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Entropy on totally disconnected locally compact groups

Topological entropy

Definition

Let G be a locally compact group, µ a right Haar measure on G
and C(G ) a local base of compact neighborhoods of 1.
Let φ : G → G be a continuous endomorphism.
For every U ∈ C(G ) and n > 0, the n-th φ-cotrajectory of U is

Cn(φ,U) = U ∩ φ−1(U) ∩ . . . ∩ φ−n+1(U).

The topological entropy of φ with respect to U is

Htop(φ,U) = lim sup
n→∞

− logµ(Cn(φ,U))

n
.

(It does not depend on the choice of the Haar measure µ.)
The topological entropy of φ is

htop(φ) = sup{Htop(φ,U) : U ∈ C(G )}.
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Topological entropy

Measure-free formula

Assume that G is also totally disconnected.

The family B(G ) ⊆ C(G ) of all open compact subgroups of G is a
local base of compact neighborhoods of 1 [van Dantzig].

For U ∈ B(G ) and n > 0, [U : Cn(φ,U)] is finite,

and µ(U) = [U : Cn(φ,U)] · µ(Cn(φ,U)).

Then log µ(U) = log[U : Cn(φ,U)] + log µ(Cn(φ,U)),

so − logµ(Cn(φ,U)) = log[U : Cn(φ,U)]− logµ(U) and hence

Htop(φ,U) = lim sup
n→∞

− logµ(Cn(φ,U))

n

= lim sup
n→∞

log[U : Cn(φ,U)]− logµ(U)

n

= lim sup
n→∞

log[U : Cn(φ,U)]

n
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Topological entropy

Limit-free formula

Let φ : G → G be a topological automorphism. For U ∈ B(G ),

Htop(φ,U) = lim sup
n→∞

log[U : Cn(φ,U)]

n
.

For every n > 0 let cn := [U : Cn(φ,U)]. Then

cn divides cn+1 for every n > 0.

Let αn := cn+1

cn
= [Cn(φ,U) : Cn+1(φ,U)]. Then

αn+1 ≤ αn for every n > 0;

{αn}n>0 stabilizes (∃n0 > 0, α > 0 : αn = α ∀n ≥ n0);

Htop(φ,U) = logα.

Theorem (Limit-free formula)

For U+ =
⋂∞

n=0 φ
n(U),

Htop(φ,U) = log[φ(U+) : U+].
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Applications

Basic properties

G totally disconnected locally compact group,
φ : G → G topological automorphism.

Monotonicity: N closed normal subgroup of G , φ(N) = N,
φ : G/N → G/N induced by φ, then
htop(φ) ≥ max{htop(φ �N), htop(φ)}.

Invariance under conjugation: ξ : G → H topological
isomorphism, then htop(ξφξ−1) = htop(φ).

Logarithmic law: htop(φk) = k · htop(φ) for every integer k .

Continuity: G = lim←−G/Gi with Gi closed normal φ-invariant
subgroup, then htop(φ) = supi∈I htop(φ �Gi

).

Additivity for direct products: G = G1 × G2, φi : Gi → Gi

topological automorphism, i = 1, 2, then
htop(φ1 × φ2) = htop(φ1) + htop(φ2).
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Applications

Comparison with the scale function

G totally disconnected locally compact group,
φ : G → G topological automorphism.

The scale of φ is

s(φ) = min{[φ(U) : U ∩ φ(U)] : U ∈ B(G )}.

(Willis 2002, in 1994 only for inner automorphisms)

U ∈ B(G ) is minimizing for φ if s(φ) = [φ(U) : U ∩ φ(U)].

For U ∈ B(G ) and n > 0, Willis considers

U−n = U ∩ φ−1(U) ∩ . . . ∩ φ−n(U) = Cn+1(φ,U)

Un = U ∩ φ(U) ∩ . . . ∩ φn(U) = Cn+1(φ−1,U)

U− =
⋂∞

n=0 φ
−n(U) and U+ =

⋂∞
n=0 φ

n(U)

U−− =
⋃∞

n=0 φ
−n(U−) and U++ =

⋃∞
n=0 φ

n(U+).
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Applications

Comparison with the scale function

U−n = U ∩ φ−1(U) . . . ∩ φ−n(U) = Cn+1(φ,U)

Un = U ∩ φ(U) . . . ∩ φn(U) = Cn+1(φ−1
,U)

U− =
∞⋂
n=0

φ
−n(U) and U+ =

∞⋂
n=0

φ
n(U)

U−− =
∞⋃
n=0

φ
−n(U−) and U++ =

∞⋃
n=0

φ
n(U+).
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Applications

Comparison with the scale function

G totally disconnected locally compact group,
φ : G → G topological automorphism, U ∈ B(G ).

U is tidy above for φ if U = U−U+;

U is tidy below for φ if U++ is closed;

U is tidy for φ if it is tidy above and tidy below for φ.

Theorem (Willis)

U ∈ B(G ) is minimizing for φ if and only if U is tidy for φ.
In this case

s(φ) = [φ(U+) : (U+)].
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Applications

Comparison with the scale function

G totally disconnected locally compact group,
φ : G → G topological automorphism.

By the limit-free formula

htop(φ) = sup{log[φ(U+) : U+] : U ∈ B(G )},

and by Willis’ Theorem

log s(φ) = min{log[φ(U+) : U+] : U ∈ B(G )}.

This gives

Theorem

htop(φ) ≥ log s(φ)

Equality holds when the tidy subgroups form a local base of
neighborhoods of 1.
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Applications

Open problems

Problem (1)

Extend the limit-free formula to continuous endomorphisms.

Available in the compact case:

Theorem

Let K be a totally disconnected compact group, φ : K → K a
continuous endomorphism and U ∈ B(K ) such that
[K : (φ(K ) · U−)] <∞. Then

Htop(φ,U) = log[φ−1(U−) : U−]− log[K : φ(K ) · U−].

If K is abelian, then [K : (φ(K ) · U−)] <∞ for every U ∈ B(K ).
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Applications

Open problems

Problem (2)

Prove an analogous limit-free formula for the algebraic entropy.

Available for endomorphisms of discrete torsion groups.
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