Anna Giordano Bruno (joint work with Dikran Dikranjan and Antongiulio Fornasiero)

September 17th, 2018 - Wrocław (Poland)

Algebraic entropy for ℕ-actions

└─ Abelian case

Let A be an abelian group and $\phi : A \to A$ an endomorphism; $\mathcal{P}_f(A) = \{F \subseteq A \mid F \neq \emptyset \text{ finite}\} \supseteq \mathcal{F}(A) = \{F \leq A \mid F \text{ finite}\}.$ For $F \in \mathcal{P}_f(A)$, n > 0, let $\underline{T_n(\phi, F)} = F + \phi(F) + \ldots + \phi^{n-1}(F).$

The algebraic entropy of ϕ with respect to F is

$$H_{alg}(\phi, F) = \lim_{n \to \infty} \frac{\log |T_n(\phi, F)|}{n}.$$

[Adler–Konheim–McAndrew, M.Weiss] The *algebraic entropy* of ϕ is

$$\operatorname{ent}(\phi) = \sup\{H_{alg}(\phi, F) \mid F \in \mathcal{F}(A)\}.$$

[Peters, Dikranjan–GB] The *algebraic entropy* of ϕ is

$$h_{\textit{alg}}(\phi) = \sup\{H_{\textit{alg}}(\phi, F) \mid F \in \mathcal{P}_{f}(A)\}.$$

Clearly,
$$\operatorname{ent}(\phi) = \operatorname{ent}(\phi \upharpoonright_{t(A)}) = h_{alg}(\phi \upharpoonright_{t(A)}) \le h_{alg}(\phi).$$

Algebraic entropy for ℕ-actions

└─ Abelian case

Dikranjan–Goldsmith–Salce–Zanardo for ent, D–GB for
$$h_{alg}$$
]

Theorem (Addition Theorem)

If B is a ϕ -invariant subgroup of A, then

$$h_{alg}(\phi) = h_{alg}(\phi \restriction_B) + h_{alg}(\phi_{A/B}),$$

where $\phi_{A/B} : A/B \to A/B$ is induced by ϕ .

[Weiss for ent, Peters, Dikranjan–GB for h_{alg}]

Theorem (Bridge Theorem)

Denote \widehat{A} the Pontryagin dual of A and $\widehat{\phi} : \widehat{A} \to \widehat{A}$ the dual of ϕ . Then

$$h_{alg}(\phi) = h_{top}(\widehat{\phi}).$$

Here h_{top} denotes the topological entropy for continuous selfmaps of compact spaces [Adler–Konheim–McAndrew].

Algebraic entropy for ℕ-actions

-Abelian case

Example

Let p a prime, $A = \bigoplus_{\mathbb{Z}} \mathbb{Z}(p)$ and $\sigma : A \to A, \ (x_n)_{n \in \mathbb{Z}} \mapsto (x_{n-1})_{n \in \mathbb{Z}}$ the right Bernoulli shift. Then $h_{alg}(\sigma) = \operatorname{ent}(\sigma) = \log p$. (Here $\beta = \sigma^{-1}$ is the left Bernoulli shift and $h_{alg}(\beta) = h_{alg}(\sigma)$.)

Note that
$$\widehat{\mathbb{Z}(p)} = \mathbb{Z}(p)$$
, $\widehat{\bigoplus_{\mathbb{Z}} \mathbb{Z}(p)} = \prod_{\mathbb{Z}} \mathbb{Z}(p)$ and $\widehat{\sigma} = \beta : \prod_{\mathbb{Z}} \mathbb{Z}(p) \to \prod_{\mathbb{Z}} \mathbb{Z}(p)$. Hence, $h_{alg}(\sigma) = h_{top}(\widehat{\sigma}) = \log p$.

Example

Let k > 1 be an integer and consider $\mu_k : \mathbb{Z} \to \mathbb{Z}, x \mapsto kx$. Then $h_{alg}(\mu_k) = \log k$.

Note that $\widehat{\mathbb{Z}} = \mathbb{T}$ and $\widehat{\mu_k} = \mu_k : \mathbb{T} \to \mathbb{T}$.

Algebraic entropy for ℕ-actions

└─ Abelian case

Let $f(x) = sx^n + a_{n-1}x^{n-1} + \ldots + a_0 \in \mathbb{Z}[x]$ be a primitive polynomial. The *Mahler measure* of f is

$$m(f) = \log s + \sum_{|\lambda_i| > 1} \log |\lambda_i|,$$

where λ_i are the roots of f in \mathbb{C} .

Theorem (Algebraic Yuzvinski Formula)

Let n > 0, $\phi : \mathbb{Q}^n \to \mathbb{Q}^n$ an endomorphism and $f_{\phi}(x) = sx^n + a_{n-1}x^{n-1} + \ldots + a_0 \in \mathbb{Z}[x]$ the characteristic polynomial of ϕ . Then

$$h_{alg}(\phi) = m(f_{\phi}).$$

Ornstein–Weiss Lemma for semigroups

Let S be a cancellative semigroup.

S is *right-amenable* if and only if S admits a *right-Følner net*, i.e., a net $(F_i)_{i \in I}$ in $\mathcal{P}_f(S)$ such that, for every $s \in S$,

$$\lim_{i\in I}\frac{|F_is\setminus F_i|}{|F_i|}=0.$$

(analogously, left-amenable).

A map $f : \mathcal{P}_f(S) \to \mathbb{R}$ is:

• subadditive if $f(F_1 \cup F_2) \leq f(F_1) + f(F_2) \ \forall F_1, F_2 \in \mathcal{P}_f(S)$;

2 *left-subinvariant* if $f(sF) \le f(F) \forall s \in S \forall F \in \mathcal{P}_f(S)$;

- right-subinvariant if $f(Fs) \leq f(F) \ \forall s \in S \ \forall F \in \mathcal{P}_f(S)$;
- unif. bounded on singletons if $\exists M \ge 0$, $f(\{s\}) \le M \forall s \in S$.

Let $\mathcal{L}(S) = \{f : \mathcal{P}_f(S) \to \mathbb{R} \mid (1), (2), (4) \text{ hold for } f\}$ and $\mathcal{R}(S) = \{f : \mathcal{P}_f(S) \to \mathbb{R} \mid (1), (3), (4) \text{ hold for } f\}.$

Ornstein–Weiss Lemma for semigroups

[Ceccherini-Silberstein–Coornaert–Krieger, generalizing Ornstein–Weiss Lemma and Fekete Lemma]

Theorem

Let S be a cancellative semigroup which is right-amenable (respectively, left-amenable). For every $f \in \mathcal{L}(S)$ (respectively, $f \in \mathcal{R}(S)$)

there exists $\lambda \in \mathbb{R}_{\geq 0}$ such that

$$\mathcal{H}_{\mathcal{S}}(f) := \lim_{i \in I} \frac{f(F_i)}{|F_i|} = \lambda$$

for every right-Følner (respectively, left-Følner) net $(F_i)_{i \in I}$ of S.

Amenable semigroups actions

Topological entropy

Let S be a cancellative left-amenable semigroup, X a compact space and cov(X) the family of all open covers of X.

For $\mathcal{U} \in \operatorname{cov}(X)$, let $N(\mathcal{U}) = \min\{|\mathcal{V}| \mid \mathcal{V} \subseteq \mathcal{U}\}$.

Consider a left action $S \stackrel{\gamma}{\curvearrowright} X$ by continuous maps. For $\mathcal{U} \in \operatorname{cov}(X)$ and $F \in \mathcal{P}_f(S)$, let

$$\mathcal{U}_{\gamma,F} = \bigvee_{s\in F} \gamma(s)^{-1}(\mathcal{U}) \in \operatorname{cov}(X).$$

$$f_{\mathcal{U}}: \mathcal{P}_{fin}(S) \to \mathbb{R}, \quad F \mapsto \log N(\mathcal{U}_{\gamma,F}).$$

Then $\underline{f_{\mathcal{U}} \in \mathcal{R}(S)}$.

[Ceccherini-Silberstein–Coornaert–Krieger] The topological entropy of γ with respect to ${\cal U}$ is

$$H_{top}(\gamma, \mathcal{U}) = \mathcal{H}_{\mathcal{S}}(f_{\mathcal{U}}).$$

The topological entropy of γ is

$$h_{top}(\gamma) = \sup\{H_{top}(\gamma, \mathcal{U}) \mid \mathcal{U} \in \operatorname{cov}(X)\}.$$

Amenable semigroups actions

└─ Algebraic entropy

Let S be a cancellative right-amenable semigroup. Let A be an abelian group and consider a left action $S \stackrel{\alpha}{\frown} A$ by endomorphisms.

For $X \in \mathcal{P}_f(A)$ and $F \in \mathcal{P}_f(S)$, let

$$T_F(\alpha, X) = \sum_{s \in F} \alpha(s)(X) \in \mathcal{P}_f(A).$$

$$f_X: \mathcal{P}_{fin}(S) \to \mathbb{R}, \quad F \mapsto \log |T_F(\alpha, X)|.$$

Then $\underline{f_X \in \mathcal{L}(S)}$.

The algebraic entropy of α with respect to X is

$$H_{alg}(\alpha, X) = \mathcal{H}_{\mathcal{S}}(f_X).$$

[Fornasiero–GB–Dikranjan, Virili] The algebraic entropy of α is

$$h_{alg}(\alpha) = \sup\{H_{alg}(\alpha, X) \mid X \in \mathcal{P}_{f}(A)\}.$$

Moreover, $ent(\alpha) = sup\{H_{alg}(\alpha, X) \mid X \in \mathcal{F}(A)\}.$

└─ Addition Theorem

Let S be a cancellative right-amenable semigroup. Let A be an abelian group and consider a left action $S \stackrel{\alpha}{\frown} A$ by endomorphisms.

Theorem (Addition Theorem)

If A is torsion and B is an α -invariant subgroup of A, then

$$h_{alg}(\alpha) = h_{alg}(\alpha_B) + h_{alg}(\alpha_{A/B}),$$

where $S \stackrel{\alpha_B}{\frown} B$ and $S \stackrel{\alpha_{B/A}}{\frown} B/A$ are induced by α .

Algebraic entropy for amenable semigroups actions

└─ Bridge Theorem

Let S be a cancellative left-amenable semigroup. Let K be a compact abelian group and consider a left action $S \stackrel{\gamma}{\frown} K$ by continuous endomorphisms.

 γ induces a right action $\widehat{\mathcal{K}} \stackrel{\widehat{\gamma}}{\frown} \mathcal{S}$, defined by

$$\widehat{\gamma}(s) = \widehat{\gamma(s)}: \widehat{\mathcal{K}} o \widehat{\mathcal{K}} \quad ext{for every } s \in S;$$

$\widehat{\gamma}$ is the *dual action of* γ .

Denote by $\widehat{\gamma}^{op}$ the left action $S^{op} \stackrel{\widehat{\gamma}^{op}}{\frown} \widehat{K}$ associated to $\widehat{\gamma}$ of the cancellative right-amenable semigroup S^{op} .

Theorem (Bridge Theorem)

If K is totally disconnected (i.e., A is torsion), then

$$h_{top}(\gamma) = h_{alg}(\widehat{\gamma}^{op}).$$

[Virili for group actions on locally compact abelian groups]

└─Bridge Theorem

Let S be a cancellative left-amenable semigroup. Let K be a compact abelian group and consider a left action $S \stackrel{\gamma}{\sim} K$ by continuous endomorphisms.

Corollary (Addition Theorem)

If K is totally disconnected and L is a $\gamma\text{-invariant subgroup of }K\text{,}$ then

$$h_{top}(\gamma) = h_{top}(\gamma_L) + h_{top}(\gamma_{K/L}),$$

where $S \stackrel{\gamma_L}{\frown} L$ and $S \stackrel{\gamma_{K/L}}{\frown} K/L$ are induced by γ .

Known in the case of compact groups for:

- \mathbb{Z}^{d} -actions on compact groups [Lind-Schmidt-Ward];
- actions of countable amenable groups on compact metrizable groups [Li].

Restriction actions

Let G be an amenable group, A an abelian group, $G \stackrel{\alpha}{\frown} A$. For $H \leq G$ consider $H \stackrel{\alpha \upharpoonright_H}{\frown} A$.

If [G : H] = k ∈ N, then h_{alg}(α ↾_H) = k ⋅ h_{alg}(α).
In particular, h_{alg}(α ↾_H) and h_{alg}(α) are simultaneously 0.

• If *H* is normal, then
$$h_{alg}(\alpha) \leq h_{alg}(\alpha \upharpoonright_{H})$$
.

Conjecture

Let G be an amenable group, A an abelian group, G $\stackrel{\alpha}{\curvearrowright}$ A. For every $H\leq G$,

 $h_{alg}(\alpha) \leq h_{alg}(\alpha \restriction_{H}).$

Restriction actions

Theorem

If H is normal and
$$G/H$$
 is infinite,
 $h_{alg}(\alpha \upharpoonright_{H}) < \infty$ implies $h_{alg}(\alpha) = 0$.

Corollary

Let G and A be infinite abelian groups and $G \stackrel{\alpha}{\frown} A$. If $g \in G \setminus \{0\}$ is such that $G/\langle g \rangle$ is infinite and $h_{alg}(\alpha(g)) < \infty$, then $h_{alg}(\alpha) = 0$.

Hence, for actions $\mathbb{Z}^d \stackrel{\alpha}{\frown} A$ with $\underline{d > 1}$,

- if $h_{alg}(\alpha(g)) < \infty$ for some $g \in \mathbb{Z}^d$, $g \neq 0$, then $h_{alg}(\alpha) = 0$; [Eberlein for h_{top} , Conze for h_{μ}]
- every action Z^d ^α ⊂ Qⁿ has h_{alg}(α) = 0. (Compare with the case d = 1, i.e., the Algebraic Yuzvinski Formula.)

- Shifts

Let G be an amenable group and A an abelian group. Consider the action

$$G \stackrel{\sigma_{G,A}}{\curvearrowright} A^G$$

defined, for every $g \in G$, by

$$\sigma_{G,A}(g)(f)(x) = f(g^{-1}x)$$

for every $f \in A^G$ and $x \in G$. In other words, for every $(a_x)_{x \in G} \in A^G$,

$$\sigma_{G,A}((a_x)_{x\in G})=(a_{g^{-1}x})_{x\in G}.$$

If $G = \mathbb{Z}$, then $\sigma_{\mathbb{Z},A}(1) = \sigma$ is the right Bernoulli shift, that is, $\sigma((a_n)_{n \in \mathbb{Z}}) = (a_{n-1})_{n \in \mathbb{Z}}$.

- Shifts

Let G be an amenable group and A an abelian group. Consider the action

$$G \stackrel{\beta_{G,A}}{\curvearrowright} A^G$$

defined, for every $g \in G$, by

$$\beta_{G,A}(g)(f)(x) = f(xg)$$

for every $f \in A^G$ and $x \in G$. In other words, for every $(a_x)_{x \in G} \in A^G$,

$$\beta_{G,A}((a_x)_{x\in G})=(a_{xg})_{x\in G}.$$

If $G = \mathbb{Z}$, then $\beta_{\mathbb{Z},A}(1) = \beta$ is the left Bernoulli shift, that is, $\beta((a_n)_{n \in \mathbb{Z}}) = (a_{n+1})_{n \in \mathbb{Z}}$.

Shifts

Consider the restrictions
$$G \stackrel{\beta_{G,A}}{\curvearrowright} A^{(G)}$$
 and $G \stackrel{\overline{\sigma}_{G,A}}{\curvearrowright} A^{(G)}$.

Theorem

If G is infinite, then

$$h_{alg}(\bar{\sigma}_{G,A}) = h_{alg}(\bar{\beta}_{G,A}) = \log |A|.$$

Consider

$$G \stackrel{\bar{\sigma}_{G,A}}{\curvearrowright} A^{(G)}.$$

Then the dual action is conjugated to

$$G \stackrel{\beta_{G,\widehat{A}}}{\curvearrowright} \widehat{A}^{G},$$

and so

$$h_{alg}(\bar{\sigma}_{G,A}) = h_{top}(\beta_{G,\widehat{A}}).$$

Non-abelian case

Non-abelian case

Let G be a group and $\phi : G \to G$ an endomorphism. Let $\mathcal{P}_f(G) = \{F \subseteq G \mid F \neq \emptyset \text{ finite}\}.$

For $F \in \mathcal{P}_f(G)$, n > 0, let $\underline{T_n(\phi, F)} = F \cdot \phi(F) \cdot \ldots \cdot \phi^{n-1}(F)$.

The algebraic entropy of ϕ with respect to F is

$$H_{alg}(\phi, F) = \lim_{n \to \infty} \frac{\log |T_n(\phi, F)|}{n}.$$

[Dikranjan-GB] The *algebraic entropy* of ϕ is

$$h_{alg}(\phi) = \sup\{H_{alg}(\phi, F) \mid F \in \mathcal{P}_{f}(G)\}.$$

-Non-abelian case

 $G = \langle X \rangle$ finitely generated group $(X \in \mathcal{P}_f(G))$.

For $g \in G \setminus \{1\}$, $\ell_X(g)$ is the length of the shortest word representing g in $X \cup X^{-1}$, and $\ell_X(1) = 0$.

For
$$n \geq 0$$
, let $B_X(n) = \{g \in G \mid \ell_X(g) \leq n\}$.

The growth function of G wrt X is $\gamma_X : \mathbb{N} \to \mathbb{N}, n \mapsto |B_X(n)|$. The growth rate of G wrt X is $\lambda_X = \lim_{n \to \infty} \frac{\log \gamma_X(n)}{n}$. For $\phi = id_G$ and $1 \in X$, $T_n(id_G, X) = B_X(n)$ and $H_{alg}(id_G, X) = \lambda_X$.

[Milnor Problem, Grigorchuk group, Gromov Theorem] There exists a group of intermediate growth.

G has polynomial growth if and only if G is virtually nilpotent.

└─ Non-abelian case

Let G be a group, $\phi : G \to G$ an endomorphism and $X \in \mathcal{P}_f(G)$. The growth rate of ϕ wrt X is $\gamma_{\phi,X} : \mathbb{N}_+ \to \mathbb{N}_+, \ n \mapsto |T_n(\phi, X)|$.

If
$$G = \langle X \rangle$$
 with $1 \in X \in \mathcal{P}_f(G)$, then $\gamma_X = \gamma_{id_G,X}$.

- ϕ has polynomial growth if $\gamma_{\phi,X}$ is polynomial $\forall X \in \mathcal{P}_f(G)$;
- ϕ has exponential growth if $\exists F \in \mathcal{P}_f(G)$, $\gamma_{\phi,X}$ is exp.;
- ϕ has intermediate growth otherwise.

 ϕ has exponential growth if and only if $h_{alg}(\phi) > 0$.

The Addition Theorem does not hold for h_{alg} : let $G = \mathbb{Z}^{(\mathbb{Z})} \rtimes_{\beta} \mathbb{Z}$;

- G has exponential growth and so $h_{alg}(id_G) = \infty$;
- $\mathbb{Z}^{(\mathbb{Z})}$ and \mathbb{Z} are abelian and hence $h_{alg}(id_{\mathbb{Z}^{(\mathbb{Z})}}) = 0 = h_{alg}(id_{\mathbb{Z}})$.

Theorem ([GB-Spiga, Dikranjan-GB for abelian groups, Milnor-Wolf in the classical setting])

No endomorphism of a locally virtually soluble group has intermediate growth.

Thank you for your attention!