Anna Giordano Bruno (joint work with Dikran Dikranjan and Antongiulio Fornasiero)

Workshop "Entropies and soficity" January 19th, 2018 - Lyon (France) Algebraic entropy for ℕ-actions

└─ Abelian case

Let A be an abelian group and $\phi : A \to A$ an endomorphism; $\mathcal{P}_f(A) = \{F \subseteq A \mid F \neq \emptyset \text{ finite}\} \supseteq \mathcal{F}(A) = \{F \leq A \mid F \text{ finite}\}.$ For $F \in \mathcal{P}_f(A)$, n > 0, let $T_n(\phi, F) = F + \phi(F) + \ldots + \phi^{n-1}(F).$

The algebraic entropy of ϕ with respect to F is

$$H_{alg}(\phi, F) = \lim_{n \to \infty} \frac{\log |T_n(\phi, F)|}{n}$$

[Adler-Konheim-McAndrew, M.Weiss] The *algebraic entropy* of ϕ is

$$\operatorname{ent}(\phi) = \sup\{H_{\operatorname{alg}}(\phi, F) \mid F \in \mathcal{F}(A)\}.$$

[Peters, Dikranjan] The *algebraic entropy* of ϕ is

$$h_{alg}(\phi) = \sup\{H_{alg}(\phi, F) \mid F \in \mathcal{P}_f(A)\}.$$

Clearly,
$$\operatorname{ent}(\phi) = \operatorname{ent}(\phi \upharpoonright_{t(A)}) = h_{alg}(\phi \upharpoonright_{t(A)}) \le h_{alg}(\phi).$$

Algebraic entropy for ℕ-actions

└─ Abelian case

[Dikranjan-Goldsmith-Salce-Zanardo for ent, D-GB for
$$h_{alg}$$
]

Theorem (Addition Theorem = Yuzvinski's addition formula)

If B is a ϕ -invariant subgroup of A, then

$$h_{alg}(\phi) = h(\phi \restriction_B) + h(\phi_{A/B}),$$

where $\phi_{A/B} : A/B \to A/B$ is induced by ϕ .

[Weiss for ent, Peters, D-GB for h_{alg}]

Theorem (Bridge Theorem)

Denote \widehat{A} the Pontryagin dual of A and $\widehat{\phi} : \widehat{A} \to \widehat{A}$ the dual of ϕ . Then

$$h_{alg}(\phi) = h_{top}(\widehat{\phi}).$$

Here h_{top} denotes the topological entropy for continuous selfmaps of compact spaces [Adler-Konheim-McAndrew].

Algebraic entropy for ℕ-actions

└─ Non-abelian case

Non-abelian case

Let G be a group and $\phi : G \to G$ an endomorphism. Let $\mathcal{P}_f(G) = \{F \subseteq G \mid F \neq \emptyset \text{ finite}\}.$ For $F \in \mathcal{P}_f(G)$, n > 0, let $T_n(\phi, F) = F \cdot \phi(F) \cdot \ldots \cdot \phi^{n-1}(F).$ The algebraic entropy of ϕ with respect to F is

$$H_{alg}(\phi,F) = \lim_{n \to \infty} \frac{\log |T_n(\phi,F)|}{n}.$$

[Dikranjan-GB] The algebraic entropy of ϕ is

$$h_{alg}(\phi) = \sup\{H_{alg}(\phi, F) \mid F \in \mathcal{P}_{f}(G)\}.$$

Algebraic entropy for ℕ-actions

Non-abelian case

 $G = \langle X \rangle$ finitely generated group $(X \in \mathcal{P}_f(G))$.

For $g \in G \setminus \{1\}$, $\ell_X(g)$ is the length of the shortest word representing g in $X \cup X^{-1}$, and $\ell_X(1) = 0$.

For
$$n \geq 0$$
, let $B_X(n) = \{g \in G \mid \ell_X(g) \leq n\}$.

The growth function of G wrt X is $\gamma_X : \mathbb{N} \to \mathbb{N}, n \mapsto |B_X(n)|$. The growth rate of G wrt X is $\lambda_X = \lim_{n \to \infty} \frac{\log \gamma_X(n)}{n}$.

For
$$\phi = id_G$$
 and $1 \in X$,
 $T_n(id_G, X) = B_X(n)$ and $H_{alg}(id_G, X) = \lambda_X$.

[Milnor Problem, Grigorchuk group, Gromov Theorem] There exists a group of intermediate growth.

G has polynomial growth if and only if G is virtually nilpotent.

Algebraic entropy for ℕ-actions

└─Non-abelian case

Let G be a group, $\phi : G \to G$ an endomorphism and $X \in \mathcal{P}_f(G)$. The growth rate of ϕ wrt X is $\gamma_{\phi,X} : \mathbb{N}_+ \to \mathbb{N}_+, n \mapsto |\mathcal{T}_n(\phi, X)|$.

If $G = \langle X \rangle$ with $1 \in X \in \mathcal{P}_f(G)$, then $\gamma_X = \gamma_{id_G,X}$.

- ϕ has polynomial growth if $\gamma_{\phi,X}$ is polynomial $\forall X \in \mathcal{P}_f(G)$;
- ϕ has exponential growth if $\exists F \in \mathcal{P}_f(G)$, $\gamma_{\phi,X}$ is exp.;
- ϕ has intermediate growth otherwise.

 ϕ has exponential growth if and only if $h_{alg}(\phi) > 0$.

The Addition Theorem does not hold for h_{alg} : let $G = \mathbb{Z}^{(\mathbb{Z})} \rtimes_{\beta} \mathbb{Z}$;

- G has exponential growth and so $h_{alg}(id_G) = \infty$;
- $\mathbb{Z}^{(\mathbb{Z})}$ and \mathbb{Z} are abelian and hence $h_{alg}(id_{\mathbb{Z}^{(\mathbb{Z})}}) = 0 = h_{alg}(id_{\mathbb{Z}})$.

Theorem ([GB-Spiga, Dikranjan-GB for abelian groups, Milnor-Wolf in the classical setting])

No endomorphism of a locally virtually soluble group has intermediate growth.

Ornstein-Weiss Lemma for semigroups

Let S be a cancellative semigroup.

S is *right-amenable* if and only if S admits a *right-Følner net*, i.e., a net $(F_i)_{i \in I}$ in $\mathcal{P}_f(S)$ such that $\lim_{i \in I} \frac{|F_i \otimes |F_i|}{|F_i|} = 0 \ \forall s \in S$. (analogously, left-amenable).

A map
$$f : \mathcal{P}_f(S) \to \mathbb{R}$$
 is:

- subadditive if $f(F_1 \cup F_2) \leq f(F_1) + f(F_2) \ \forall F_1, F_2 \in \mathcal{P}_f(S)$;
- **2** *left-subinvariant* if $f(sF) \leq f(F) \ \forall s \in S \ \forall F \in \mathcal{P}_f(S)$;
- right-subinvariant if $f(Fs) \leq f(F) \ \forall s \in S \ \forall F \in \mathcal{P}_f(S)$;
- unif. bounded on singletons if $\exists M \ge 0$, $f(\{s\}) \le M \ \forall s \in S$.

Let $\mathcal{L}(S) = \{f : \mathcal{P}_f(S) \to \mathbb{R} \mid (1), (2), (4) \text{ hold for } f\}$ and $\mathcal{R}(S) = \{f : \mathcal{P}_f(S) \to \mathbb{R} \mid (1), (3), (4) \text{ hold for } f\}.$

Ornstein-Weiss Lemma for semigroups

[Ceccherini Silberstein-Coornaert-Krieger, generalizing Ornstein-Weiss Theorem]

Let S be a cancellative right-amenable (resp., left-amenable) semigroup. For every $f \in \mathcal{L}(S)$ (resp., $f \in \mathcal{R}(S)$) there exists $\lambda \in \mathbb{R}_{\geq 0}$ such that

$$\mathcal{H}_{\mathcal{S}}(f) := \lim_{i \in I} \frac{f(F_i)}{|F_i|} = \lambda$$

for every right-Følner (resp., left-Følner) net $(F_i)_{i \in I}$ of S.

Amenable semigroups actions

Topological entropy

Let S be a cancellative left-amenable semigroup, X a compact space and cov(X) the family of all open covers of X. For $\mathcal{U} \in cov(X)$, let $N(\mathcal{U}) = min\{|\mathcal{V}| \mid \mathcal{V} \subseteq \mathcal{U}\}$.

Consider a left action $S \stackrel{\gamma}{\frown} X$ by continuous maps. For $\mathcal{U} \in \operatorname{cov}(X)$ and $F \in \mathcal{P}_f(S)$, let

$$\mathcal{U}_{\gamma,F} = \bigvee_{s \in F} \gamma(s)^{-1}(\mathcal{U}) \in \operatorname{cov}(X).$$

 $f_{\mathcal{U}} : \mathcal{P}_{fin}(S) \to \mathbb{R}, \quad F \mapsto \log N(\mathcal{U}_{\gamma,F}).$
Then $f_{\mathcal{U}} \in \mathcal{R}(S).$

[Ceccherini-Silberstein-Coornaert-Krieger, gen. Moulin Ollagnier] The topological entropy of γ with respect to $\mathcal U$ is

$$H_{top}(\gamma, \mathcal{U}) = \mathcal{H}_{\mathcal{S}}(f_{\mathcal{U}}).$$

The topological entropy of γ is

$$h_{top}(\gamma) = \sup\{H_{top}(\gamma, \mathcal{U}) \mid \mathcal{U} \in \operatorname{cov}(X)\}.$$

Amenable semigroups actions

└─ Algebraic entropy

Let S be a cancellative right-amenable semigroup. Let A be an abelian group and consider a left action $S \stackrel{\alpha}{\frown} A$ by endomorphisms.

For $X \in \mathcal{P}_f(A)$ and $F \in \mathcal{P}_f(S)$, let

$$T_F(\alpha, X) = \sum_{s \in F} \alpha(s)(X) \in \mathcal{P}_f(A).$$

$$f_X: \mathcal{P}_{fin}(S) \to \mathbb{R}, \quad F \mapsto \log |T_F(\alpha, X)|.$$

Then $f_X \in \mathcal{L}(S)$.

The algebraic entropy of α with respect to X is

$$H_{alg}(\alpha, X) = \mathcal{H}_{\mathcal{S}}(f_X).$$

[Fornasiero-GB-Dikranjan, Virili for groups] The *algebraic entropy of* α is

$$h_{alg}(\alpha) = \sup\{H_{alg}(\alpha, X) \mid X \in \mathcal{P}_f(A)\}.$$

Moreover, $\operatorname{ent}(\alpha) = \sup\{H_{alg}(\alpha, X) \mid X \in \mathcal{F}(A)\}.$

└─ Addition Theorem

Let S be a cancellative right-amenable semigroup. Let A be an abelian group and consider a left action $S \stackrel{\alpha}{\frown} A$ by endomorphisms.

Theorem (Addition Theorem)

If A is torsion and B is an α -invariant subgroup of A, then

$$h_{alg}(\alpha) = h_{alg}(\alpha_B) + h_{alg}(\alpha_{A/B}),$$

where $S \stackrel{\alpha_B}{\frown} B$ and $S \stackrel{\alpha_{B/A}}{\frown} B/A$ are induced by α .

Algebraic entropy for amenable semigroups actions

└─ Bridge Theorem

Let S be a cancellative left-amenable semigroup. Let K be a compact abelian group and consider a left action $S \stackrel{\gamma}{\frown} K$ by continuous endomorphisms.

 γ induces a right action $\widehat{\mathcal{K}} \stackrel{\widehat{\gamma}}{\curvearrowleft} \mathcal{S}$, defined by

$$\widehat{\gamma}(s) = \widehat{\gamma(s)}: \widehat{\mathcal{K}} o \widehat{\mathcal{K}} \quad ext{for every } s \in S;$$

$\widehat{\gamma}$ is the *dual action of* γ .

Denote by $\widehat{\gamma}^{op}$ the left action $S^{op} \stackrel{\widehat{\gamma}}{\curvearrowright} \widehat{K}$ associated to $\widehat{\gamma}$ of the cancellative right-amenable semigroup S^{op} .

Theorem (Bridge Theorem)

If K is totally disconnected (i.e., A is torsion), then

 $h_{top}(\gamma) = h_{alg}(\widehat{\gamma}^{op}).$

[Virili for amenable group actions on locally compact abelian groups]

└─Bridge Theorem

Let S be a cancellative left-amenable semigroup. Let K be a compact abelian group and consider a left action $S \stackrel{\gamma}{\sim} K$ by continuous endomorphisms.

Corollary (Addition Theorem)

If K is totally disconnected and L is a $\gamma\text{-invariant subgroup of }K\text{,}$ then

$$h_{top}(\gamma) = h_{top}(\gamma_L) + h_{top}(\gamma_{K/L}),$$

where $S \stackrel{\gamma_L}{\frown} L$ and $S \stackrel{\gamma_{K/L}}{\frown} K/L$ are induced by γ .

Known in the case of compact groups for:

- \mathbb{Z}^{d} -actions on compact groups [Lind-Schmidt-Ward];
- actions of countable amenable groups on compact metrizable groups [Li].

Restriction actions and quotient actions

Restriction and quotient actions

Let G be an amenable group, A an abelian group, $G \stackrel{\alpha}{\frown} A$. For $H \leq G$ consider $H \stackrel{\alpha \restriction H}{\frown} A$.

• If
$$[G:H] = k \in \mathbb{N}$$
, then $h_{alg}(\alpha \upharpoonright_H) = k \cdot h_{alg}(\alpha)$.

• If H is normal, then $h_{alg}(\alpha) \leq h_{alg}(\alpha \upharpoonright_{H})$.

For $N \leq G$ normal with $N \subseteq \ker \alpha$, consider $G/N \stackrel{\bar{\alpha}_{G/N}}{\curvearrowright} A$. • $h_{alg}(\alpha) = \begin{cases} 0 & \text{if } N \text{ is infinite,} \\ \frac{h_{alg}(\bar{\alpha}_{G/N})}{|N|} & \text{if } N \text{ is finite.} \end{cases}$

Corollary

If $h_{alg}(\alpha) > 0$, then ker α is finite and $h_{alg}(\alpha) = \frac{h_{alg}(\overline{\alpha}_{G/\ker \alpha})}{|\ker \alpha|}$.

So: reduction to faithful actions.

- Generalized shifts
 - L Definition

Let S be a semigroup, Y a non-empty set and A an abelian group.

- For a right action $Y \curvearrowleft^{\gamma} S$, the generalized backward S-shift is $S \overset{\beta_{A,\gamma}}{\curvearrowright} A^{(Y)}$ defined by $\beta_{A,\gamma}(s)(f) = f \circ \gamma(s) \quad \forall s \in S, \forall f \in A^{(Y)}.$
- For a left action $S \stackrel{\eta}{\frown} Y$, such that each $\gamma(s)$ has finite fibers, the generalized forward S-shift is $S \stackrel{\sigma_{A,\eta}}{\frown} A^{(Y)}$ defined by $\sigma_{A,\eta}(s)(f)(y) = \sum_{\eta(s)(z)=y} f(z) \quad \forall s \in S, \forall f \in A^{(Y)}, \forall y \in Y.$

If $S = Y = \mathbb{N}$, and $\mathbb{N} \curvearrowright^{\rho} \mathbb{N}$ is given by $\rho(1) : n \mapsto n+1$, then $\beta_{A,\rho}(1) : A^{(\mathbb{N})} \to A^{(\mathbb{N})}$, $(x_0, x_1, x_2, \ldots) \mapsto (x_1, x_2, x_3 \ldots)$ and $\sigma_{A,\rho}(1) : A^{(\mathbb{N})} \to A^{(\mathbb{N})}$, $(x_0, x_1, x_2, \ldots) \mapsto (0, x_0, x_1, \ldots)$.

Algebraic entropy of the generalized Bernoulli shifts

Let S be a cancellative right-amenable monoid and A an abelian group.

Consider $S \stackrel{\rho}{\curvearrowleft} S$ defined by $\rho(s)(x) = xs \ \forall s \in S, \ \forall x \in S,$ and $S \stackrel{\beta_{A,\lambda}}{\curvearrowright} A^{(S)}$;

$$\operatorname{ent}(\beta_{A,\rho}) = \begin{cases} \log |t(A)| & \text{if } S \text{ is a group,} \\ 0 & \text{if } S \text{ is not a group.} \end{cases}$$

Consider $S \stackrel{\lambda}{\frown} S$ defined by $\lambda(s)(x) = sx \ \forall s \in S, \ \forall x \in S,$ and $S \stackrel{\sigma_{A,\lambda}}{\frown} A^{(S)}$;

$$h_{alg}(\sigma_{A,\lambda}) = egin{cases} \log |A| & ext{if } S ext{ is infinite,} \ rac{\log |A|}{|S|} & ext{if } S ext{ is finite.} \end{cases}$$

Generalized shifts

Set-theoretic entropy

Set-theoretic entropy

Let S be a cancellative right-amenable monoid.

Let Y be a non-empty set and consider a left action $S \stackrel{\eta}{\frown} Y$. For $X \in \mathcal{P}_f(Y)$ and $F \in P_f(S)$, let

$$F \cdot X = \alpha(F)(X) = \{\alpha(g)(x) \mid g \in F, x \in Y\}.$$
$$l_X : \mathcal{P}_f(S) \to \mathbb{R}, \quad F \mapsto |F \cdot X|.$$

Then $I_X \in \mathcal{L}(S)$.

The set-theoretic entropy of η with respect to X is

$$H_{set}(\eta, X) = \mathcal{H}_{S}(I_X).$$

The set-theoretic entropy of η is

$$h_{set}(\eta) = \sup\{H_{set}(\eta, X) \mid X \in \mathcal{P}_f(Y)\}.$$

[For \mathbb{N} -actions this entropy was defined by Dikranjan-Shirazi, with applications towards the computation of the topological entropy of selfmaps $K^Y \to K^Y$, where K is compact.]

Generalized shifts

Set-theoretic entropy

Let *G* be an amenable group, *Y* a non-empty set and $G \stackrel{\eta}{\hookrightarrow} Y$. For $y \in Y$, let $\operatorname{Stab}_y = \{g \in G \mid \eta(g)(y) = y\}$ and $O_y = G \cdot \{y\}$. The transitive action $G \stackrel{\eta}{\hookrightarrow} O_y$ is isomorphic (with $H = \operatorname{Stab}_y$) to the canonical action $G \stackrel{\varrho_{G/H}}{\hookrightarrow} G/H$ on the set G/H given by

$$\varrho_{G/H}(g)(fH) = (gf)H \ \forall f,g \in G.$$

Theorem

If *H* is a subgroup of *G*, then $h_{set}(\varrho_{G/H}) = \frac{1}{|H|}$. So, if $\{O_{y_i} \mid i \in I\}$ are the orbits of η , then $h_{set}(\eta) = \sum_{i \in I} \frac{1}{|Stab_{y_i}|}$.

Let $\mathfrak{s}(G) = \sup\{|F| \mid F \leq G \text{ finite}\}$. If G is locally nilpotent then t(G) is a normal subgroup of G, and so $\mathfrak{s}(G) = |t(G)|$.

Corollary

If $\mathfrak{s}(G)$ is finite, then either $h_{set}(\eta) = \infty$, or $h_{set}(\eta) = \frac{m}{|\mathfrak{s}(G)|}$ for some $m \in \mathbb{N}$.

└─Algebraic entropy of the generalized forward shifts

Let S be an infinite cancellative right-amenable monoid, Y a non-empty set and A an abelian group.

Consider $S \stackrel{\gamma}{\sim} Y$, such that each $\gamma(s)$ has finite fibers, and $S \stackrel{\sigma_{\mathcal{A},\eta}}{\sim} \mathcal{A}^{(Y)}$ defined by

$$\sigma_{A,\eta}(s)(f)(y) = \sum_{\eta(s)(z)=y} f(z)$$

$$\forall s \in S, \forall f \in A^{(Y)}, \forall y \in Y.$$

Theorem

$$h_{alg}(\sigma_{A,\eta}) = h_{set}(\eta) \cdot \log |A|.$$

Since $S \stackrel{\lambda}{\frown} S$ with $\lambda(s)(x) = sx \ \forall s \in S$, $\forall x \in S$, has $h_{set}(\lambda) = 1$, as a corollary we obtain the previous result: $h_{alg}(\sigma_{A,\lambda}) = \log |A|$.

Entropy and Lehmer Problem

Entropy and Lehmer Problem

For a primitive polynomial $f(x) = sx^n + a_1x^{n-1} \dots + a_n \in \mathbb{Z}[x]$ with (complex) roots $\lambda_1, \dots, \lambda_n$, the *Mahler measure* of f is

$$m(f) = \log s + \sum_{|\lambda_i|>1} \log |\lambda_i|.$$

Let

 $\mathfrak{L} = \{m(f(x)) \mid f(x) \in \mathbb{Z}[x]\} \text{ and } \lambda = \inf(\mathfrak{L} \setminus \{0\}).$

Problem ([Lehmer 1933])

Is $\lambda > 0$?

Entropy and Lehmer Problem

Algebraic Yuzvinski Formula: If $\phi:\mathbb{Q}^n\to\mathbb{Q}^n$ is an endomorphism, then

$$h_{alg}(\phi) = \log m(f(x)),$$

where f(x) is the integer characteristic polynomial of ϕ . [Lind-Schmidt-Ward for \mathbb{Z}^d -actions and h_{top} ; Deninger, Li-Thom, Li in more general cases.]

Let $\mathcal{E}_{alg} = \{h_{alg}(f) \mid f \in \text{End}(G), G \text{ abelian group}\}.$

Theorem ([Dikranjan-GB])

•
$$\inf(\mathcal{E}_{alg} \setminus \{0\}) = \lambda;$$

- $\lambda = 0$ if and only if $\mathcal{E}_{alg} = \mathbb{R}_{\geq 0} \cup \{\infty\};$
- $\lambda > 0$ if and only if \mathcal{E}_{alg} is countable.

Counterpart of [Lind-Schmidt-Ward, Theorem 4.6] for \mathbb{Z}^d -actions on compact groups.

Entropy and Lehmer Problem

Let S be a cancellative right-amenable semigroup. Define:

• $\mathcal{E}_{set}(S) = \{h_{set}(\eta) \mid \eta \text{ action of } S \text{ on a set}\};$

• $\mathcal{E}_{alg}(S) = \{h_{alg}(\alpha) \mid \alpha \text{ action of } S \text{ on an abelian group}\}.$

(Clearly, $\mathcal{E}_{alg} = \mathcal{E}_{alg}(\mathbb{N})$.) By [Lawton, Lind-Schmidt-Ward] and the Bridge Theorem [Virili], $\inf(\mathcal{E}_{alg}(\mathbb{N}) \setminus \{0\}) = \inf(\mathcal{E}_{alg}(\mathbb{Z}) \setminus \{0\}) = \inf(\mathcal{E}_{alg}(\mathbb{Z}^d) \setminus \{0\}) = \lambda$.

Problem

Describe $\mathcal{E}_{set}(S)$ and $\mathcal{E}_{alg}(S)$.

Theorem

Let G be an amenable group. Then

$$\mathcal{E}_{set}(G) = \begin{cases} \mathbb{R}_{\geq 0} \cup \{\infty\} & \text{if } \mathfrak{s}(G) \text{ is infinite,} \\ \frac{1}{|\mathfrak{s}(G)|} \mathbb{N} \cup \{\infty\} & \text{if } \mathfrak{s}(G) \text{ is finite.} \end{cases}$$

In particular, $\mathcal{E}_{set}(G) = \mathbb{N} \cup \{\infty\}$ if G is torsion-free.

Entropy and Lehmer Problem

Let G be an amenable group. Then

$$(\log k)\mathcal{E}_{set}(G)\subseteq \mathcal{E}_{alg}(G)$$
 for every $k>1$.

In fact, if $r \in \mathcal{E}_{set}(G)$, that is, $r = h_{set}(\eta)$ for some $G \stackrel{\eta}{\curvearrowright} X$, then, for every finite abelian group A of size k > 1, $h_{alg}(\sigma_{A,\eta}) = r \log k$.

Theorem

If
$$\mathfrak{s}(G)$$
 is infinite, then $\mathcal{E}_{alg}(G) = \mathbb{R}_{\geq 0} \cup \{\infty\}$.

Therefore, $\mathcal{E}_{alg}(G) = \mathbb{R}_{\geq 0} \cup \{\infty\}$ for every locally nilpotent group with infinite t(G).

Yet $\mathcal{E}_{alg}(G)$ is unclear for arbitrary torson-free (abelian) groups.

Problem

How do the sets $\mathcal{E}_{alg}(\mathbb{Q}), \mathcal{E}_{alg}(\mathbb{Q}^2), \mathcal{E}_{alg}(\mathbb{Z}^{\mathbb{N}})$ look like? Are they countable? Thank you for your attention!

DAGT Udine 2018

Plenary speakers

Helge Glöckner Michael Megrelishvili Luigi Salce Andrea Sambusetti Manuel Sanchis Klaus Schmidt Pablo Spiga Luchezar Stojanov Benjamin Weiss

Sponsored by SIR 2014 - GADYGR

Scientific committee

Dikran Dikranjan Anna Giordano Bruno Gábor Lukács Simone Virili Thomas Weigel

Organizing committee

Federico Berlai Ilaria Castellano Anna Giordano Bruno Menachem Shlossberg Daniele Toller Nicolò Zava Fabio Zuddas

DAGT Udine 2018

Website: dagt.uniud.it