Anna Giordano Bruno - University of Udine (joint works with Dikran Dikranjan)

Topological Groups seminar - University of Hawai'i Tuesday, 5 May 2020

- Topological entropy
 - Definition

Topological entropy [Adler-Konheim-McAndrew 1965]

X compact topological space, $\psi : X \to X$ continuous selfmap. \mathcal{U}, \mathcal{V} open covers of X; $\mathcal{U} \lor \mathcal{V} = \{U \cap V : U \in \mathcal{U}, V \in \mathcal{V}\}.$ $N(\mathcal{U}) =$ the minimal cardinality of a subcover of \mathcal{U} .

- The topological entropy of ψ with respect to \mathcal{U} is $H_{top}(\psi, \mathcal{U}) = \lim_{n \to \infty} \frac{\log N(\mathcal{U} \lor \psi^{-1}(\mathcal{U}) \lor ... \lor \psi^{-n+1}(\mathcal{U}))}{n}.$
- The topological entropy of ψ is $h_{top}(\psi) = \sup\{H_{top}(\psi, U) : U \text{ open cover of } X\}.$

- Topological entropy
 - └─ Totally disconnected abelian groups

K totally disconnected compact abelian group, $\psi \colon K \to K$ continuous endomorphism.

For $L \leq K$ open, n > 0, $C_n(\psi, L) = L \cap \psi^{-1}(L) \cap \ldots \cap \psi^{-n+1}(L)$. Then $h_{top}(\psi) = \sup\{H^*_{top}(\psi, L) \colon L \leq K \text{ open}\},$ where $H^*_{top}(\psi, L) = \lim_{n \to \infty} \frac{\log |L/C_n(\psi, L)|}{n} = \lim_{n \to \infty} \frac{\log |K/C_n(\psi, L)|}{n}.$

- $h_{top}(id_K) = 0.$
- The <u>left Bernoulli shift</u> $_{\kappa}\beta \colon K^{\mathbb{N}} \to K^{\mathbb{N}}$ is defined by $_{\kappa}\beta(x_0, x_1, x_2, \ldots) = (x_1, x_2, x_3, \ldots)$. Then $h_{top}(\kappa\beta) = \log |\kappa|$.

— Topological entropy

└─Yuzvinski Formula

Let $f(x) = sx^n + a_1x^{n-1} + \ldots + a_n \in \mathbb{Z}[x]$ be a primitive polynomial, and let $\{\lambda_i : i = 1, \ldots, n\}$ be the roots of f(x).

The <u>Mahler measure</u> of f(x) is

$$m(f(x)) = \log |s| + \sum_{|\lambda_i|>1} \log |\lambda_i|.$$

Yuzvinski Formula: Let n > 0 and $\psi : \widehat{\mathbb{Q}}^n \to \widehat{\mathbb{Q}}^n$ a topological automorphism. Then

$$h_{top}(\psi) = m(p_{\psi}(x)),$$

where $p_{\psi}(x)$ is the characteristic polynomial of ψ over \mathbb{Z} .

- └─ Topological entropy
 - └─ Basic properties

K compact abelian group, $\psi: K \to K$ continuous endomorphism.

Invariance under conjugation: $\psi: H \to H$ continuous endomorphism, $\xi: K \to H$ topological isomorphism and $\phi = \xi^{-1}\psi\xi$, then $h_{top}(\phi) = h_{top}(\psi)$.

Logarithmic law: $h_{top}(\psi^k) = k \cdot h_{top}(\psi)$ for every $k \ge 0$.

Continuity: $K = \varprojlim_{i \in I} K/K_i$ with K_i closed ψ -invariant subgroup, then $h(\psi) = \sup_{i \in I} h(\overline{\psi}_{K/K_i})$.

Additivity for direct products: $K = K_1 \times K_2$, $\psi_i : K_i \to K_i$ endomorphism, i = 1, 2, then $h(\psi_1 \times \psi_2) = h(\psi_1) + h(\psi_2)$.

Addition Theorem: *H* closed ψ -invariant subgroup of *K*, $\overline{\psi} \colon K/H \to K/H$ induced by ψ . Then $h_{top}(\psi) = h_{top}(\psi \upharpoonright_H) + h_{top}(\overline{\psi}_{K/H}).$

[Adler-Konheim-McAndrew 1965, Stojanov 1987, Yuzvinski 1968]

- Algebraic entropy
 - Definition

Algebraic entropy [Weiss 1974, Peters 1979, Dikranjan-GB 2009]

- *G* abelian group, $\phi \colon G \to G$ endomorphism.
- $F \subseteq G$ non-empty, n > 0, $T_n(\phi, F) = F + \phi(F) + \ldots + \phi^{n-1}(F)$.
 - The algebraic entropy of ϕ with respect to F is $H_{alg}(\phi, F) = \lim_{n \to \infty} \frac{\log |T_n(\phi, F)|}{n}.$
 - The algebraic entropy of ϕ is $h_{alg}(\phi) = \sup\{H_{alg}(\phi, F) \colon F \subseteq G \text{ non-empty finite}\}.$

- Algebraic entropy
 - └─ Torsion abelian groups

G torsion abelian group, $\phi \colon G \to G$ endomorphism.

Then

$$h_{alg}(\phi) = \sup\{H_{alg}(\phi, F) \colon F \leq G \text{ finite}\}$$

•
$$h_{alg}(id_G) = 0.$$

• The right Bernoulli shift $\beta_G \colon G^{(\mathbb{N})} \to G^{(\mathbb{N})}$ is defined by $\beta_G(x_0, x_1, x_2, \ldots) = (0, x_0, x_1, \ldots)$. Then $h_{alg}(\beta_G) = \log |G|$.

Algebraic entropy

Algebraic Yuzvinski Formula

Algebraic Yuzvinski Formula: Let n > 0 and $\phi : \mathbb{Q}^n \to \mathbb{Q}^n$ an endomorphism. Then

$$h_{alg}(\phi) = m(p_{\phi}(x)),$$

where $p_{\phi}(x)$ is the characteristic polynomial of ϕ over \mathbb{Z} .

[GB-Virili 2011]

Algebraic entropy

Basic properties

G abelian group, ϕ : *G* \rightarrow *G* endomorphism.

Invariance under conjugation: $\psi : H \to H$ endomorphism, $\xi : G \to H$ isomorphism and $\phi = \xi^{-1}\psi\xi$, then $h_{alg}(\phi) = h_{alg}(\psi)$.

Logarithmic law: $h_{alg}(\phi^k) = k \cdot h_{alg}(\phi)$ for every $k \ge 0$.

Continuity: $G = \varinjlim_{i \in I} G_i$ with $G_i \phi$ -invariant subgroup, then $h_{alg}(\phi) = \sup_{i \in I} h_{alg}(\phi \upharpoonright_{G_i})$.

Additivity for direct products: $G = G_1 \times G_2$, $\phi_i \colon G_i \to G_i$ endomorphism, i = 1, 2, then $h_{alg}(\phi_1 \times \phi_2) = h_{alg}(\phi_1) + h_{alg}(\phi_2)$.

Addition Theorem: $H \phi$ -invariant subgroup of G, $\overline{\phi}: G/H \to G/H$ induced by ϕ . Then $h_{alg}(\phi) = h_{alg}(\phi \upharpoonright_H) + h_{alg}(\overline{\phi}_{G/H}).$

[Weiss 1974, Dikranjan-Goldsmith-Salce-Zanardo 2009: torsion] [Peters 1979, Dikranjan-GB 2009, 2011: general case]

Bridge Theorem

Statement compact - torsion

The connection of the algebraic and the topological entropy

Theorem (Bridge Theorem [Dikranjan - GB 2012])

K compact abelian group, $\psi \colon K \to K$ continuous endomorphism. Denote by \widehat{K} the Pontryagin dual of K and by $\widehat{\psi} \colon \widehat{K} \to \widehat{K}$ the dual endomorphism of ψ . Then $h_{top}(\psi) = h_{alg}(\widehat{\psi})$.

[Weiss 1974: torsion; Peters 1979: countable, automorphisms.]

- Bridge Theorem
 - └─ Steps of the proof

- The torsion case was proved by Weiss.
- Reduction to the torsion-free abelian groups. [Addition Theorems]
- Reduction to finite-rank torsion-free abelian groups. [Bernoulli shifts, continuity for direct/inverse limits]
- Reduction to divisible finite-rank torsion-free abelian groups, that is, Qⁿ.
 [Addition Theorems]
- Reduction to injective endomorphisms \Rightarrow surjective.
- $\phi: \mathbb{Q}^n \to \mathbb{Q}^n$ automorphism, $\widehat{\phi}: \widehat{\mathbb{Q}}^n \to \widehat{\mathbb{Q}}^n$ topological automorphism.

[Algebraic Yuzvinski Formula and Yuzvinski Formula]

Generalization to LCA groups

L Definitions

Topological and algebraic entropy for LCA groups

G locally compact abelian group, μ Haar measure on *G*, $\phi: G \to G$ continuous endomorphism; $\mathcal{C}(G) =$ the family of compact neighborhoods of 0; $K \in \mathcal{C}(G)$. For n > 0, $C_n(\phi, K) = K \cap \phi^{-1}(K) \dots \cap \phi^{-n+1}(K)$. • [Bowen 1971, Hood 1974] The topological entropy of ϕ is $h_{K}(\phi) = \sup \left\{ \limsup \frac{-\log \mu(C_n(\phi, K))}{K} \in \mathcal{C}(G) \right\}$

 $h_{top}(\phi) = \sup \left\{ \limsup_{n \to \infty} \frac{-\log \mu(C_n(\phi, K))}{n} \colon K \in \mathcal{C}(G) \right\}.$

For n > 0, $T_n(\phi, K) = K + \phi(K) + \ldots + \phi^{n-1}(K)$.

[Peters 1981, Virili 2010]
 The algebraic entropy of φ is

$$h_{alg}(\phi) = \sup\left\{\limsup_{n \to \infty} \frac{\log \mu(\mathcal{T}_n(\phi, \mathcal{K}))}{n} \colon \mathcal{K} \in \mathcal{C}(\mathcal{G})
ight\}.$$

—Generalization to LCA groups

└─Bridge Theorem

Does the Bridge Theorem extend to all LCA groups?

Theorem ([Peters 1981; Virili 20??])

Let G be a locally compact abelian group and $\psi: G \to G$ a topological automorphism. Then $h_{top}(\psi) = h_{alg}(\widehat{\psi})$.

Theorem (Bridge Theorem [Dikranjan - GB 2014])

Let G be a totally disconnected locally compact abelian group and $\psi \colon G \to G$ a continuous endomorphism. Then $h_{top}(\psi) = h_{alg}(\widehat{\psi})$.

Generalization to LCA groups

Proof totally disconnected - compactly covered

G totally disconnected locally compact abelian group, $\psi: G \to G$ continuous endomorphism, $\mathcal{B}(G) = \{U \leq G: U \text{ compact open}\} \subseteq \mathcal{C}(G).$

Then $\mathcal{B}(G)$ is a base of the neighborhoods of 0 in G and $h_{top}(\psi) = \sup\{H^*_{top}(\psi, U) \colon U \in \mathcal{B}(G)\}$, where $H^*_{top}(\psi, U) = \lim_{n \to \infty} \frac{\log |U/C_n(\psi, U)|}{n}$. Moreover, $\mathcal{B}(\widehat{G})$ is cofinal in $\mathcal{C}(\widehat{G})$ and $h_{alg}(\widehat{\psi}) = \sup\{H^*_{alg}(\widehat{\psi}, V) \colon V \in \mathcal{B}(\widehat{G})\}$, where $H^*_{alg}(\widehat{\psi}, V) = \lim_{n \to \infty} \frac{\log |T_n(\widehat{\psi}, V)/V|}{n}$.

An application

└─ The Pinsker factor and the Pinsk<u>er subgroup</u>

K be a compact Hausdorff space, $\psi \colon K \to K$ homeomorphism.

• The topological Pinsker factor of (K, ψ) is the largest factor $\overline{\psi}$ of $\overline{\psi}$ with $h_{top}(\overline{\psi}) = 0$.

[Blanchard-Lacroix 1993]

- ${\it G}$ abelian group, $\phi:{\it G}\rightarrow{\it G}$ endomorphism.
 - The Pinsker subgroup of G is the largest ϕ -invariant subgroup $\mathbf{P}(G, \phi)$ of G such that $h_{alg}(\phi \upharpoonright_{\mathbf{P}(G, \phi)}) = 0$.

[Dikranjan-GB 2010]

An application

The Pinsker factor and the Pinsker subgroup

Let G be an abelian group, $\phi : G \to G$ an endomorphism, $\mathcal{K} = \widehat{G}$ and $\psi = \widehat{\phi}$; $\mathbf{P} = \mathbf{P}(G, \phi)$, $\mathbf{E} = \mathbf{E}(\mathcal{K}, \psi) := \mathbf{P}^{\perp}$.

 $\overline{\psi} \colon \mathcal{K}/\mathbf{E} \to \mathcal{K}/\mathbf{E}$ is the topological Pinsker factor of (\mathcal{K}, ψ) .

- THE END -

Thank you for the attention