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Topological entropy

Introduction

Topological entropy

1965 Adler, Konheim, McAndrew: for continuous selfmaps of
compact spaces;

1971 Bowen: for uniformly continuous selfmaps of metric
spaces;

1974 Hood: for uniformly continuous selfmaps of uniform
spaces;
in particular, for continuous endomorphisms of locally
compact groups.

These entropies coincide on continuous endomorphisms of
compact groups.
1987 Stojanov: characterization of topological entropy for
continuous endomorphisms of compact groups.
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Topological entropy

Definition

G locally compact group, µ right Haar measure on G .
C(G ) a local base at 1 of compact neighborhoods; U ∈ C(G ).
φ : G → G topological automorphism;
n non-negative integer.

Let

Un = U ∩ φ(U) ∩ . . . ∩ φn(U);

U+ =
⋂∞

n=0 φ
n(U).

Analogously,

U−n = U ∩ φ−1(U) ∩ . . . ∩ φ−n(U);

U− =
⋂∞

n=0 φ
−n(U).
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Topological entropy

Definition
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Topological entropy

Definition

The topological entropy of φ with respect to U is

Htop(φ,U) = lim sup
n→∞

− logµ(U−n)

n
.

The topological entropy of φ is

htop(φ) = sup{Htop(φ,U) : U ∈ C(G )}.
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Topological entropy

Measure-free formula

Assume that G is also totally disconnected;

B(G ) = {U ≤ G : open compact} ⊆ C(G ).

van Dantzig 1931: B(G ) is a local base at 1.

For U ∈ B(G ),

Htop(φ,U) = lim sup
n→∞

log[U : U−n]

n
.

Moreover,

htop(φ) = sup{Htop(φ,U) : U ∈ B(G )}.
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Topological entropy

Limit-free formula

Theorem (Limit-free Formula)

Htop(φ,U) = log[φ(U+) : U+]

Sketch of the proof.
1 cn := [U : U−n], cn|cn+1 for every n ≥ 0;
2 αn := cn+1

cn
= [U−n : U−(n+1)], αn+1 ≤ αn for every n ≥ 0;

3 αn = α for every n >> 0; so

Htop(φ,U) = logα;

4 Then

[φ(U+) : U+] = [φ(U+) : U ∩ φ(U+)] = [φ(U+)U : U]

= [φ(Un)U : U] for every n >> 0

= [φ(Un) : U ∩ φ(Un)] = [φ(Un) : Un+1]

= [φ−(n+1)(φ(Un)) : φ−(n+1)(Un+1)]

= [U−n : U−(n+1)] = α.
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Topological entropy

Limit-free formula

The modulus ∆ : Aut(G )→ R>0 is defined by

∆(φ) =
µ(φ(U))

µ(U)
.

We have

Htop(φ,U) = log[φ(U+) : U+]

= log[φ−1(U−) : U−] + log ∆(φ).

Hence,
Htop(φ−1,U) = Htop(φ,U)− log ∆(φ).
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Applications

Basic properties

Monotonicity: N closed normal subgroup of G , φ(N) = N,
φ : G/N → G/N induced by φ, then
htop(φ) ≥ max{htop(φ �N), htop(φ)}.

Invariance under conjugation: ξ : G → H topological
isomorphism, then htop(ξφξ−1) = htop(φ).

Logarithmic law: htop(φk) = k · htop(φ) for every natural k .

Continuity: G = lim←−G/Gi with Gi closed normal φ-invariant
subgroup, then htop(φ) = supi∈I htop(φ �Gi

).

Additivity for direct products: G = G1 × G2, φi : Gi → Gi

topological automorphism, i = 1, 2, then
htop(φ1 × φ2) = htop(φ1) + htop(φ2).
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Applications

Comparison with the scale function

Willis 2002: the scale of φ is

s(φ) = min{[φ(U) : U ∩ φ(U)] : U ∈ B(G )}.

By the Limit-free Formula

htop(φ) = sup{log[φ(U+) : U+] : U ∈ B(G )},

and by Willis’ Tidying Procedure

log s(φ) = min{log[φ(U+) : U+] : U ∈ B(G )}.

This gives

Theorem

htop(φ) ≥ log s(φ)

Equality holds precisely when the minimizing subgroups form a
local base of neighborhoods of 1.
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Open problems

Problem (1)

Extend the Limit-free Formula to continuous endomorphisms.

Available in the compact case.

Problem (2)

Prove an analogous Limit-free Formula for the algebraic entropy.

Available for endomorphisms of discrete torsion groups.

Problem (3)

Compare the scale function with the algebraic entropy.
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Open problems

Problem (4)

Does the Addition Theorem hold for topological automorphisms of
totally disconnected locally compact groups?

In other words, we ask whether

htop(φ) = htop(φ �N) + htop(φ),

where N is closed normal subgroup of G with φ(N) = N.

N

��

φ�N // N

��
G

��

φ // G

��
G/N

φ // G/N

Stojanov 1987: the Addition Theorem holds for compact groups.
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