & \text{and} \\ Inv(v')[s] \text{ hold} \end{array}$

Decidable Classes

Question

Can we automatically verify hybrid automaton properties?

Not even reachability is decidable in general

Many decidable classes have been defined: Timed automata, Multi-rated automata, Rectangular automata, O-minimal automata, Semi-algebraic Constant Reset automata

Observation

Decidability results are usually obtained by quotients, e.g., Bisimulation and Simulation

Semi-Algebraic O-Minimal Hybrid Automata

Definition (Semi-Algebraic Theory)

First-order polynomial formulæ over the reals $(\mathbb{R}, 0, 1, *, +, >)$

Example

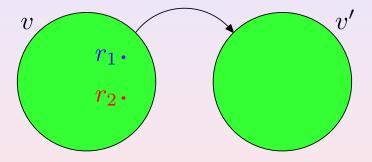
$$\exists T \geq 0 (Z' = T^2 - T + Z \land 1 \leq Z \leq 2)$$

Definition

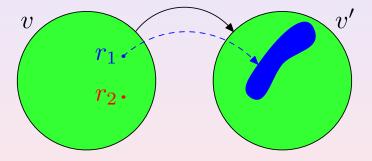
An hybrid automaton *H* is semi-algebraic o-minimal if:

- *H* is o-minimal (mainly means constant resets)
- Dyn, Inv, Reset, and Act are semi-algebraic

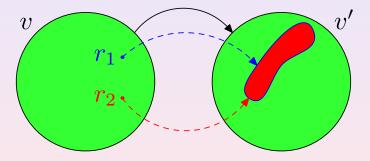
Constant Resets



Constant Resets



Constant Resets



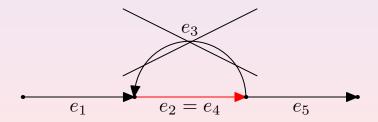
 $\forall Z' (Reset(e)[r_1, Z'] \leftrightarrow Reset(e)[r_2, Z'])$

Conclusions

Semi-Algebraic O-Minimal Automata Properties - I

Constant resets imply that:

Acyclic paths are enough for reachability



Semi-Algebraic O-Minimal Automata Properties - II

Constant resets and semi-algebraic formulæ allow us to reduce reachability to satisfiability of first-order formulæ over $(\mathbb{R}, 0, 1, *, +, >)$

 $Reachable[Z, Z'] \equiv \bigvee_{ph \in Ph} \exists T \ge 0(Reach_{ph}[Z, Z', T])$

where *Ph* is the set of all acyclic paths and $Reach_{ph}[Z, Z', T]$ means that *Z* reaches *Z'* in time *T* through *ph*

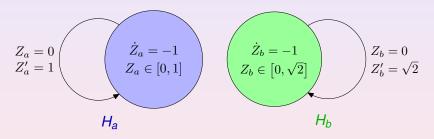
First-order formulæ over $(\mathbb{R}, 0, 1, *, +, >)$ are decidable [Tarski]

How to Increase Expressivity?

- We need to relax constant resets
- We could try to define ad-hoc conditions (e.g., at least one constant reset along each cycle)
- What if we compose semi-algebraic o-minimal automata? Compositionality is important both in modeling and in verification

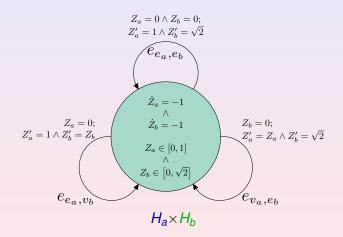
Is reachability still decidable?

Example



To formalize the overall system, we may perform parallel composition of components

Example



Decidability is not preserved by composition [Miller]

Parallel Composition of Hybrid Automata

Definition

Let H_a and H_b be two hybrid automata over distinct variables. The *parallel composition* of H_a and H_b is the hybrid automaton $H_a \otimes H_b$, where:

- we consider all the variables of H_a and H_b
- the locations are the cartesian product of the locations
- each edge represents either one edge in one of the two components or one edge in each component
- Dyn, Inv, and Act are trivially defined as conjunctions
- Reset are conjunctions of either one reset and one identity or two resets

Composition of Semi-Algebraic O-Minimal Automata

The product of semi-algebraic o-minimal automata:

 is not a semi-algebraic o-minimal automata also identity resets are involved

 may have infinite simulation quotient we cannot use quotients for reachability

Reachability in Parallel Composition

Let us consider $H_a \times H_b$, i.e., two automata

 (s_a, s_b) reaches (f_a, f_b) iff there exists a time *t* such that:

- s_a reaches f_a in time t in H_a and
- s_b reaches f_b in the same time in H_b

Reachability in Parallel Composition

Let us consider $H_a \times H_b$, i.e., two automata

 (s_a, s_b) reaches (f_a, f_b) iff there exists a time *t* such that:

- s_a reaches f_a in time t in H_a and
- *s*_b reaches *f*_b in the same time in *H*_b

We can reduce reachability on the composition to:

- study timed reachability on each component
- Intersect the results

Reachability in Parallel Composition

Let us consider $H_a \times H_b$, i.e., two automata

 (s_a, s_b) reaches (f_a, f_b) iff there exists a time *t* such that:

- s_a reaches f_a in time t in H_a and
- *s*_b reaches *f*_b in the same time in *H*_b

We can reduce reachability on the composition to:

- study timed reachability on each component
- intersect the results

We already know that we cannot use quotients

Let us try with first-order formulæ

Timed Reachability on Semi-Algebraic O-Minimal

s reaches f from in time t in H iff

• there exists an acyclic path ph leading from f to s in time tp

• there are cycles which can be added to *ph*

which can be covered once in time ct_1, ct_2, \ldots • $t = th + n_1 * ct_1 + n_2 * ct_2 + \ldots$, with n_1, n_2, \ldots natural

Timed Reachability on Semi-Algebraic O-Minimal

s reaches f from in time t in H iff

• there exists an acyclic path ph leading from f to s in time tp

there are cycles which can be added to ph
• there are cycles which can be added to ph

which can be covered once in time *ct*₁, *ct*₂, ...

• $t = th + n_1 * ct_1 + n_2 * ct_2 + \dots$, with n_1, n_2, \dots natural

Timed Reachability on Semi-Algebraic O-Minimal

s reaches f from in time t in H iff

• there exists an acyclic path ph leading from f to s in time tp

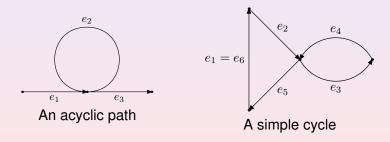
• there are cycles which can be added to ph

which can be covered once in time ct_1, ct_2, \ldots

• $t = th + n_1 * ct_1 + n_2 * ct_2 + ...$, with $n_1, n_2, ...$ natural

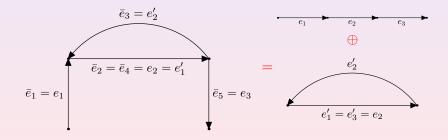
Technicalities - Cycles

We have a cycle only when we cross twice the same edge, since we need to use twice the same reset



Technicalities - Path Decomposition

Each path is a composition of an acyclic path and a finite set of simple cycles



Back to Timed Reachability

If *s* reaches *f* in *H* through an acyclic path *ph* and $\{cy_1, cy_2, \ldots, cy_k\}$ are the simple cycles augmentable to *ph*, then *s* can reach *f* in *H* in time $t \in \text{Time}(ph)$ with

Time(*ph*) = { $t | t = tp + n_1 * tc_1 + \dots + n_k * tc_k$ }

where $tp \in T(ph)$, $tc_i \in T(cy_i)$, and $n_i \in \mathbb{N}$

This is a linear formula involving both semi-algebraic (roots of polynomials) and integer variables

Intersection, i.e., Reachability on the Composition

Let us consider again $H_a \times H_b$

We have to impose that they "spend time together", i.e.,

 $\operatorname{Time}(ph_a) \cap \operatorname{Time}(ph_b) \neq \emptyset$

From timed reachability results, this is equivalent to

 $tpa + n_1 * tca_1 + \cdots + n_k * tca_k = tpb + m_1 * tcb_1 + \cdots + m_h * tcb_h$

where there are natural and semi-algebraic variables

We have reduced our problem to

... a Problem in Computational Number Theory

We have to solve a "system of linear Diophantine equations" with semi-algebraic coefficients:

 $tpa + n_1 * tca_1 + \cdots + n_k * tca_k = tpb + m_1 * tcb_1 + \cdots + m_h * tcb_h$

The semi-algebraic coefficients are not fixed, but are solutions of first-order formulæ over the reals

We proved that this problem is decidable The proof suggests us the easy case

In the easy case: semi-algebraic coefficients are not punctual

Example

$$\begin{array}{l} tpa + n * tca = tpb + m * tcb \\ tpa^2 - 2 \ge 0 \\ 0 \le tpb \le 1 \\ tca^5 - 2tca + 1 \ge 0 \\ tcb^3 + tcb - 10 \ge 0 \end{array}$$

This means that in this case

Reachability on product is reachability on components

Conclusions

- We studied parallel composition of k semi-algebraic o-minimal hybrid automata
- They have identity resets and infinite quotients
- We decided reachability through an algebraic translation

From an high level perspective:

- Reals are "highly" decidable [Tarski]
- Integers are "highly" undecidable [10th Hilbert Pb]
- What is in the middle?