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Growth of finitely generated groups

Definition

Let G be a finitely generated group and
S a finite subset of generators of G , with 1 6∈ S and S = S−1.

For every g ∈ G \ {1}, let
`S(g) be the length of the shortest word representing g in S ;
moreover, `S(1) = 0.

For n ≥ 0, let BS(n) = {g ∈ G : `S(g) ≤ n}.

The growth function of G with respect to S is

γS : N→ N
n 7→ |BS(n)|.

The growth rate of G with respect to S is

λS = lim
n→∞

log γS(n)

n
.
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Growth of finitely generated groups

Definition

For two functions γ, γ′ : N→ N,

γ � γ′ if ∃ n0,C > 0 such that γ(n) ≤ γ′(Cn), ∀n ≥ n0.

γ ∼ γ′ if γ � γ′ and γ′ � γ.

For every d , d ′ ∈ N, nd ∼ nd
′

if and only if d = d ′;
for every a, b ∈ R>1, an ∼ bn.

Definition

A map γ : N→ N is:

(a) polynomial if γ(n) � nd for some d ∈ N+;

(b) exponential if γ(n) ∼ en;

(c) intermediate if γ(n) � nd for every d ∈ N+ and γ(n) ≺ en.
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Growth of finitely generated groups

Definition

Definition

The finitely generated group G = 〈S〉 has:

(a) polynomial growth if γS is polynomial;

(b) exponential growth if γS is exponential;

(c) intermediate growth if γS is intermediate.

This definition does not depend on the choice of S ;
indeed, if G = 〈S ′〉 then γS ∼ γS ′ .

Properties:

γS stabilizes if and only if G is finite;

γS is at least polynomial if G is infinite;

γS is at most exponential;

γS is exponential if and only if λS > 0.
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Growth of finitely generated groups

Milnor Problem, Grigorchuk group and Gromov Theorem

Problem (Milnor)

Let G = 〈S〉 be a finitely generated group.

(a) Is γS either polynomial or exponential?

(b) Under which conditions G has polynomial growth?

Answers:

Grigorchuk’s group of intermediate growth.

Theorem (Gromov)

A finitely generated group G has polynomial growth if and only if
G is virtually nilpotent.
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Algebraic entropy

Definition

Let G be a group, φ : G → G an endomorphism and
F(G ) = {F ⊆ G : 1 ∈ F 6= ∅ finite}.
For F ∈ F(G ) and n > 0, let Tn(φ,F ) = F · φ(F ) · . . . · φn−1(F ).

The algebraic entropy of φ with respect to F is

H(φ,F ) = lim
n→∞

log |Tn(φ,F )|
n

;

[AKM, Weiss, Peters, Dikranjan] the algebraic entropy of φ is

h(φ) = sup
F∈F(G)

H(φ,F ).

Let G = 〈S〉 be a finitely generated group (1 6∈ S = S−1).

For φ = id and F = S ∪ {1},

Tn(id ,F ) = BS(n) and H(id ,F ) = λS .
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Growth of group endomorphisms

Growth rate of a group endomorphism

Let G be a group, φ : G → G an endomorphism and F ∈ F(G ).

The growth rate of φ with respect to F is

γφ,F : N+ → N+

n 7→ |Tn(φ,F )|.

Properties:

γφ,F is at most exponential;

γφ,F is exponential if and only if H(φ,F ) > 0.

If G = 〈S〉 is a finitely generated group (1 6∈ S = S−1), then

γS = γid ,F

for F = S ∪ {1}.

Problem

If also G = 〈S ′〉, is it true that γφ,S ∼ γφ,S ′?
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Growth of group endomorphisms

Growth rate of a group endomorphism

Definition

An endomorphism φ : G → G of a group G has:

(a) polynomial growth if γφ,F is polynomial for every F ∈ F(G );

(b) exponential growth if ∃ F ∈ F(G ) such that γφ,F is exp.;

(c) intermediate growth otherwise.

This definition extends the classical one.

φ has exponential growth if and only if h(φ) > 0.

Definition

A group G has polynomial growth (resp., exp., intermediate)
if idG has polynomial growth (resp., exp., intermediate).

Theorem

A group G has polynomial growth if and only if
every finitely generated subgroup of G is virtuallly nilpotent.
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Growth of group endomorphisms

Results

Problem

For which groups G every endomorphism φ : G → G
has either polynomial or exponential growth?

Eq., for which groups G , h(φ) = 0 implies φ of polynomial growth?

Theorem

For G a virtually nilpotent group,
no endomorphism φ : G → G has intermediate growth.

Already known for abelian groups.

Theorem

For G a locally finite group,
no endomorphism φ : G → G has intermediate growth.

The problem remains open in general.
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Addition Theorem

It is known that:

Theorem (Addition Theorem)

Let G be an abelian group, φ : G → G an endomorphism and H a
φ-invariant subgroup of G . Then

h(φ) = h(φ �H) + h(φG/H),

where φG/H : G/H → G/H is induced by φ.

The Addition Theorem does not hold in general:

consider G = Z(Z) oβ Z and idG : G → G ;

the group G has exponential growth and so h(idG ) =∞;

while Z(Z) and Z are abelian and hence h(idZ(Z)) = 0 = h(idZ).
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Addition Theorem

Extending the Addition Theorem from the abelian case, we get:

Theorem

Let G be a nilpotent group, φ : G → G an endomorphism, H a
φ-invariant normal subgroup of G . Then

h(φ) = h(φ �H) + h(φG/H),

where φG/H : G/H → G/H is induced by φ.

Problem

For which classes of non-abelian groups,
does the Addition Theorem hold?
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Thank you!
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