Anna Giordano Bruno

Recent Advances in Commutative Ring and Module Theory Bressanone, June 16th, 2016

- Measure entropy [Kolmogorov, Sinai 1957]
- Topological entropy h_{top} [Adler, Konheim, McAndrew 1965; Bowen 1971; Hood 1974; ...]
- Algebraic entropies h_{alg} [A, K, M 1965; Weiss 1975; Peters 1979; Dikranjan, Goldsmith, Salce, Zanardo 2009; D, GB 2009–16; Virili 2010; ...]
- *i*-Entropies for modules [S, Z 2009; Z 2009; GB, S 2010; S, Vàmos, V 2010; V, V 2011; S, V 2016; . . .]
- Adjoint entropy h^{*}_{alg} [D, GB, S 2010; Goldsmith, Gong 2011; GB 2011; ...]

• . . .

[AGB & Luigi Salce 2010]

Let \mathbb{K} be a field and V a vector space over \mathbb{K} . Let $\phi: V \to V$ be a linear transformation.

For a subspace F of V and n > 0, let

$$T_n(\phi, F) = F + \phi(F) + \phi^2(F) + \ldots + \phi^{n-1}(F).$$

If F is a finite-dimensional subspace of V, the algebraic entropy of ϕ with respect to F is

$$H(\phi, F) = \lim_{n \to \infty} \frac{1}{n} \dim T_n(\phi, F).$$

The algebraic entropy of ϕ is

$$\operatorname{ent}(\phi) = \sup\{H(\phi, F) : F \leq V, \text{ dim } F \text{ finite}\}.$$

Algebraic entropy for vector spaces

- Examples and connection with h_{alg}

• For any vector space V, we have $ent(id_V) = 0$.

The right Bernoulli shift

 $\beta_{\mathbb{K}}: \mathbb{K}^{(\mathbb{N})} \to \mathbb{K}^{(\mathbb{N})}, \quad (x_0, x_1, x_2, \ldots) \mapsto (0, x_0, x_1, \ldots)$

has $ent(\beta_{\mathbb{K}}) = 1$. The left Bernoulli shift

$$_{\mathbb{K}}eta:\mathbb{K}^{(\mathbb{N})}\to\mathbb{K}^{(\mathbb{N})},\quad(x_0,x_1,x_2,\ldots)\mapsto(x_1,x_2,x_3,\ldots)$$

has $\operatorname{ent}(_{\mathbb{K}}\beta) = 0$.

If K = Z(p) with p a prime, a vector space V over K is a torsion abelian group and

$$\operatorname{ent}(\phi) = rac{h_{alg}(\phi)}{\log |\mathbb{K}|}.$$

Algebraic entropy for vector spaces

Properties

Invariance under conjugation: If $\phi = \xi^{-1}\psi\xi$, $\psi: W \to W$ linear transformation, $\xi: V \to W$ isomorphism $V \xrightarrow{\phi} V$, $\xi \downarrow \qquad \psi \qquad \psi\xi$, $W \xrightarrow{\psi} W$

then $\operatorname{ent}(\phi) = \operatorname{ent}(\psi)$.

Monotonicity: $W \ \phi$ -invariant subspace of $V, \ \overline{\phi} : V/W \rightarrow V/W$ induced by ϕ ; then $\operatorname{ent}(\phi) \geq \max{\operatorname{ent}(\phi \upharpoonright_W), \operatorname{ent}(\overline{\phi})}$.

Logarithmic Law: $ent(\phi^k) = k \cdot ent(\phi)$ for every $k \ge 0$.

Continuity: If V is direct limit of ϕ -invariant subspaces $\{V_i : i \in I\}$, then $\operatorname{ent}(\phi) = \sup_{i \in I} \operatorname{ent}(\phi \upharpoonright_{V_i})$.

weak Addition Theorem: If $V = V_1 \times V_2$ and $\phi_i : V_i \to V_i$ linear transformation, i = 1, 2, then $\operatorname{ent}(\phi_1 \times \phi_2) = \operatorname{ent}(\phi_1) + \operatorname{ent}(\phi_2)$.

Algebraic entropy for vector spaces

└─ Addition Theorem

Theorem (Addition Theorem)

Let V be a vector space, $\phi : V \to V$ a linear transformation, W a ϕ -invariant subspace of V, $\overline{\phi} : V/W \to V/W$ induced by ϕ . Then

 $\operatorname{ent}(\phi) = \operatorname{ent}(\phi \upharpoonright_{W}) + \operatorname{ent}(\overline{\phi}).$

Let \mathbb{K} be a field and V a vector space over \mathbb{K} . Let $\phi: V \to V$ be a linear transformation.

For a subspace N of V and n > 0, let

$$C_n(\phi, N) = N \cap \phi^{-1}(N) \cap \phi^{-2}(N) \cap \ldots \cap \phi^{-n+1}(N).$$

If N is a subspace of V of finite codimension, the adjoint algebraic entropy of ϕ with respect to N is

$$H^*(\phi, N) = \lim_{n \to \infty} \frac{1}{n} \dim \frac{V}{C_n(\phi, N)}$$

The adjoint algebraic entropy of ϕ is

$$\operatorname{ent}^{\star}(\phi) = \sup\{H^{\star}(\phi, N) : N \leq V, \text{ dim } V/N \text{ finite}\}.$$

Adjoint algebraic entropy for vector spaces

- Properties

Invariance under conjugation: If $\phi = \xi^{-1}\psi\xi$, $\psi : W \to W$ linear transformation, $\xi : V \to W$ isomorphism, then $\operatorname{ent}^*(\phi) = \operatorname{ent}^*(\psi)$.

Monotonicity: $W \ \phi$ -invariant subspace of $V, \ \overline{\phi} : V/W \rightarrow V/W$ induced by ϕ ; then $\operatorname{ent}^*(\phi) \geq \max\{\operatorname{ent}(\phi \upharpoonright_W), \operatorname{ent}^*(\overline{\phi})\}.$

Logarithmic Law: $ent^*(\phi^k) = k \cdot ent^*(\phi)$ for every $k \ge 0$.

weak Addition Theorem: If $V = V_1 \times V_2$ and $\phi_i : V_i \to V_i$ linear transformation, i = 1, 2, then $\operatorname{ent}^*(\phi_1 \times \phi_2) = \operatorname{ent}^*(\phi_1) + \operatorname{ent}^*(\phi_2)$.

Theorem (Addition Theorem)

Let V be a vector space, $\phi : V \to V$ a linear transformation, W a ϕ -invariant subspace of V, $\overline{\phi} : V/W \to V/W$ induced by ϕ . Then

$$\operatorname{ent}^{\star}(\phi) = \operatorname{ent}^{\star}(\phi \upharpoonright_{W}) + \operatorname{ent}^{\star}(\overline{\phi}).$$

Adjoint algebraic entropy for vector spaces

-Examples and connection with h_{alg}^*

For any vector space V, we have ent*(id_V) = 0.
The right Bernoulli shift

 $\beta_{\mathbb{K}}: \mathbb{K}^{(\mathbb{N})} \to \mathbb{K}^{(\mathbb{N})}, \quad (x_0, x_1, x_2, \ldots) \mapsto (0, x_0, x_1, \ldots)$

has $ent^*(\beta_{\mathbb{K}}) = \infty$. The left Bernoulli shift

$$_{\mathbb{K}}\beta:\mathbb{K}^{(\mathbb{N})}\to\mathbb{K}^{(\mathbb{N})},\quad(x_0,x_1,x_2,\ldots)\mapsto(x_1,x_2,x_3,\ldots)$$

has $\operatorname{ent}^{\star}(\mathbb{K}\beta) = \infty$.

If K = Z(p) with p a prime, a vector space V over K is a torsion abelian group and

$$\operatorname{ent}^{\star}(\phi) = \frac{h_{alg}^{\star}(\phi)}{\log |\mathbb{K}|}.$$

Adjoint algebraic entropy for vector spaces

 \square Bridge Theorem and values of ent^*

Theorem (Bridge Theorem)

Let V be a vector space, $\phi : V \to V$ a linear transformation, V^{\wedge} the dual space of V and $\phi^{\wedge} : V^{\wedge} \to V^{\wedge}$ the dual linear transformation. Then

$$\operatorname{ent}^{\star}(\phi) = \operatorname{ent}(\phi^{\wedge}).$$

Corollary (Dichotomy)

Let V be a vector space, $\phi: V \rightarrow V$ a linear transformation. Then

 $\operatorname{ent}^{\star}(\phi) \in \{0,\infty\}.$

Locally linearly compact vector spaces and Lefschetz duality

Definition

[Lefschetz 1942]

Let $\mathbb K$ be a discrete field and let V be a linearly topologized vector space over $\mathbb K$

- V is linearly compact if, for every family $\mathcal{M} = \{m_i + M_i : i \in I\}$ of closed linear varieties of V with the finite intersection property, \mathcal{M} has non-empty intersection.
- V is locally linearly compact if there exists an open linear subspace of V that is linearly compact.

Discrete vector spaces and linearly compact vector spaces are l.l.c.; V is linearly compact and discrete if and only if dim V is finite; V l.l.c. $\cong_{top} V_{lc} \times V_d$.

V is locally linearly compact if and only if it admits a neighborhood basis of 0 consisting of linearly compact subspaces; so let $\mathcal{B}(V) = \{U \leq V : U \text{ open, linearly compact}\}.$

If $\mathbb{K} = \mathbb{Z}(p)$, V l.c. implies that V is a t.d. compact abelian group; and V l.l.c. implies that V is a t.d. locally compact abelian group.

Locally linearly compact vector spaces and Lefschetz duality

Lefschetz duality

Let V be a locally linearly compact vector space.

Let $\operatorname{CHom}(V, \mathbb{K}) = \{\chi : V \to \mathbb{K} \text{ continuous character}\} \leq V^{\wedge}$. For $A \leq V$, let $A^{\perp} = \{\chi \in \operatorname{CHom}(V, \mathbb{K}) : \chi(A) = 0\}$.

The topological dual V^* of V is $\operatorname{CHom}(V, \mathbb{K})$ with the topology generated by $\{A^{\perp} : A \leq V, A \text{ l.c.}\}$ as a basis of nbhs of 0.

- V* is a locally linearly compact vector space.
- V is discrete if and only if V^* is linearly compact.
- V is linearly compact if and only if V^* is discrete.

The dual of $\phi: V \to W$ is $\phi^*: W^* \to V^*$ such that $\chi \mapsto \chi \circ \phi$.

*:
$$LLC_{\mathbb{K}} \to LLC_{\mathbb{K}}$$
 duality functor.
(*: $Vect_{\mathbb{K}} \to LC_{\mathbb{K}}$; *: $LC_{\mathbb{K}} \to Vect_{\mathbb{K}}$)

Duality Theorem: V is topological isomorphic to V^{**} . (** : $LLC_{\mathbb{K}} \rightarrow LLC_{\mathbb{K}}$ and $id : LLC_{\mathbb{K}} \rightarrow LLC_{\mathbb{K}}$ are naturally iso.) (* : $Vect_{\mathbb{K}} \rightarrow LC_{\mathbb{K}}$ and * : $LC_{\mathbb{K}} \rightarrow Vect_{\mathbb{K}}$ form a duality.) Topological adjoint entropy for linearly compact vector spaces

└─ The topologized version

[Ilaria Castellano & AGB 2016]

Let V be a linearly compact vector space. Then $\mathcal{B}(V) = \{U \leq V : U \text{ open}\}.$

If $U \in \mathcal{B}(V)$, then dim V/U is finite.

Let $\phi: V \to V$ a continuous linear transformation.

The (topological) adjoint entropy of ϕ is

 $\operatorname{ent}_t^\star(\phi) = \sup\{H^\star(\phi, U) : U \in \mathcal{B}(V)\} \le \operatorname{ent}^\star(\phi).$

Topological adjoint entropy for linearly compact vector spaces

- Properties

Invariance under conjugation: If $\phi = \xi^{-1}\psi\xi$, $\psi: W \to W$ continuous linear transformation, $\xi: V \to W$ topological isomorphism, then $\operatorname{ent}_t^*(\phi) = \operatorname{ent}_t^*(\psi)$.

Monotonicity: $W \leq V$ closed ϕ -invariant, $\overline{\phi} : V/W \rightarrow V/W$ induced by ϕ ; then $\operatorname{ent}_t^*(\phi) \geq \max\{\operatorname{ent}_t^*(\phi \upharpoonright_W), \operatorname{ent}_t^*(\overline{\phi})\}.$

Logarithmic Law: $\operatorname{ent}_t^*(\phi^k) = k \cdot \operatorname{ent}_t^*(\phi)$ for every $k \ge 0$.

Continuity: If *V* is inverse limit of $\{V/V_i : i \in I\}$ where each $V_i \leq V$ is closed ϕ -invariant, then $\operatorname{ent}_t^*(\phi) = \sup_{i \in I} \operatorname{ent}_t^*(\overline{\phi}_{V/V_i})$. weak Addition Theorem: If $V = V_1 \times V_2$ and $\phi_i : V_i \to V_i$ continuous, i = 1, 2, then $\operatorname{ent}_t^*(\phi_1 \times \phi_2) = \operatorname{ent}_t^*(\phi_1) + \operatorname{ent}_t^*(\phi_2)$.

Theorem (Addition Theorem)

Let V be a linearly compact vector space, $\phi : V \to V$ a continuous linear transformation, W a closed ϕ -invariant subspace of V, $\overline{\phi} : V/W \to V/W$ induced by ϕ . Then

 $\operatorname{ent}_t^{\star}(\phi) = \operatorname{ent}_t^{\star}(\phi \upharpoonright_W) + \operatorname{ent}_t^{\star}(\overline{\phi}).$

Topological adjoint entropy for linearly compact vector spaces

 \vdash Examples and connection with h_{top}

For any linearly compact vector space V, ent^{*}_t(id_V) = 0.
The right Bernoulli shift

$$\tilde{\beta}_{\mathbb{K}}: \mathbb{K}^{\mathbb{N}} \to \mathbb{K}^{\mathbb{N}}, \quad (x_0, x_1, x_2, \ldots) \mapsto (0, x_0, x_1, \ldots)$$

has $\operatorname{ent}_t^{\star}(\tilde{\beta}_{\mathbb{K}}) = 0$. The left Bernoulli shift

$$_{\mathbb{K}}\tilde{eta}:\mathbb{K}^{\mathbb{N}}
ightarrow\mathbb{K}^{\mathbb{N}},\quad(x_{0},x_{1},x_{2},\ldots)\mapsto(x_{1},x_{2},x_{3},\ldots)$$

has $\operatorname{ent}_t^{\star}(\mathbb{K}\tilde{\beta}) = 1.$

If K = Z(p) with p a prime, a linearly compact vector space
 V over K is a totally disconnected compact abelian group and

$$\operatorname{ent}_t^{\star}(\phi) = \frac{h_{top}(\phi)}{\log |\mathbb{K}|}.$$

Topological adjoint entropy for linearly compact vector spaces

└─Bridge Theorem

Let V be a discrete vector space. Then V^* is a linearly compact vector space.

•
$$(\beta_{\mathbb{K}})^* = {}_{\mathbb{K}}\tilde{\beta}$$
, so $\operatorname{ent}(\beta_{\mathbb{K}}) = 1 = \operatorname{ent}_t^*({}_{\mathbb{K}}\tilde{\beta}) = \operatorname{ent}_t^*((\beta_{\mathbb{K}})^*)$.
• $({}_{\mathbb{K}}\beta)^* = \tilde{\beta}_{\mathbb{K}}$, so $\operatorname{ent}({}_{\mathbb{K}}\beta) = 0 = \operatorname{ent}_t^*(\tilde{\beta}_{\mathbb{K}}) = \operatorname{ent}_t^*(({}_{\mathbb{K}}\beta)^*)$.

Theorem (Bridge Theorem)

Let V be a discrete vector space and $\phi: V \rightarrow V$ a linear transformation. Then

$$\operatorname{ent}(\phi) = \operatorname{ent}_t^*(\phi^*).$$

If $\mathbb{K} = \mathbb{Z}(p)$ with p a prime, V is a torsion abelian group and V^* is a totally disconnected compact abelian group. For $\phi : V \to V$ a continuous linear transformation,

$$\operatorname{ent}(\phi) = \frac{h_{alg}(\phi)}{\log |\mathbb{K}|} \quad \text{and} \quad \widetilde{ent}_t^*(\phi^*) = \frac{h_{top}(\phi^*)}{\log |\mathbb{K}|}.$$

Moreover, $h_{alg}(\phi) = h_{top}(\phi^*)$ [Dikranjan & GB 2012].

Algebraic and topological entropy for locally linearly compact vector spaces

└─ Definition

Let V be a locally linearly compact vector space and $\mathcal{B}(V) = \{U \leq V : U \text{ open, linearly compact}\}.$

Let $\phi: V \to V$ be a continuous linear transformation.

For $U \in \mathcal{B}(V)$, the algebraic entropy of ϕ with respect to U is

$$\widetilde{H}(\phi, U) = \lim_{n \to \infty} \frac{1}{n} \dim \frac{T_n(\phi, U)}{U};$$

the algebraic entropy of ϕ is

$$\widetilde{\mathit{ent}}(\phi) = \mathsf{sup}\left\{\widetilde{\mathit{H}}(\phi, \mathit{U}): \mathit{U} \in \mathcal{B}(\mathit{V})
ight\}.$$

For $U \in \mathcal{B}(V)$, the adjoint entropy of ϕ with respect to U is

$$\widetilde{H}^{\star}(\phi, U) = \lim_{n \to \infty} \frac{1}{n} \dim \frac{U}{C_n(\phi, U)}$$

the adjoint entropy of ϕ is

$$\widetilde{ent}_t^\star(\phi) = \sup\left\{\widetilde{H}^\star(\phi, U) : U \in \mathcal{B}(V)
ight\}.$$

Algebraic and topological entropy for locally linearly compact vector spaces

└─ Properties

Let V be a locally linearly compact vector space and $\phi: V \rightarrow V$ a continuous linear transformation.

$$\widetilde{ent}(\phi) = \begin{cases} \operatorname{ent}(\phi) & \text{if } V \text{ is discrete,} \\ 0 & \text{if } V \text{ is linearly compact.} \end{cases}$$
$$\widetilde{ent}_t^*(\phi) = \begin{cases} 0 & \text{if } V \text{ is discrete,} \\ \operatorname{ent}_t^*(\phi) & \text{if } V \text{ is linearly compact} \end{cases}$$

All the basic properties of ent and ent_t^* extend to the general case of \widetilde{ent} and \widetilde{ent}_t^* , also the Addition Theorems.

.

If $\mathbb{K} = \mathbb{Z}(p)$ for p a prime, then a locally linearly compact vector space V over \mathbb{K} is a totally disconnected locally compact abelian group such that V^* is a totally disconnected locally compact abelian group too; and

$$\widetilde{ent}(\phi) = \frac{h_{alg}(\phi)}{\log |\mathbb{K}|}$$
 and $\widetilde{ent}_t^{\star}(\phi) = \frac{h_{top}(\phi)}{\log |\mathbb{K}|}.$

Algebraic and topological entropy for locally linearly compact vector spaces

Connection to h_{alg} and h_{top} and Bridge Theorem

Theorem (Bridge Theorem)

Let V be a locally linearly compact vector space and $\phi:V\to V$ a continuous linear transformation. Then

$$\widetilde{ent}(\phi) = \widetilde{ent}_t^*(\phi^*).$$

Assume that $\mathbb{K} = \mathbb{Z}(p)$ with p a prime, V is a locally linearly compact vector space and $\phi: V \to V$ is a continuous linear transformation. Then V and V^* are totally disconnected locally compact abelian groups; and

$$\widetilde{ent}(\phi) = \frac{h_{alg}(\phi)}{\log |\mathbb{K}|}$$
 and $\widetilde{ent}_t^*(\phi^*) = \frac{h_{top}(\phi^*)}{\log |\mathbb{K}|}$

Moreover, $h_{alg}(\phi) = h_{top}(\phi^*)$ [Dikranjan & GB 2014].

END Thank you!