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Entropy in locally linearly compact vector spaces

Introduction

Entropies in Mathematics

Measure entropy [Kolmogorov, Sinai 1957]

Topological entropy htop [Adler, Konheim, McAndrew 1965;
Bowen 1971; Hood 1974; . . . ]

Algebraic entropies halg [A, K, M 1965; Weiss 1975; Peters
1979; Dikranjan, Goldsmith, Salce, Zanardo 2009; D, GB
2009–16; Virili 2010; . . . ]

i-Entropies for modules [S, Z 2009; Z 2009; GB, S 2010; S,
Vàmos, V 2010; V, V 2011; S, V 2016; . . . ]

Adjoint entropy h?alg [D, GB, S 2010; Goldsmith, Gong 2011;
GB 2011; . . . ]

. . .
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Algebraic entropy for vector spaces

Definition

[AGB & Luigi Salce 2010]

Let K be a field and V a vector space over K.
Let φ : V → V be a linear transformation.

For a subspace F of V and n > 0, let

Tn(φ,F ) = F + φ(F ) + φ2(F ) + . . .+ φn−1(F ).

If F is a finite-dimensional subspace of V ,
the algebraic entropy of φ with respect to F is

H(φ,F ) = lim
n→∞

1

n
dimTn(φ,F ).

The algebraic entropy of φ is

ent(φ) = sup{H(φ,F ) : F ≤ V , dimF finite}.
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Algebraic entropy for vector spaces

Examples and connection with halg

1 For any vector space V , we have ent(idV ) = 0.

2 The right Bernoulli shift

βK : K(N) → K(N), (x0, x1, x2, . . .) 7→ (0, x0, x1, . . .)

has ent(βK) = 1.
The left Bernoulli shift

Kβ : K(N) → K(N), (x0, x1, x2, . . .) 7→ (x1, x2, x3, . . .)

has ent(Kβ) = 0.

3 If K = Z(p) with p a prime, a vector space V over K is a
torsion abelian group and

ent(φ) =
halg (φ)

log |K|
.
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Algebraic entropy for vector spaces

Properties

Invariance under conjugation: If φ = ξ−1ψξ, ψ : W →W linear

transformation, ξ : V →W isomorphism V
φ //

ξ ��

V
ξ��

W
ψ //W

,

then ent(φ) = ent(ψ).

Monotonicity: W φ-invariant subspace of V , φ : V /W → V /W
induced by φ; then ent(φ) ≥ max{ent(φ �W ), ent(φ)}.

Logarithmic Law: ent(φk) = k · ent(φ) for every k ≥ 0.

Continuity: If V is direct limit of φ-invariant subspaces
{Vi : i ∈ I}, then ent(φ) = supi∈I ent(φ �Vi

).

weak Addition Theorem: If V = V1 × V2 and φi : Vi → Vi linear
transformation, i = 1, 2, then ent(φ1 × φ2) = ent(φ1) + ent(φ2).
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Algebraic entropy for vector spaces

Addition Theorem

Theorem (Addition Theorem)

Let V be a vector space, φ : V → V a linear transformation, W a
φ-invariant subspace of V , φ : V /W → V /W induced by φ. Then

ent(φ) = ent(φ �W ) + ent(φ).

W� _

��

φ�W //W� _

��
V

����

φ // V

����
V /W

φ // V /W
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Adjoint algebraic entropy for vector spaces

Definition

Let K be a field and V a vector space over K.
Let φ : V → V be a linear transformation.

For a subspace N of V and n > 0, let

Cn(φ,N) = N ∩ φ−1(N) ∩ φ−2(N) ∩ . . . ∩ φ−n+1(N).

If N is a subspace of V of finite codimension,
the adjoint algebraic entropy of φ with respect to N is

H?(φ,N) = lim
n→∞

1

n
dim

V

Cn(φ,N)
.

The adjoint algebraic entropy of φ is

ent?(φ) = sup{H?(φ,N) : N ≤ V , dimV /N finite}.
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Adjoint algebraic entropy for vector spaces

Properties

Invariance under conjugation: If φ = ξ−1ψξ, ψ : W →W linear
transformation, ξ : V →W isomorphism, then ent?(φ) = ent?(ψ).

Monotonicity: W φ-invariant subspace of V , φ : V /W → V /W
induced by φ; then ent?(φ) ≥ max{ent(φ �W ), ent?(φ)}.

Logarithmic Law: ent?(φk) = k · ent?(φ) for every k ≥ 0.

weak Addition Theorem: If V = V1 × V2 and φi : Vi → Vi linear
transformation, i = 1, 2, then
ent?(φ1 × φ2) = ent?(φ1) + ent?(φ2).

Theorem (Addition Theorem)

Let V be a vector space, φ : V → V a linear transformation, W a
φ-invariant subspace of V , φ : V /W → V /W induced by φ. Then

ent?(φ) = ent?(φ �W ) + ent?(φ).
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Adjoint algebraic entropy for vector spaces

Examples and connection with h∗alg

1 For any vector space V , we have ent?(idV ) = 0.

2 The right Bernoulli shift

βK : K(N) → K(N), (x0, x1, x2, . . .) 7→ (0, x0, x1, . . .)

has ent?(βK) =∞.
The left Bernoulli shift

Kβ : K(N) → K(N), (x0, x1, x2, . . .) 7→ (x1, x2, x3, . . .)

has ent?(Kβ) =∞.

3 If K = Z(p) with p a prime, a vector space V over K is a
torsion abelian group and

ent?(φ) =
h?alg (φ)

log |K|
.



Entropy in locally linearly compact vector spaces

Adjoint algebraic entropy for vector spaces

Bridge Theorem and values of ent?

Theorem (Bridge Theorem)

Let V be a vector space, φ : V → V a linear transformation,
V ∧ the dual space of V and φ∧ : V ∧ → V ∧ the dual linear
transformation. Then

ent?(φ) = ent(φ∧).

Corollary (Dichotomy)

Let V be a vector space, φ : V → V a linear transformation. Then

ent?(φ) ∈ {0,∞}.
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Locally linearly compact vector spaces and Lefschetz duality

Definition

[Lefschetz 1942]

Let K be a discrete field and let V be a linearly topologized vector
space over K

V is linearly compact if, for every family
M = {mi + Mi : i ∈ I} of closed linear varieties of V with the
finite intersection property, M has non-empty intersection.

V is locally linearly compact if there exists an open linear
subspace of V that is linearly compact.

Discrete vector spaces and linearly compact vector spaces are l.l.c.;
V is linearly compact and discrete if and only if dimV is finite;
V l.l.c. ∼=top Vlc × Vd .

V is locally linearly compact if and only if it admits a
neighborhood basis of 0 consisting of linearly compact subspaces;
so let B(V ) = {U ≤ V : U open, linearly compact}.
If K = Z(p), V l.c. implies that V is a t.d. compact abelian group;
and V l.l.c. implies that V is a t.d. locally compact abelian group.
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Locally linearly compact vector spaces and Lefschetz duality

Lefschetz duality

Let V be a locally linearly compact vector space.

Let CHom(V ,K) = {χ : V → K continuous character} ≤ V ∧.
For A ≤ V , let A⊥ = {χ ∈ CHom(V,K) : χ(A) = 0}.

The topological dual V ∗ of V is CHom(V ,K) with the topology
generated by {A⊥ : A ≤ V , A l.c.} as a basis of nbhs of 0.

V ∗ is a locally linearly compact vector space.

V is discrete if and only if V ∗ is linearly compact.

V is linearly compact if and only if V ∗ is discrete.

The dual of φ : V →W is φ∗ : W ∗ → V ∗ such that χ 7→ χ ◦ φ.

∗ : LLCK → LLCK duality functor.
(∗ : VectK → LCK; ∗ : LCK → VectK)

Duality Theorem: V is topological isomorphic to V ∗∗.
(∗∗ : LLCK → LLCK and id : LLCK → LLCK are naturally iso.)
(∗ : VectK → LCK and ∗ : LCK → VectK form a duality.)
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Topological adjoint entropy for linearly compact vector spaces

The topologized version

[Ilaria Castellano & AGB 2016]

Let V be a linearly compact vector space.
Then B(V ) = {U ≤ V : U open}.

If U ∈ B(V ), then dimV /U is finite.

Let φ : V → V a continuous linear transformation.

The (topological) adjoint entropy of φ is

ent?t (φ) = sup{H?(φ,U) : U ∈ B(V )} ≤ ent?(φ).
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Topological adjoint entropy for linearly compact vector spaces

Properties

Invariance under conjugation: If φ = ξ−1ψξ, ψ : W →W
continuous linear transformation, ξ : V →W topological
isomorphism, then ent?t (φ) = ent?t (ψ).

Monotonicity: W ≤ V closed φ-invariant, φ : V /W → V /W
induced by φ; then ent?t (φ) ≥ max{ent?t (φ �W ), ent?t (φ)}.
Logarithmic Law: ent?t (φk) = k · ent?t (φ) for every k ≥ 0.

Continuity: If V is inverse limit of {V /Vi : i ∈ I} where each
Vi ≤ V is closed φ-invariant, then ent?t (φ) = supi∈I ent

?
t (φV /Vi

).

weak Addition Theorem: If V = V1 × V2 and φi : Vi → Vi

continuous, i = 1, 2, then ent?t (φ1 × φ2) = ent?t (φ1) + ent?t (φ2).

Theorem (Addition Theorem)

Let V be a linearly compact vector space, φ : V → V a continuous
linear transformation, W a closed φ-invariant subspace of V ,
φ : V /W → V /W induced by φ. Then

ent?t (φ) = ent?t (φ �W ) + ent?t (φ).
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Topological adjoint entropy for linearly compact vector spaces

Examples and connection with htop

1 For any linearly compact vector space V , ent?t (idV ) = 0.

2 The right Bernoulli shift

β̃K : KN → KN, (x0, x1, x2, . . .) 7→ (0, x0, x1, . . .)

has ent?t (β̃K) = 0.
The left Bernoulli shift

Kβ̃ : KN → KN, (x0, x1, x2, . . .) 7→ (x1, x2, x3, . . .)

has ent?t (Kβ̃) = 1.

3 If K = Z(p) with p a prime, a linearly compact vector space
V over K is a totally disconnected compact abelian group and

ent?t (φ) =
htop(φ)

log |K|
.
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Topological adjoint entropy for linearly compact vector spaces

Bridge Theorem

Let V be a discrete vector space. Then V ∗ is a linearly compact
vector space.

(βK)∗ = Kβ̃, so ent(βK) = 1 = ent?t (Kβ̃) = ent?t ((βK)∗).
(Kβ)∗ = β̃K, so ent(Kβ) = 0 = ent?t (β̃K) = ent?t ((Kβ)∗).

Theorem (Bridge Theorem)

Let V be a discrete vector space and φ : V → V a linear
transformation. Then

ent(φ) = ent?t (φ∗).

If K = Z(p) with p a prime, V is a torsion abelian group and V ∗ is
a totally disconnected compact abelian group. For φ : V → V a
continuous linear transformation,

ent(φ) =
halg (φ)

log |K|
and ẽnt

?
t (φ∗) =

htop(φ∗)

log |K|
.

Moreover, halg (φ) = htop(φ∗) [Dikranjan & GB 2012].
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Algebraic and topological entropy for locally linearly compact vector spaces

Definition

Let V be a locally linearly compact vector space and
B(V ) = {U ≤ V : U open, linearly compact}.
Let φ : V → V be a continuous linear transformation.

For U ∈ B(V ), the algebraic entropy of φ with respect to U is

H̃(φ,U) = lim
n→∞

1

n
dim

Tn(φ,U)

U
;

the algebraic entropy of φ is

ẽnt(φ) = sup
{
H̃(φ,U) : U ∈ B(V )

}
.

For U ∈ B(V ), the adjoint entropy of φ with respect to U is

H̃?(φ,U) = lim
n→∞

1

n
dim

U

Cn(φ,U)
;

the adjoint entropy of φ is

ẽnt
?
t (φ) = sup

{
H̃?(φ,U) : U ∈ B(V )

}
.
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Algebraic and topological entropy for locally linearly compact vector spaces

Properties

Let V be a locally linearly compact vector space
and φ : V → V a continuous linear transformation.

ẽnt(φ) =

{
ent(φ) if V is discrete,

0 if V is linearly compact.

ẽnt
?
t (φ) =

{
0 if V is discrete,

ent?t (φ) if V is linearly compact.

All the basic properties of ent and ent?t extend to the general case
of ẽnt and ẽnt

?
t , also the Addition Theorems.

If K = Z(p) for p a prime, then a locally linearly compact vector
space V over K is a totally disconnected locally compact abelian
group such that V ∗ is a totally disconnected locally compact
abelian group too; and

ẽnt(φ) =
halg (φ)

log |K|
and ẽnt

?
t (φ) =

htop(φ)

log |K|
.
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Algebraic and topological entropy for locally linearly compact vector spaces

Connection to halg and htop and Bridge Theorem

Theorem (Bridge Theorem)

Let V be a locally linearly compact vector space and φ : V → V a
continuous linear transformation. Then

ẽnt(φ) = ẽnt
?
t (φ∗).

Assume that K = Z(p) with p a prime, V is a locally linearly
compact vector space and φ : V → V is a continuous linear
transformation. Then V and V ∗ are totally disconnected locally
compact abelian groups; and

ẽnt(φ) =
halg (φ)

log |K|
and ẽnt

?
t (φ∗) =

htop(φ∗)

log |K|
.

Moreover, halg (φ) = htop(φ∗) [Dikranjan & GB 2014].
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END
Thank you!
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