Anna Giordano Bruno (University of Udine)

31st Summer Conference on Topology and its Applications Leicester - August 2nd, 2016 (Topological Methods in Algebra and Analysis)

- Introduction

p-torsion and torsion subgroup

Introduction

Let G be an abelian group and p a prime. The *p*-torsion subgroup of G is

$$t_p(G) = \{x \in G : p^n x = 0 \text{ for some } n \in \mathbb{N}\}.$$

The torsion subgroup of G is

$$t(G) = \{x \in G : nx = 0 \text{ for some } n \in \mathbb{N}_+\}.$$

The circle group is $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ written additively $(\mathbb{T}, +)$; for $r \in \mathbb{R}$, we denote $\overline{r} = r + \mathbb{Z} \in \mathbb{T}$. We consider on \mathbb{T} the quotient topology of the topology of \mathbb{R} and μ is the (unique) Haar measure on \mathbb{T} .

-Introduction

 \Box Topologically *p*-torsion and topologically torsion subgroup

Let now G be a *topological* abelian group.

[Bracconier 1948, Vilenkin 1945, Robertson 1967, Armacost 1981]:

The *topologically p-torsion subgroup* of *G* is

$$t_{\underline{\rho}}(G) = \{x \in G : p^n x \to 0\}.$$

The topologically torsion subgroup of G is

$$G! = \{x \in G : n!x \to 0\}.$$

Clearly, $t_{\rho}(G) \subseteq t_{\underline{\rho}}(G)$ and $t(G) \subseteq G!$.

[Armacost 1981]:

•
$$t_{\underline{p}}(\mathbb{T}) = t_p(\mathbb{T}) = \mathbb{Z}(p^{\infty});$$

• $\bar{e} \in \mathbb{T}!$, but $\bar{e} \notin t(\mathbb{T}) = \mathbb{Q}/\mathbb{Z}$. Problem: describe $\mathbb{T}!$.

- Introduction

└─ Topologically *p*-torsion and topologically torsion subgroup

[Borel 1991; Dikranjan-Prodanov-Stoyanov 1990; D-Di Santo 2004]:

For every $x \in [0,1)$ there exists a unique $(c_n)_n \in \mathbb{N}^{\mathbb{N}_+}$ such that

$$x=\sum_{n=1}^{\infty}\frac{c_n}{(n+1)!},$$

 $c_n < n+1$ for every $n \in \mathbb{N}_+$ and $c_n < n$ for infinitely many $n \in \mathbb{N}_+$.

Theorem (Dikranjan-Prodanov-Stoyanov 1990; D-Di Santo 2004)Let $x \in [0, 1)$. Then $\bar{x} \in \mathbb{T}! \iff \frac{c_n}{n+1} \to 0$ in \mathbb{T} .

[Dikranjan-Di Santo 2004]:

 $\mathbb{T}!$ has Haar measure 0, $\mathbb{T}!$ has size $\mathfrak c$ and $\mathbb{T}!$ is not divisible.

- Topologically u-torsion subgroup
 - Definition

Topologically **u**-torsion subgroup

Definition (Dikranjan-Prodanov-Stoyanov 1990; Dikranjan 2001)

Let G be a topological abelian group and $\mathbf{u} = (u_n)_n \in \mathbb{Z}^{\mathbb{N}}$. The *topologically* **u**-*torsion subgroup* of G is

$$t_{\mathbf{u}}(G) = \{x \in G : u_n x \to 0\}.$$

•
$$t_{\underline{p}}(G) = \{x \in G : p^n x \to 0\} = t_{\mathbf{p}}(G)$$
, where $\mathbf{p} = (p^n)_n$.
• $\overline{G!} = \{x \in G : n! x \to 0\} = t_{\mathbf{u}}(G)$, where $\mathbf{u} = ((n+1)!)_n$.

Example (Dikranjan-Kunen 2007)

 $t(\mathbb{T}) = \mathbb{Q}/\mathbb{Z} = t_{\mathbf{u}}(\mathbb{T})$, where **u** is the sequence (1!, 2!, 2·2!, 3!, 2·3!, 3·3!, 4!, ..., n!, 2·n!, 3·n!, ..., n·n!, (n+1)!, ...).

Problem: given $\mathbf{u} \in \mathbb{Z}^{\mathbb{N}}$, describe $t_{\mathbf{u}}(\mathbb{T})$.

— Topologically **u**-torsion subgroup

└─ Arithmetic sequences

Which property is shared by
$$(p^n)_n$$
 and $((n+1)!)_n$?

Let $\mathbf{u} = (u_n)_n$ be an arithmetic sequence (i.e., $u_0 = 1$, $u_n \in \mathbb{N}_+$ and $u_n \mid u_{n+1}$ for every $n \in \mathbb{N}$) and for every $n \in \mathbb{N}$ let

$$d_{n+1}^{\mathbf{u}}=\frac{u_{n+1}}{u_n}\in\mathbb{N}_+.$$

Theorem

For every $x \in [0,1)$, there exists a unique $(c_n^{u}(x))_n \in \mathbb{N}^{\mathbb{N}_+}$ with

$$x=\sum_{n=1}^{\infty}\frac{c_n^{\mathbf{u}}(x)}{u_n},$$

 $c_n^{\mathbf{u}}(x) < d_n^{\mathbf{u}}$ for every $n \in \mathbb{N}_+$, and $c_n^{\mathbf{u}}(x) < d_n^{\mathbf{u}} - 1$ for infinitely many $n \in \mathbb{N}_+$. — Topologically **u**-torsion subgroup

Arithmetic sequences

Theorem (Dikranjan-Prodanov-Stoyanov 1990; D-Di Santo 2004)

Let
$$x = \sum_{n=1}^{\infty} \frac{c_n^{u}(x)}{u_n} \in [0, 1).$$

- If $(d_n^{\mathbf{u}})_n$ is bounded, then $\bar{x} \in t_{\mathbf{u}}(\mathbb{T}) \Leftrightarrow (c_n^{\mathbf{u}}(x))_n$ is ev. 0.
- If $d_n^{\mathbf{u}} \to +\infty$, then $\bar{x} \in t_{\mathbf{u}}(\mathbb{T}) \iff \frac{c_n^{\mathbf{u}}(x)}{d_n^{\mathbf{u}}} \to 0$ in \mathbb{T} .

[Dikranjan-Di Santo 2004, Dikranjan-Impieri 2014]:

Complete description of $t_{\mathbf{u}}(\mathbb{T})$ for **u** arithmetic sequence.

Corollary

The following conditions are equivalent:

- $(d_n^{\mathbf{u}})_n$ is bounded;
- $t_u(\mathbb{T})$ is countable;
- $t_u(\mathbb{T})$ is torsion.

— Characterized subgroups of $\mathbb T$

Definition and generalization

Characterized subgroups of ${\mathbb T}$

Definition (Bíró-Deshouillers-Sós 2001)

A subgroup H of \mathbb{T} is *characterized* if $H = t_{\mathbf{u}}(\mathbb{T})$ for some $\mathbf{u} \in \mathbb{Z}^{\mathbb{N}}$. (*H* is *characterized* by \mathbf{u} ; \mathbf{u} *characterizes* H.)

Problem

Describe the characterized subgroups of \mathbb{T} . In other words, given $\mathbf{u} \in \mathbb{Z}^{\mathbb{N}}$, describe $t_{\mathbf{u}}(\mathbb{T})$.

The "inverse problem": given $H \leq \mathbb{T}$, is H characterized?

Problem (Di Santo 2002; Maharam-Stone 2001)

Given $H \leq \mathbb{T}$ characterized, describe $S_H = \{ \mathbf{u} \in \mathbb{Z}^{\mathbb{N}} : H = t_{\mathbf{u}}(\mathbb{T}) \} \leq \mathbb{Z}^{\mathbb{N}}.$

- Characterized subgroups of \mathbb{T}

First properties and results

- If H is a finite subgroup of \mathbb{T} , then H is characterized.
- $\bullet~u$ characterizes $\mathbb T$ if and only if u is eventually zero.
- If $H \lneq \mathbb{T}$ is characterized, then:
 - $H = t_{\mathbf{u}}(\mathbb{T})$ for $\mathbf{u} \in \mathbb{N}_+^{\mathbb{N}}$ strictly increasing;
 - $\mu(H) = 0.$
- Since $t_{\mathbf{u}}(\mathbb{T}) = \bigcap_{N \ge 2} \bigcup_{m \in \mathbb{N}} \bigcap_{n \ge m} \left\{ x \in \mathbb{T} : \|u_n x\| \le \frac{1}{N} \right\}$ is a Borel set, so

either $t_{\mathbf{u}}(\mathbb{T})$ is countable or $|t_{\mathbf{u}}(\mathbb{T})| = \mathfrak{c}$.

Theorem (Eggleston 1952)

- $u_{n+1}/u_n \to +\infty \Rightarrow |t_{\mathbf{u}}(\mathbb{T})| = \mathfrak{c}.$
- $(u_{n+1}/u_n)_n$ bounded $\Rightarrow t_u(\mathbb{T})$ countable.

 \square Characterized subgroups of $\mathbb T$

First properties and <u>results</u>

Theorem (Borel 1983)

All countable subgroups of $\mathbb T$ are characterized by some $u\in\mathbb Z^\mathbb N.$

[Beiglböck-Steineder-Winkler 2006]: **u** can be chosen with $(u_{n+1}/u_n)_n$ bounded, but also arbitrarily fast increasing.

Borel's motivation:

 $(x_n)_n \in \mathbb{R}^{\mathbb{N}}$ is uniformly distributed mod 1 if for all $[a,b] \subseteq [0,1)$,

$$\frac{|\{j \in \{0,\ldots,n\} : \{x_j\} \in [a,b]\}|}{n} \longrightarrow a-b.$$

Theorem (Weyl, 1916; Kuipers-Niederreiter 1974)

Let $\mathbf{u} \in \mathbb{N}^{\mathbb{N}}$ be a strictly increasing sequence. Then $\lambda(\{\beta \in \mathbb{R} : (\{u_n\beta\})_n \text{ is uniformly distributed mod } 1\}) = 1.$

This does not hold for all $\beta \in \mathbb{R}$, so study the "opposite case" $t_{\mathbf{u}}(\mathbb{T}) = \{ \bar{\beta} \in \mathbb{T} : u_n \bar{\beta} \to 0 \}.$

- Characterization of the cyclic subgroups of $\mathbb T$

Continued fractions

The infinite cyclic subgroups of $\ensuremath{\mathbb{T}}$

Let α be an irrational number and consider $\langle \bar{\alpha} \rangle \leq \mathbb{T}$. The irrational α has a unique continued fraction expansion

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

denoted by $\alpha = [a_0; a_1, a_2, ...]$. For every $n \in \mathbb{N}$, let $\mathbf{q} = (q_n)_n \in \mathbb{N}_+^{\mathbb{N}}$, where

$$[a_0; a_1, \ldots, a_n] = \frac{p_n}{q_n}, \quad \text{with } q_n > 0.$$

Since $q_n \bar{\alpha} \to 0$ in \mathbb{T} , so

 $\langle \bar{\alpha} \rangle \subseteq t_{\mathbf{q}}(\mathbb{T}).$

— Characterization of the cyclic subgroups of ${\mathbb T}$

Larcher Theorem

Theorem (Larcher 1988)

$$\langle \bar{lpha}
angle = t_{\mathbf{q}}(\mathbb{T})$$
 when $(a_n)_n$ is bounded.

The equality does not hold true in general, more precisely:

Theorem (Kraaikamp-Liardet 1992)

$$\langle \bar{lpha}
angle = t_{\mathbf{q}}(\mathbb{T})$$
 if and only if $(a_n)_n$ is bounded.

Example

Consider the Golden ratio $\varphi = \frac{1+\sqrt{5}}{2}$. Then

$$\langle \bar{\varphi} \rangle = t_{\mathbf{f}}(\mathbb{T}),$$

where $\mathbf{f} = (f_n)_n$ is the Fibonacci sequence $f_0 = 1, f_1 = 1, f_2 = 2, f_3 = 3, f_4 = 5, \dots$ Indeed, $\varphi = [1; 1, 1, \dots]$ and $q_n = f_n$ for every $n \in \mathbb{N}_+$.

—Characterization of the cyclic subgroups of ${\mathbb T}$

A generalization: recurrent sequences

[Barbieri-Dikranjan-Milan-Weber 2008]:

Sequences $\mathbf{u} \in \mathbb{Z}^{\mathbb{N}}$ verifying a linear recurrence.

For every $n \geq 2$, $u_n = a_n u_{n-1} + b_n u_{n-2}$, $a_n, b_n \in \mathbb{N}_+$.

Theorem (Barbieri-Dikranjan-Milan-Weber 2008)

 $|t_{\mathbf{u}}(\mathbb{T}))| = \mathfrak{c} \iff (u_{n+1}/u_n)_n$ not bounded.

If
$$\alpha = [a_0; a_1, \ldots]$$
 is an irrational and $\mathbf{q} = (q_n)_n$, then
for every $n \ge 2$, $q_n = a_n q_{n-1} + q_{n-2}$, $q_0 = 1, q_1 = a_1$.

Corollary

The following conditions are equivalent:

- $\langle \bar{\alpha} \rangle = t_{\mathbf{q}}(\mathbb{T});$
- $(a_n)_n$ is bounded;
- $t_q(\mathbb{T})$ is countable.

- Characterization of the cyclic subgroups of $\mathbb T$

Bíró-Deshouillers-Sós Theorem

Let
$$lpha=[{\it a}_0;{\it a}_1,\dots]$$
 irrational, ${f q}=(q_n)_n$ as above and let ${f v}_lpha$:

 $q_0 \le q_1 < 2q_1 < \ldots < a_2q_1 < q_2 < 2q_2 < \ldots < a_3q_2 < q_3 < 2q_3 < \ldots$

Theorem (Bíró-Deshouillers-Sós 2001)

 $\langle \bar{lpha}
angle = t_{\mathbf{v}_{lpha}}(\mathbb{T}).$

Problem (Bíró-Deshouillers-Sós 2001)

Find all sequences $\mathbf{u} \in \mathbb{Z}^{\mathbb{N}}$ characterizing $\langle \bar{\alpha} \rangle$.

In particular, if $\mathbf{q} \subseteq \mathbf{u} \subseteq \mathbf{v}_{\alpha}$, one has

$$\langle \bar{lpha}
angle = t_{\mathbf{v}_{lpha}}(\mathbb{T}) \subseteq t_{\mathbf{u}}(\mathbb{T}) \subseteq t_{\mathbf{q}}(\mathbb{T}),$$

and the question is: under which hypotheses one has $\langle \bar{\alpha} \rangle = t_u(\mathbb{T})$?

Theorem (Marconato 2016)

If $(u_{n+1}/u_n)_n$ is bounded, then $\langle \bar{\alpha} \rangle = t_{\mathbf{v}_{\alpha}}(\mathbb{T}) = t_{\mathbf{u}}(\mathbb{T})$.

 \square Characterized subgroups of ${\mathbb T}$ and precompact group topologies of ${\mathbb Z}$

 \square TB-sequences in \mathbb{Z}

Precompact topologies on $\ensuremath{\mathbb{Z}}$ with converging sequences

[Raczkowski 2002; Barbieri-Dikranjan-Milan-Weber 2003]:

Given $\mathbf{u} \in \mathbb{Z}^{\mathbb{N}}$, \exists a precompact gr. top. τ on \mathbb{Z} such that $u_n \xrightarrow{\tau} 0$?

A topological abelian group (G, τ) is:

- totally bounded if $\forall \emptyset \neq U \in \tau$, $\exists F \subseteq G$ finite, G = U + F;
- precompact if τ is Hausdorff and totally bounded.

For G abelian group and $H \leq \widehat{G}$, let T_H be the weakest group topology on G such that all $\chi \in H$ are continuous.

Theorem (Comfort-Ross 1964)

- T_H is totally bounded and $w(G, T_H) = |H|$.
- If (G, τ) is totally bounded, then $\tau = T_H$ for some $H \leq \widehat{G}$.
- T_H is Hausdorff if and only if H is dense in \widehat{G} .

For
$$G = \mathbb{Z}$$
, we have $\widehat{G} = \mathbb{T}$.

 \square Characterized subgroups of ${\mathbb T}$ and precompact group topologies of ${\mathbb Z}$

 \square TB-sequences in \mathbb{Z}

Let $\mathbf{u}\in\mathbb{Z}^{\mathbb{N}}$ and τ a totally bounded group topology on $\mathbb{Z}.$ Then:

•
$$au = T_H$$
 for some $H \leq \mathbb{T}$;

•
$$u_n \xrightarrow{I_H} 0 \Leftrightarrow H \leq t_u(\mathbb{T}).$$

Then $T_{t_{\mathbf{u}}(\mathbb{T})}$ is the finest tot. bounded gr. top. τ on \mathbb{Z} with $u_n \xrightarrow{\tau} 0$;

- $w(\mathbb{Z}, T_{t_{\mathbf{u}}(\mathbb{T})}) = |t_{\mathbf{u}}(\mathbb{T})|;$
- $T_{t_{\mathbf{u}}(\mathbb{T})}$ is precompact if and only if $t_{\mathbf{u}}(\mathbb{T})$ is infinite;
- $T_{t_{\mathbf{u}}(\mathbb{T})}$ is metrizable if and only if $|t_{\mathbf{u}}(\mathbb{T})| = \omega$.

Theorem (Barbieri-Dikranjan-Milan-Weber 2003)

- If u_{n+1}/u_n → +∞, then there exists a precompact group topology τ on Z such that w(Z, τ) = c and u_n ^τ→ 0.
- If (u_{n+1}/u_n)_n is bounded, then every precompact group topology τ on Z such that u_n ^τ→ 0 is metrizable.

- └─ Thin sets in Harmonic Analysis
 - Dirichlet set and Arbault sets

Dirichlet sets and Arbault sets

Definition (Arbault 1952, Kahane 1969)

A set $A \subseteq [0,1]$ is:

- an Arbault set (briefly, A-set) if there exists $\mathbf{u} \in \mathbb{N}_+^{\mathbb{N}}$ increasing such that $\sin(\pi u_n x) \to 0$ for all $x \in A$.
- a Dirichlet set (briefly, *D*-set) if there exists $\mathbf{u} \in \mathbb{N}_+^{\mathbb{N}}$ increasing such that $\sin(\pi u_n x) \to 0$ uniformly on *A*.

Let $\varpi : \mathbb{R} \to \mathbb{T}$ and $\varphi := \varpi \upharpoonright_{[0,1]} : [0,1) \to \mathbb{T}$ bijection.

Definition

 $A \subseteq \mathbb{T}$ *A-set* (resp., *D-set*) if $\varphi^{-1}(A) \subseteq [0, 1]$ *A-set* (resp., *D-set*); that is, there exists $\mathbf{u} \in \mathbb{N}_+^{\mathbb{N}}$ increasing such that $u_n x \to 0 \ \forall x \in A$ (resp., $u_n x \to 0$ uniformly on *A*).

 $A \subseteq \mathbb{T}$ A-set if and only if $A \subseteq t_{u}(\mathbb{T})$ for some $u \in \mathbb{Z}^{\mathbb{N}}$.

— Thin sets in Harmonic Analysis

 \square Inclusions of characterized subgroups of $\mathbb T$

[Eliaš 2003, 2005]:

Let \mathcal{A} be the family of all Arbault sets of \mathbb{T} .

Let $S = \{ \mathbf{u} \in \mathbb{N}_+^{\mathbb{N}} : u_{n+1}/u_n \to +\infty \}.$

• $X \in \mathcal{A} \Rightarrow X \subseteq t_{u}(\mathbb{T})$ for some $u \in \mathcal{S}$.

Theorem (Eliaš 2003; Barbieri-GB-Weber 2015 for \mathbb{R})

Description of when $t_u(\mathbb{T}) \subseteq t_v(\mathbb{T})$ for $u, v \in S$.

Eliaš' motivation:

An $X \subseteq \mathbb{T}$ is *A*-permitted if $X \cup Y \in \mathcal{A}$ for every $Y \in \mathcal{A}$. [Kholshchevnikova 1994]: $X \subseteq \mathbb{T}$ countable $\Rightarrow A$ -permitted.

Theorem (Eliaš 2005)

A set $X \subseteq \mathbb{T}$ is A-permitted if and only if for every $\mathbf{u} \in S$ there exists $\mathbf{v} \in S$ such that $X \cup t_{\mathbf{u}}(\mathbb{T}) \subseteq t_{\mathbf{v}}(\mathbb{T})$.

Properties of *A*-permitted sets.

— Thin sets in Harmonic Analysis

└─ Dirichlet sets of T

Let $\mathbf{u} = (u_n)_n$ be an arithmetic sequence (i.e., $u_n \mid u_{n+1}, \forall n \in \mathbb{N}$) and for every $n \in \mathbb{N}$ let $d_{n+1}^{\mathbf{u}} = \frac{u_{n+1}}{u_n} \in \mathbb{N}_+$. For every $x \in [0, 1)$, there exists a unique $(c_n^{\mathbf{u}}(x))_n \in \mathbb{N}^{\mathbb{N}_+}$ with

$$x = \sum_{n=1}^{\infty} \frac{c_n^{\mathbf{u}}(x)}{u_n},$$

 $c_n^{\mathbf{u}}(x) < d_n^{\mathbf{u}} \ \forall n \in \mathbb{N}_+, \ c_n^{\mathbf{u}}(x) < d_n^{\mathbf{u}} - 1 \ \text{for infinitely many} \ n \in \mathbb{N}_+.$ For $x \in [0, 1)$, let $supp_{\mathbf{u}}(x) := \{n \in \mathbb{N}_+ : c_n^{\mathbf{u}}(x) \neq 0\}.$

Definition (Marcinkiewiz 1938; Barbieri-Dikranjan-GB-Weber 2016)

For
$$L \subseteq \mathbb{N}_+$$
, let $| \mathcal{K}_L^{\mathbf{u}} = \{ \bar{x} \in \mathbb{T} : \operatorname{supp}_{\mathbf{u}}(x) \subseteq L \}.$

Clearly, $0 \in K_L^{\mathbf{u}}$ since $\operatorname{supp}_{\mathbf{u}}(0) = \emptyset$.

- $K_L^{\mathbf{u}}$ finite $\Rightarrow K_L^{\mathbf{u}}$ *D*-set.
- $K_L^{\mathbf{u}}$ *D*-set \Rightarrow *L* non-cofinite.

└─ Thin sets in Harmonic Analysis

 \square Dirichlet sets of $\mathbb T$

[Barbieri-Dikranjan-GB-Weber 2016]:

If $L \subseteq \mathbb{N}_+$ is infinite non-cofinite, then:

- K_L^{u} is closed;
- $K_L^{\mathbf{u}}$ is perfect (i.e., has no isolated points).

Theorem (Barbieri-Dikranjan-GB-Weber 2016)

If $L \subseteq \mathbb{N}_+$ is infinite non-cofinite, then $K_L^{\mathbf{u}}$ is a D-set if and only if either $\{d_n^{\mathbf{u}} : n \in \mathbb{N}_+ \setminus L\}$ is not bounded or L is not large.

 $L \subseteq \mathbb{N}_+$ is *large* if there exists $F \subseteq \mathbb{Z}$ finite such that $\mathbb{N}_+ \subseteq L + F$.

Corollary

If $L \subseteq \mathbb{N}_+$ is infinite and not large, then $K_L^{\mathbf{u}}$ is a D-set.

└─ Thin sets in Harmonic Analysis

└─ T is factorizable

If
$$L_1 \subseteq \mathbb{N}_+$$
 and $L_2 = \mathbb{N}_+ \setminus L$, then $\mathbb{T} = K_{L_1}^{\mathbf{u}} + K_{L_2}^{\mathbf{u}}$.

If L_1 and L_2 are both non-large, then $K_{L_1}^{\mathbf{u}}$ and $K_{L_2}^{\mathbf{u}}$ are D-sets.

Theorem (Barbieri-Dikranjan-GB-Weber 2016)

 ${\mathbb T}$ can be written as the sum of two closed perfect D-sets.

(Related to Erdös-Kunen-Mauldin Theorem 1981: for $\emptyset \neq P \subseteq \mathbb{T}$ perfect, there exists $D \subseteq \mathbb{T}$ perfect *D*-set with $\mathbb{T} = P + D$.)

In particular, there exist \mathbf{v} , \mathbf{w} subsequences of \mathbf{u} such that \mathbf{v} , \mathbf{w} witness that $\mathcal{K}_{L_1}^{\mathbf{u}}$, $\mathcal{K}_{L_2}^{\mathbf{u}}$ are *D*-sets; then $\left[\mathbb{T} = t_{\mathbf{v}}(\mathbb{T}) + t_{\mathbf{w}}(\mathbb{T})\right]$

Corollary

 ${\mathbb T}$ can be written as the sum of two proper subgroups characterized by arithmetic sequences.

This answers a question from [Barbieri-Dikranjan-Milan-Weber 2003].

- Characterized subgroups of topological abelian groups
 - Definition

Characterized subgroups of topological abelian groups

Definition (Dikranjan-Milan-Tonolo 2005)

Let G be a topological abelian group, $\mathbf{u} = (u_n)_n \in \widehat{G}^\mathbb{N}$ and

$$s_{\mathsf{u}}(G) = \{x \in G : u_n(x) \to 0\}.$$

 $H \leq G$ is *characterized* if $H = s_{\mathbf{u}}(G)$ for some $\mathbf{u} \in \widehat{G}^{\mathbb{N}}$.

If $G = \mathbb{T}$, then $\widehat{\mathbb{T}} = \mathbb{Z}$; so $t_{\mathbf{u}}(\mathbb{T}) = s_{\mathbf{u}}(\mathbb{T})$ for $\mathbf{u} \in \mathbb{Z}^{\mathbb{N}}$. Since $s_{\mathbf{u}}(G) = \bigcap_{N \ge 2} \bigcup_{m \in \mathbb{N}} \bigcap_{n \ge m} \{x \in G : ||u_n(x)|| \le \frac{1}{N}\}$, if G = K is compact, then:

- s_u(K) is a Borel set, and so either s_u(K) is countable or |s_u(K)| = c;
- μ(s_u(K)) = 0 if u is non-trivial. [Comfort-Trigos-Arrieta-Wu 1993; Raczkowski 2002 for LCA]

- Characterized subgroups of topological abelian groups

Properties

Let
$$K$$
 be a compact abelian group.

Theorem (Dikranjan-Kunen; Beiglböck-Steineder-Winkler 2006)

If K is metrizable, then every countable $H \leq K$ is characterized.

For G an abelian group, $\mathbf{u}\in \widehat{G}^{\mathbb{N}}$ and $H\leq G$, let

$$\mathfrak{g}_{G}(H) = \bigcap \{ s_{u}(G) : u \in \widehat{G}^{\mathbb{N}}, H \leq s_{u}(G) \};$$

H is \mathfrak{g} -*closed* if $H = \mathfrak{g}_G(H)$.

Theorem (Lukács 2006)

All countable subgroups of K are g-closed.

Every characterized subgroup of K is $F_{\sigma\delta}$. [Biró 2007]: There exist F_{σ} -subgroups of K not characterized.

Theorem (Dikranjan-Gabriyelyan 2013)

Every G_{δ} -subgroup of K is characterized.

Characterized subgroups of topological abelian groups

Properties

Definition

A non-trivial sequence \mathbf{u} in an abelian group G is:

- a *T*-sequence if there is a Hausdorff group topology τ on *G* such that $u_n \xrightarrow{\tau} 0$;
- a *TB-sequence* if there exists a precompact topology τ on *G* such that $u_n \xrightarrow{\tau} 0$.

[Protasov-Zelenyuk 1999]: complete criterion for *T*-sequences.

[Dikranjan-Milan-Tonolo 2005]:

- If τ is a totally bounded group topology on G, then $\tau = T_H$ for some $H \leq \widehat{G}$ and $u_n \xrightarrow{\tau} 0 \Leftrightarrow H \leq s_u(\widehat{G})$.
- $T_{s_u(\widehat{G})}$ is the finest tot. bounded gr. top. τ on G with $u_n \xrightarrow{\tau} 0$.
- **u** is a *TB*-sequence if and only if $s_{\mathbf{u}}(\widehat{G})$ is dense in \widehat{G} .

For other results on characterized subgroups and related topics see recent papers by Dikranjan, Gabriyelyan, Impieri, etc.

- THE END -

Thank you for the attention