Anna Giordano Bruno (joint work with Pablo Spiga)

GTG - Salerno, November 20th, 2015

Growth of finitely generated groups

└─ Definition

Let G be a finitely generated group and S a finite subset of generators of G, with $1 \notin S$ and $S = S^{-1}$.

For every $g \in G \setminus \{1\}$, let $\ell_S(g)$ be the length of the shortest word representing g in S; moreover, $\ell_S(1) = 0$.

For
$$n \geq 0$$
, let $B_S(n) = \{g \in G : \ell_S(g) \leq n\}$.

The growth function of G with respect to S is

$$\gamma_S : \mathbb{N} \to \mathbb{N}$$

 $n \mapsto |B_S(n)|$

The growth rate of G with respect to S is

$$\lambda_{\mathcal{S}} = \lim_{n \to \infty} \frac{\log \gamma_{\mathcal{S}}(n)}{n}$$

Growth of finitely generated groups

Definition

For two functions $\gamma, \gamma' : \mathbb{N} \to \mathbb{N}$,

•
$$\gamma \preceq \gamma'$$
 if $\exists n_0, C > 0$ such that $\gamma(n) \leq \gamma'(Cn)$, $\forall n \geq n_0$.

• $\gamma \sim \gamma'$ if $\gamma \preceq \gamma'$ and $\gamma' \preceq \gamma$.

For every $d, d' \in \mathbb{N}$, $n^d \sim n^{d'}$ if and only if d = d'; for every $a, b \in \mathbb{R}_{>1}$, $a^n \sim b^n$.

Definition

A map $\gamma : \mathbb{N} \to \mathbb{N}$ is:

(a) polynomial if
$$\gamma(n) \preceq n^d$$
 for some $d \in \mathbb{N}_+$;

- (b) exponential if $\gamma(n) \sim e^n$;
- (c) intermediate if $\gamma(n) \succ n^d$ for every $d \in \mathbb{N}_+$ and $\gamma(n) \prec e^n$.

- Growth of finitely generated groups
 - └─ Definition

Definition

The finitely generated group $G = \langle S \rangle$ has:

- (a) polynomial growth if γ_S is polynomial;
- (b) exponential growth if γ_S is exponential;
- (c) intermediate growth if γ_S is intermediate.

This definition does not depend on the choice of S; indeed, if $G = \langle S' \rangle$ then $\gamma_S \sim \gamma_{S'}$.

Properties:

- γ_S stabilizes if and only if G is finite;
- γ_S is at least polynomial if G is infinite;
- γ_S is at most exponential;
- γ_S is exponential if and only if $\lambda_S > 0$.

- Growth of finitely generated groups
 - └─ Milnor Problem, Grigorchuk group and Gromov Theorem

Problem (Milnor)

- Let $G = \langle S \rangle$ be a finitely generated group.
- (a) Is γ_S either polynomial or exponential?
- (b) Under which conditions G has polynomial growth?

Answers:

• Grigorchuk's group of intermediate growth.

Theorem (Gromov)

A finitely generated group G has polynomial growth if and only if G is virtually nilpotent.

Algebraic entropy

Definition

Let G be a group,
$$\phi : G \to G$$
 an endomorphism and
 $\mathcal{F}(G) = \{F \subseteq G : 1 \in F \neq \emptyset \text{ finite}\}.$
For $F \in \mathcal{F}(G)$ and $n > 0$, let $T_n(\phi, F) = F \cdot \phi(F) \cdot \ldots \cdot \phi^{n-1}(F).$
The algebraic entropy of ϕ with respect to F is

$$H(\phi, F) = \lim_{n \to \infty} \frac{\log |T_n(\phi, F)|}{n};$$

[AKM, Weiss, Peters, Dikranjan] the algebraic entropy of ϕ is

$$h(\phi) = \sup_{F \in \mathcal{F}(G)} H(\phi, F).$$

Let $G = \langle S \rangle$ be a finitely generated group $(1 \notin S = S^{-1})$. For $\phi = id$ and $F = S \cup \{1\}$,

$$T_n(id,F) = B_S(n)$$
 and $H(id,F) = \lambda_S$.

Growth of group endomorphisms

└─ Growth rate of a group endomorphism

Let G be a group, $\phi : G \to G$ an endomorphism and $F \in \mathcal{F}(G)$. The growth rate of ϕ with respect to F is

$$\gamma_{\phi,F} : \mathbb{N}_+ \to \mathbb{N}_+$$

 $n \mapsto |T_n(\phi,F)|$

Properties:

• $\gamma_{\phi,F}$ is at most exponential;

1

• $\gamma_{\phi,F}$ is exponential if and only if $H(\phi,F) > 0$.

If $G = \langle S \rangle$ is a finitely generated group $(1 \not\in S = S^{-1})$, then

$$\gamma_{S} = \gamma_{id,F}$$

for $F = S \cup \{1\}$.

Problem

If also $G = \langle S' \rangle$, is it true that $\gamma_{\phi,S} \sim \gamma_{\phi,S'}$?

- Growth of group endomorphisms
 - Growth rate of a group endomorphism

Definition

An endomorphism $\phi: G \rightarrow G$ of a group G has:

- (a) polynomial growth if $\gamma_{\phi,F}$ is polynomial for every $F \in \mathcal{F}(G)$;
- (b) exponential growth if $\exists F \in \mathcal{F}(G)$ such that $\gamma_{\phi,F}$ is exp.;
- (c) intermediate growth otherwise.

This definition extends the classical one.

• ϕ has exponential growth if and only if $h(\phi) > 0$.

Definition

A group G has polynomial growth (resp., exp., intermediate) if id_G has polynomial growth (resp., exp., intermediate).

Theorem

A group G has polynomial growth if and only if every finitely generated subgroup of G is virtually nilpotent. Growth of group endomorphisms

Results

Problem

For which groups G every endomorphism $\phi : G \rightarrow G$ has either polynomial or exponential growth?

Eq., for which groups G, $h(\phi) = 0$ implies ϕ of polynomial growth?

Theorem

For G a virtually nilpotent group, no endomorphism $\phi : G \rightarrow G$ has intermediate growth.

Already known for abelian groups.

Theorem

For G a locally finite group, no endomorphism $\phi : G \to G$ has intermediate growth.

The problem remains open in general.

Addition Theorem

It is known that:

Theorem (Addition Theorem)

Let G be an abelian group, $\phi: G \to G$ an endomorphism and H a ϕ -invariant subgroup of G. Then

$$h(\phi) = h(\phi \restriction_H) + h(\phi_{G/H}),$$

where $\phi_{G/H} : G/H \to G/H$ is induced by ϕ .

The Addition Theorem does not hold in general:

consider $G = \mathbb{Z}^{(\mathbb{Z})} \rtimes_{\beta} \mathbb{Z}$ and $id_G : G \to G$;

- the group G has exponential growth and so $h(id_G) = \infty$;
- while $\mathbb{Z}^{(\mathbb{Z})}$ and \mathbb{Z} are abelian and hence $h(id_{\mathbb{Z}^{(\mathbb{Z})}}) = 0 = h(id_{\mathbb{Z}})$.

Addition Theorem

Extending the Addition Theorem from the abelian case, we get:

Theorem

Let G be a nilpotent group, $\phi: G \to G$ an endomorphism, H a ϕ -invariant normal subgroup of G. Then

 $h(\phi) = h(\phi \restriction_H) + h(\phi_{G/H}),$

where $\phi_{G/H} : G/H \to G/H$ is induced by ϕ .

Problem

For which classes of non-abelian groups, does the Addition Theorem hold?

Bibliography

- J. Milnor: "Problem 5603", Amer. Math. Monthly 75 (1968) 685–686.
- M. Gromov: "Groups of polynomial growth and expanding maps", Publ. Math. IHÉS 53 (1981) 53–73.
- A. Mann: "How groups grow", London Mathematical Society Lecture Note Series, vol. 395, Cambridge University Press, Cambridge, 2012.
- D. Dikranjan, A. Giordano Bruno: "The Pinsker subgroup of an algebraic flow", J. Pure and Appl. Algebra 216 (2012) 364–376.
- A Giordano Bruno, P. Spiga: "Growth of group endomorphisms", preprint.

END Thank you!