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Characterized subgroups of the circle group
L introduction

Lp-torsion and torsion subgroup

Introduction

Let G be an abelian group and p a prime.
The p-torsion subgroup of G is

t,(G) = {x € G : p"x =0 for some n € N}.
The torsion subgroup of G is

t(G) ={x € G : nx =0 for some n € N, }.

The circle group is T = R/Z written additively (T, +);

for r ¢ R, we denote F=r+7Z c T.

We consider on T the quotient topology of the topology of R
and p is the (unique) Haar measure on T.

o tp(T) = Z(p™).
o t(T) =Q/Z.
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L introduction

|—Topologically p-torsion and topologically torsion subgroup

Let now G be a topological abelian group.

[Bracconier 1948, Vilenkin 1945, Robertson 1967, Armacost 1981]:
The topologically p-torsion subgroup of G is

tp(G) = {x € G: p"x — 0O}.

The topologically torsion subgroup of G is

‘G!Z{XGGZ”!X—)O}.‘

Clearly, t,(G) C t,(G) and t(G) C G!.
[Armacost 1981]:
o tp(T) = t,(T) = Z(p™);
e ec Tl buté¢t(T)=Q/Z. Problem: describe T!.
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L introduction

|—Topologically p-torsion and topologically torsion subgroup

[Borel 1991; Dikranjan-Prodanov-Stoyanov 1990; D-DiSanto 2004]:

For every x € [0, 1) there exists a unique (c,), € N+ such that

=3 o
= (n+1)V

cp < n+1 for every n € Ny and ¢, < n for infinitely many n € N_.

Theorem (Dikranjan-Prodanov-Stoyanov 1990; D-Di Santo 2004)

Let x€[0,1). Thenx€T! < 2 —0inT.

[Dikranjan-Di Santo 2004]:

T! has Haar measure 0, T! has size ¢ and T! is not divisible.
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LTopologically u-torsion subgroup

L Definition

Topologically u-torsion subgroup

Definition (Dikranjan-Prodanov-Stoyanov 1990; Dikranjan 2001)

Let G be a topological abelian group and u = (u,), € Z".
The topologically u-torsion subgroup of G is

tw(G) ={x € G : upx — 0}.

o t,(G) ={x € G:p"x — 0} = tp(G), where p = (p"),.
o G!={x€ G:nlx — 0} =t,(G), where u = ((n+ 1)!),.

Example (Dikranjan-Kunen 2007)

t(T) = Q/Z = tu(T), where u is the sequence
(11,21,2.21,31,2.31/3.3141 ... nl,2:n), 30! ... n-nl  (n41))).00).

Problem: given u € ZY, describe t,(T).
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LTopologically u-torsion subgroup

L Arithmetic sequences

Which property is shared by (p"), and ((n+ 1)!),?

Let u = (up)n be an arithmetic sequence
(i.e., uo=1, u, € Ny and u, | upqq for every n € N)
and for every n € N let

u _ Un+1
n+1 —

eN,.

n
Theorem

For every x € [0,1), there exists a unique (c%(x)), € N+ with

ch(x) < dY for every n € Ny,
and ch(x) < d¥ — 1 for infinitely many n € N4.
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L Arithmetic sequences

Theorem (Dikranjan-Prodanov-Stoyanov 1990; D-Di Santo 2004)

Let x = 3% 90 ¢ 0, 1).

n=1 u,

o If (d"), is bounded, then X € t,(T) < (cp(x))n is ev. 0.
o If d¥ — +o0, then X € t,(T) & =) 5 0inT.

[Dikranjan-Di Santo 2004, Dikranjan-Impieri 2014]:

Complete description of t,(T) for u arithmetic sequence.

The following conditions are equivalent:
e (dM), is bounded;
o t,(T) is countable;

o t,(T) is torsion.
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L Characterized subgroups of T

L Definition and generalization

Characterized subgroups of T

Definition (Biré-Deshouillers-Sés 2001)

A subgroup H of T is characterized if H = t,(T) for some u € ZN.
(H is characterized by u; u characterizes H.)

Describe the characterized subgroups of T.
In other words, given u € ZN, describe t,(T).

The "“inverse problem”: given H < T, is H characterized?

Problem (Di Santo 2002; Maharam-Stone 2001)

Given H < T characterized, describe
SH={ueZN:H=1t,(T)} <z
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L Characterized subgroups of T

|—First properties and results

o If H is a finite subgroup of T, then H is characterized.

@ u characterizes T if and only if u is eventually zero.
o If H < T is characterized, then:

o H = t,(T) for u € N strictly increasing;
o u(H)=0.

o Since tu(T) = Ny>2 Umen Nazm {x € T:|Jux|| < %}
is a Borel set, so

either t,(T) is countable or |t,(T)| = c.

Theorem (Eggleston 1952)

@ Upt1/up — o0 = |t(T)| =c.
® (Up+t1/un)n bounded = t,(T) countable.
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|—First properties and results

Theorem (Borel 1983)

All countable subgroups of T are characterized by some u € ZN.

[Beiglbock-Steineder-Winkler 2006]: u can be chosen with
(Unt1/un)n bounded, but also arbitrarily fast increasing.

Borel's motivation:
(xn)n € RY is uniformly distributed mod 1 if for all [a, b] C [0, 1),

{j€A{0,....n}: {x;j} € [a, b]}| Al

n

Theorem (Weyl, 1916; Kuipers-Niederreiter 1974)

Let u € NN pe a strictly increasing sequence. Then
M{B € R: ({unB})n is uniformly distributed mod 1}) = 1.

This does not hold fczr all 5 € R, so study the “opposite case”
tw(T)={8€T: u,8 — 0}.
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L Continued fractions

The infinite cyclic subgroups of T

Let « be an irrational number and consider (&) < T.
The irrational « has a unique continued fraction expansion

1
a = ay +

ar +

1
a+...
denoted by a = [ag; a1, az, - . .].

For every n € N, let q = (gn)n € NL\E, where

[a0; a1, ..., an] = &, with g, > 0.
dn

Since g, — 0 in T, so

(@) € 1q(T).
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L Characterization of the cyclic subgroups of T

L Larcher Theorem

Theorem (Larcher 1988)
(@) = tq(T) when (a,)n is bounded.

The equality does not hold true in general, more precisely:

Theorem (Kraaikamp-Liardet 1992)

(@) = tq(T) if and only if (an)n is bounded.

Example

Consider the Golden ratio ¢ = %ﬁ Then

(@) = t(T),

where f = (f,), is the Fibonacci sequence
fo=1 A=1 HK=2 =3, =5, ...
Indeed, ¢ =[1;1,1,...] and g, = f, for every n € N,.
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L Characterization of the cyclic subgroups of T

|—A generalization: recurrent sequences

[Barbieri-Dikranjan-Milan-Weber 2008]:

Sequences u € ZN verifying a linear recurrence.

For every n > 2, ‘ Up = apUp_1 + bpup_2, ‘ an, bp € Ny.

Theorem (Barbieri-Dikranjan-Milan-Weber 2008)

[tu(T))| = ¢ < (unt1/un)n not bounded.

If « = [ag; a1,...] is an irrational and q = (gn)s, then
for every n > 2, ‘q,, = anqn—1 + Gn—2, ‘ g=14q = a;.

The following conditions are equivalent:

o (a) = tq(T),
o (ap)n is bounded;

o tq(T) is countable.
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L Characterization of the cyclic subgroups of T

L Biré-Deshouillers-Sés Theorem

Let a = [ao; a1, .. .] irrational, @ = (g,), as above and let v:

G0<q1<2q1 < ... < aq1 < <2 < ... < a3qp < q3<2q3 < ...

Theorem (Biré-Deshouillers-Sés 2001)
(@) =t (T).

Problem (Biré-Deshouillers-Sés 2001)

Find all sequences u € ZN characterizing (&).

In particular, if q C u C v,, one has
(@) =ty (T) € tu(T) C £4(T),

and the question is: under which hypotheses one has (&) = t,(T)?

Theorem (Marconato 2016)

If (Unt+1/un)n is bounded, then (&) = t,(T) = tu(T).
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L TB-sequences in Z

Precompact topologies on Z with converging sequences

[Raczkowski 2002; Barbieri-Dikranjan-Milan-Weber 2003]:

Given u € ZN, 3 a precompact gr. top. 7 on Z such that u, — 0?

A topological abelian group (G, 7) is:
e totally bounded if V() # U € 7, 3F C G finite, G = U + F;
@ precompact if T is Hausdorff and totally bounded.

For G abelian group and H < @ let Ty be the weakest group
topology on G such that all x € H are continuous.

Theorem (Comfort-Ross 1964)

e Ty is totally bounded and w(G, Ty) = |H|.
o If (G,7) is totally bounded, then T = Ty for some H < G.
o Ty is Hausdorff if and only if H is dense in G.

For G = Z, we have G=T.
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L Characterized subgroups of T and precompact group topologies of Z

L TB-sequences in Z

Let u € Z" and 7 a totally bounded group topology on Z. Then:
@ 7= Ty forsome H<T;

° u,,—IH—>O < H < t,(T).
Then Ty, (t) is the finest tot. bounded gr. top. 7 on Z with uj, 5o;
° wW(Z, Tyyry) = [tu(T)l;
o T, (t) is precompact if and only if t,(T) is infinite;
® Ty, () is metrizable if and only if |ty(T)| = w.

Theorem (Barbieri-Dikranjan-Milan-Weber 2003)

@ If upt1/un — +00, then there exists a precompact group
topology T on 7 such that w(Z,7) = ¢ and u, — 0.

@ If (unt1/un)n is bounded, then every precompact group
topology T on 7 such that u, = 0 is metrizable.
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L Dirichlet set and Arbault sets

Dirichlet sets and Arbault sets

Definition (Arbault 1952, Kahane 1969)
Aset AC[0,1] is:
@ an Arbault set (briefly, A-set) if there exists u € N+ increasing
such that sin(wu,x) — 0 for all x € A.

o a Dirichlet set (briefly, D-set) if there exists u € NI increasing
such that sin(wupx) — 0 uniformly on A.

v

Let w: R — T and ¢ := @ [[p1): [0,1) — T bijection.

Definition

A C T A-set (resp., D-set) if ¢~ 1(A) C [0,1] A-set (resp., D-set);
that is, there exists u € N§ increasing such that u,x - 0Vx € A
(resp., upx — 0 uniformly on A).

A C T A-set if and only if A C t,(T) for some u € Z.
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L Thin sets in Harmonic Analysis

|—Inclusions of characterized subgroups of T

[Eliag 2003, 2005]:

Let A be the family of all Arbault sets of T.
Let S={ue N : upp1/u, — +oo}.

o X e A= X C t,(T) for someu e S.

Theorem (Elia3 2003; Barbieri-GB-Weber 2015 for R)

Description of when t,(T) C t,(T) foru,v € S.

Elia§' motivation:

An X C T is A-permitted if XUY € A for every Y € A.
[Kholshchevnikova 1994]: X C T countable = A-permitted.

Theorem (Elia3 2005)

A set X C T is A-permitted if and only if for every u € S there
exists v € S such that X U t,(T) C t,(T).

Properties of A-permitted sets.
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L Thin sets in Harmonic Analysis

L Dirichlet sets of T

Let u = (up), be an arithmetic sequence (i.e., up | Upt1,Vn € N)
and for every n € N let df ; = “*2L e N,

Un

For every x € [0, 1), there exists a unique (c¥(x)), € N+ with

X = Z Cnu(:),

n=1

ch(x) < d¥ Vne N4, ch(x) < dif — 1 for infinitely many n € N.
For x € [0,1), let ‘suppu(x) ={neNi:c(x)# 0}‘

Definition (Marcinkiewiz 1938; Barbieri-Dikranjan-GB-Weber 2016)

For L C N4, let|K}' = {x € T : supp,(x) C L}.

Clearly, 0 € K}' since supp,(0) = 0.
e K| finite = K}' D-set.
e K[' D-set = L non-cofinite.
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L Thin sets in Harmonic Analysis

L Dirichlet sets of T

[Barbieri-Dikranjan-GB-Weber 2016]:
If L C N4 is infinite non-cofinite, then:

e K}'is closed;

e K}'is perfect (i.e., has no isolated points).

Theorem (Barbieri-Dikranjan-GB-Weber 2016)

If L € Ny is infinite non-cofinite, then K}' is a D-set if and only if
either {d} : n € Ny \ L} is not bounded or L is not large.

L C Ny is large if there exists F C Z finite such that N, C L + F.

If L C N is infinite and not large, then K|' is a D-set. I
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L Thin sets in Harmonic Analysis

LT is factorizable

If Ly C Ny and L = Ny \ L, then [T = K}! + K.

If L1 and Lj are both non-large, then Ki'l and KEZ are D-sets.

Theorem (Barbieri-Dikranjan-GB-Weber 2016)

T can be written as the sum of two closed perfect D-sets.

(Related to Erdds-Kunen-Mauldin Theorem 1981: for ) £ P C T
perfect, there exists D C T perfect D-set with T = P + D.)

In particular, there exist v, w subsequences of u such that v, w
witness that K}, K}’ are D-sets; then "]I‘ = t,(T) + tw(T). ‘

T can be written as the sum of two proper subgroups characterized
by arithmetic sequences.

This answers a question from
[Barbieri-Dikranjan-Milan-Weber 2003].
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Characterized subgroups of topological abelian groups

Definition (Dikranjan-Milan-Tonolo 2005)

Let G be a topological abelian group, u = (up), € GN and
su(G) = {x € G : us(x) — 0}.

H < G is characterized if H = s,(G) for some u € GV.

If G =T, then T = Z; so ty(T) = su(T) for u € ZN.
Since su(G) = Myz2 Umen Nazm 1% € G ¢ un(x)I| < 1,
if G = K is compact, then:
@ s,(K) is a Borel set, and so
either sy(K) is countable or |sy(K)| = ¢;
o s(su(K)) =0 if u is non-trivial.
[Comfort-Trigos-Arrieta-Wu 1993; Raczkowski 2002 for LCA]
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L Characterized subgroups of topological abelian groups

L Properties

Let K be a compact abelian group.

Theorem (Dikranjan-Kunen; Beiglbdck-Steineder-Winkler 2006)

If K is metrizable, then every countable H < K is characterized.

For G an abelian group, u € GNand H < G, let
g6(H) =[{su(G) u e GV, H < 5,(G)};
H is g-closed if H = gg(H).

Theorem (Lukacs 2006)
All countable subgroups of K are g-closed.

Every characterized subgroup of K is F,s.
[Biré 2007]: There exist F,-subgroups of K not characterized.

Theorem (Dikranjan-Gabriyelyan 2013)

Every Gs-subgroup of K is characterized.
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L Characterized subgroups of topological abelian groups

L Properties

Definition

A non-trivial sequence u in an abelian group G is:

@ a T-sequence if there is a Hausdorff group topology 7 on G
such that u, — 0:

@ a TB-sequence if there exists a precompact topology 7 on G
such that u, — 0.

[Protasov-Zelenyuk 1999]: complete criterion for T-sequences.

[Dikranjan-Milan-Tonolo 2005]:

o If 7 is a totally bounded group topology on G, then
7=Tyforsome H< G and u, 50 & H < s,(G).

° Tsu(c?) is the finest tot. bounded gr. top. 7 on G with u, = 0.

o uis a TB-sequence if and only if s,(G) is dense in G.

For other results on characterized subgroups and related topics see
recent papers by Dikranjan, Gabriyelyan, Impieri, etc.
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- THE END -

Thank you for the attention
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