Anna Giordano Bruno (joint works with Dikran Dikranjan and Federico Berlai)

ItEs 2012

— Topological entropy

└─ Definition

Let G be a locally compact group, μ a right Haar measure on G and C(G) a local base of compact neighborhoods of 1. Let $\phi : G \to G$ be a continuous endomorphism. For every $U \in C(G)$ and n > 0, the <u>n-th ϕ -cotrajectory</u> of U is

$$C_n(\phi, U) = U \cap \phi^{-1}(U) \cap \ldots \cap \phi^{-n+1}(U).$$

The topological entropy of ϕ with respect to U is

$$H_{top}(\phi, U) = \limsup_{n \to \infty} - \frac{\log \mu(C_n(\phi, U))}{n}.$$

(It does not depend on the choice of the Haar measure μ .) The topological entropy of ϕ is

$$h_{top}(\phi) = \sup\{H_{top}(\phi, U) : U \in \mathcal{C}(G)\}.$$

└─ Topological entropy

└─ Measure-free formula

Assume that G is also totally disconnected.

The family $\mathcal{B}(G) \subseteq \mathcal{C}(G)$ of all open compact subgroups of G is a local base of compact neighborhoods of 1 [van Dantzig].

For $U \in \mathcal{B}(G)$ and n > 0, $[U : C_n(\phi, U)]$ is finite, and $\mu(U) = [U : C_n(\phi, U)] \cdot \mu(C_n(\phi, U)).$

Then $\log \mu(U) = \log[U : C_n(\phi, U)] + \log \mu(C_n(\phi, U))$, so $-\log \mu(C_n(\phi, U)) = \log[U : C_n(\phi, U)] - \log \mu(U)$ and hence

$$H_{top}(\phi, U) = \limsup_{n \to \infty} -\frac{\log \mu(C_n(\phi, U))}{n}$$

=
$$\limsup_{n \to \infty} \frac{\log[U : C_n(\phi, U)] - \log \mu(U)}{n}$$

=
$$\limsup_{n \to \infty} \frac{\log[U : C_n(\phi, U)]}{n}$$

— Topological entropy

└─ Limit-free formula

Let $\phi: G \to G$ be a topological automorphism. For $U \in \mathcal{B}(G)$,

$$H_{top}(\phi, U) = \limsup_{n \to \infty} \frac{\log[U : C_n(\phi, U)]}{n}.$$

For every n > 0 let $c_n := [U : C_n(\phi, U)]$. Then

• c_n divides c_{n+1} for every n > 0.

Let $\alpha_n := \frac{c_{n+1}}{c_n} = [C_n(\phi, U) : C_{n+1}(\phi, U)]$. Then

- $\alpha_{n+1} \leq \alpha_n$ for every n > 0;
- $\{\alpha_n\}_{n>0}$ stabilizes $(\exists n_0 > 0, \alpha > 0 : \alpha_n = \alpha \ \forall n \ge n_0);$
- $H_{top}(\phi, U) = \log \alpha$.

Theorem (Limit-free formula)

For $U_+ = \bigcap_{n=0}^{\infty} \phi^n(U)$,

 $H_{top}(\phi, U) = \log[\phi(U_+) : U_+].$

- Applications

└─Basic properties

 ${\cal G}$ totally disconnected locally compact group, $\phi:{\cal G}\to {\cal G}$ topological automorphism.

Monotonicity: *N* closed normal subgroup of *G*, $\phi(N) = N$, $\overline{\phi} : G/N \to G/N$ induced by ϕ , then $h_{top}(\phi) \ge \max\{h_{top}(\phi \upharpoonright_N), h_{top}(\overline{\phi})\}.$

Invariance under conjugation: $\xi : G \to H$ topological isomorphism, then $h_{top}(\xi \phi \xi^{-1}) = h_{top}(\phi)$.

Logarithmic law: $h_{top}(\phi^k) = k \cdot h_{top}(\phi)$ for every integer k.

Continuity: $G = \lim_{i \to 0} G/G_i$ with G_i closed normal ϕ -invariant subgroup, then $h_{top}(\phi) = \sup_{i \in I} h_{top}(\phi \upharpoonright_{G_i})$.

Additivity for direct products: $G = G_1 \times G_2$, $\phi_i : G_i \to G_i$ topological automorphism, i = 1, 2, then $h_{top}(\phi_1 \times \phi_2) = h_{top}(\phi_1) + h_{top}(\phi_2)$.

- Applications

Comparison with the scale function

G totally disconnected locally compact group, $\phi: G \to G$ topological automorphism.

The scale of ϕ is

$$s(\phi) = \min\{[\phi(U) : U \cap \phi(U)] : U \in \mathcal{B}(G)\}.$$

(Willis 2002, in 1994 only for inner automorphisms) $U \in \mathcal{B}(G)$ is minimizing for ϕ if $s(\phi) = [\phi(U) : U \cap \phi(U)]$. For $U \in \mathcal{B}(G)$ and n > 0, Willis considers

•
$$U_{-n} = U \cap \phi^{-1}(U) \cap \ldots \cap \phi^{-n}(U) = C_{n+1}(\phi, U)$$

•
$$U_n = U \cap \phi(U) \cap \ldots \cap \phi^n(U) = C_{n+1}(\phi^{-1}, U)$$

•
$$U_- = \bigcap_{n=0}^{\infty} \phi^{-n}(U)$$
 and $U_+ = \bigcap_{n=0}^{\infty} \phi^n(U)$

•
$$U_{--} = \bigcup_{n=0}^{\infty} \phi^{-n}(U_{-})$$
 and $U_{++} = \bigcup_{n=0}^{\infty} \phi^{n}(U_{+})$.

Applications

Comparison with the scale function

Entropy on totally disconnected locally compact groups

- Applications
 - Comparison with the scale function

G totally disconnected locally compact group,

 $\phi: G \to G$ topological automorphism, $U \in \mathcal{B}(G)$.

- *U* is *tidy above* for ϕ if $U = U_- U_+$;
- *U* is *tidy below* for ϕ if U_{++} is closed;
- U is *tidy* for ϕ if it is tidy above and tidy below for ϕ .

Theorem (Willis)

 $U \in \mathcal{B}(G)$ is minimizing for ϕ if and only if U is tidy for ϕ . In this case

$$s(\phi) = [\phi(U_+) : (U_+)].$$

- Applications

└─ Comparison with the scale function

G totally disconnected locally compact group, $\phi: G \to G$ topological automorphism.

By the limit-free formula

$$h_{top}(\phi) = \sup\{\log[\phi(U_+): U_+]: U \in \mathcal{B}(G)\},\$$

and by Willis' Theorem

$$\log s(\phi) = \min\{\log[\phi(U_+): U_+]: U \in \mathcal{B}(G)\}.$$

This gives

Theorem

$$h_{top}(\phi) \ge \log s(\phi)$$

Equality holds when the tidy subgroups form a local base of neighborhoods of 1.

- Applications

Open problems

Problem (1)

Extend the limit-free formula to continuous endomorphisms.

Available in the compact case:

Theorem

Let K be a totally disconnected compact group, $\phi : K \to K$ a continuous endomorphism and $U \in \mathcal{B}(K)$ such that $[K : (\phi(K) \cdot U_{-})] < \infty$. Then

 $H_{top}(\phi, U) = \log[\phi^{-1}(U_{-}) : U_{-}] - \log[K : \phi(K) \cdot U_{-}].$

If K is abelian, then $[K : (\phi(K) \cdot U_{-})] < \infty$ for every $U \in \mathcal{B}(K)$.

- Applications

Open problems

Problem (2)

Prove an analogous limit-free formula for the algebraic entropy.

Available for endomorphisms of discrete torsion groups.

- END -